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ABSTRACT

The medical field has greatly benefited from the collection and analysis of large datasets, gain-

ing critical insights into patient health, disease patterns, and treatment efficacy. Recognizing

these benefits, healthcare providers have structured their data collection efforts to maximize

value, primarily storing data in Electronic Health Records (EHR). This structured data, being

organized and easily searchable, opens new avenues for analysis, providing a comprehensive

understanding of healthcare outcomes.

Company X has developed standardized reports to capture this structured data, aiming to en-

hance business processes. This research focuses on the anamnesis process, which marks the

initial interaction between the practitioner and the patient, centring on the patient’s medical

history and symptoms. The objective is to develop a machine learning (ML) based critical deci-

sion support system (CDSS) tailored for the anamnesis conversation. The ML model functions

as a classification tool to assist in diagnosing patients, with practitioners retaining final decision

authority. Hence, the model incorporates explainable AI (XAI) to ensure transparency, enabling

practitioners to discern correct from incorrect model outputs. Achieving this goal promises

standardized patient care for greater consistency and reliability, efficient patient evaluation to

reduce consultation times, and reduced misdiagnoses, leading to better treatment plans and

minimized adverse health outcomes. The central research question addressed is:

How to design and integrate a Explainable Artificial Intelligence (XAI) based Clin-

ical Decision Support System (CDSS) to identify the most influential variables and

support practitioners in diagnosing patients?

The research begins with an analysis of the anamnesis conversation, detailing the completion

of three structured reports: anamnesis, examination, and treatment reports. The anamnesis

report contains variables used by the ML model to classify diagnoses, primarily nominal data

on pain location and type. The treatment report provides the final diagnosis, serving as the re-

search’s label, encompassing 177 diagnoses. This study focuses on a subset of these diagnoses,

narrowing it down to 20.

After understanding the business process and data, the data was prepared for ML use, start-

ing with a star schema model to gain insights into input values. After the modelling, missing

data was addressed using averages or medians. Feature reduction was also implemented to

minimise variables from 299 to 51. This data was then used to train three models: two single-

label classifiers (SLC) using automated machine learning, and a multi-label classifier (MLC)

random forest model. The MLC model outperformed the others based on sensitivity (0.45),

precision (0.64), and F1-score (0.48), with high precision being crucial for identifying correct
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ABSTRACT ii

diagnoses. The research also emphasizes the explainable output of the ML model. Four XAI

outputs were created and evaluated by practitioners, leading to a final output format that high-

lights: variables leading to the diagnosis, variables deemed irrelevant, and alternative options

for non-correlated variables.

In conclusion, this study offers a thorough literature review of XAI in healthcare and presents

an XAI-verified diagnosis classification model. Additionally, it underscores the data modeling

and preparation of EHR data for ML use, contributing valuable insights into the integration of

ML in clinical settings.

Keywords: CDSS; Clinical Decision Support System, XAI, Explainable AI, Key Variables, EHR,

Electronic Health Records, Single-Label Classification, SLC, Multi-Label Classification, MLC



AUTHOR’S DECLARATION

I hereby declare that this thesis consists of original work of which I have authored. This is a true

copy of the thesis, including any required final revisions, as accepted by my examiners.

I authorize the University of Twente to lend this thesis to other institutions or individuals for

the purpose of scholarly research. I further authorize University of Twente to reproduce this

thesis by photocopying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research. I understand that my thesis will be made

electronically available to the public.

Douwe Rotink

iii



ACKNOWLEDGEMENTS

I would like to extend my deepest gratitude to everyone who supported and guided me through-

out this project. Your contributions have been invaluable, and this thesis would not have been

possible without your assistance.

First and foremost, I would like to thank my thesis supervisors, Marcos Machado, João Rebelo

Moreira, and Wallace Corbo Ugulino. Your expertise and guidance were critical in shaping this

research. In particular, I am profoundly grateful to Marcos Machado for his support and con-

sistent feedback at every stage of my research. Your insights were essential to the completion

of this work.

I am also deeply appreciative of my colleagues at Company X and the Healthcare Group Y. Con-

ducting my research in such an enjoyable working environment was a pleasure. Special thanks

go to my supervisors at the company. Their guidance during our weekly meetings and their

support were instrumental in providing me with the clarity and direction needed to advance

my research.

To all of you, thank you once again for your invaluable contributions to this thesis. I hope you

enjoy reading it.

iv



CONTENTS

Abstract i

Author’s Declaration iii

Acknowledgements iv

List of Figures viii

List of Tables x

List of Abbreviations xii

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Motivations and Objectives. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review 7

2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Technical Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relevant Themes and Trends in Literature . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Exploring Literature Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Type of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Machine Learning in Healthcare Decision Support . . . . . . . . . . . . . . . . . . 15

2.3.1 Machine Learning Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Impact on Triple Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Implementation CDSS in Healthcare . . . . . . . . . . . . . . . . . . . . . . 17

2.4 XAI Implementation in Healthcare . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 XAI Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Ante-Hoc Explanations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Post-Hoc Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Methodology 23

3.1 Cross-Industry Standard Process for Data Mining . . . . . . . . . . . . . . . . . . . 23

3.2 Automated Machine Learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



CONTENTS vi

3.3 Explainable Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Partial Dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 LIME. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Validation Methods & Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Experimental Set-Up 27

4.1 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Business Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Data Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Anamnesis Report Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.2 Treatment Report Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Data Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.2 Data Selection and Integration . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.3 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Modeling Strategies for Class Imbalance . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.1 Single-Label Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.2 Multi-Label Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Results 45

5.1 Exploratory Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1 Global Feature Importance . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.2 Partial Dependency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Model Comparison Based on Diagnosis-Specific Performance. . . . . . . . . . . . 54

5.2.1 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Explainable Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Local Explainability Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.2 Questionnaire Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.3 Final Local Explanation Format . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.4 LIME Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.5 Integration of ML Based CDSS in Current Anamnesis Process . . . . . . . . 64

6 Conclusion 66

6.1 Practical and Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Limitations and Future Research Recommendations . . . . . . . . . . . . . . . . . 69

6.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.2 Future Research Recommendations . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS vii

References 72

A Appendix A:Full Keyword Queries for Literature Search 78

B Appendix B: Literature Findings 79

B.1 Findings Literature regarding ML implementations in Health Care . . . . . . . . . 79

B.2 Findings Literature regarding XAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.3 Findings Literature Regarding Implementation and Impact of CDSS . . . . . . . . 84

C Appendix C: Example Starschema with data 86

D Appendix D: Process data extraction 87

E Appendix E: Feature Engineering 88

F Appendix F: Descriptive statistics of the data after cleaning 89

G Appendix G: Confusion Matrices 91

H Appendix H: Threshold values for the labels in the CICST Model 94

I Appendix I: Explainability Questionnaire Answers 95

J Appendix J: Preview implementation 96



LIST OF FIGURES

1.1 Motivation & Strategy View for Data Process . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Articles selection process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Year Distribution of Papers per Query Type . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Word cloud of keywords in papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Word cloud of keywords in papers without search query keywords . . . . . . . . . 14

2.5 XAI Methods in Healthcare Overview, Inspired By Research Di Martino and Del-

mastro [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 CRISP-DM Process Model Kristoffersen et al. [2] . . . . . . . . . . . . . . . . . . . . 23

4.1 Overview of the Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Business View of the Anamnesis Process . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Technology and Application View for Data Process . . . . . . . . . . . . . . . . . . 36

4.4 Example of Data Storage Before Modelling . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Starschema of Data After Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Distribution of Diagnoses Included in This Research . . . . . . . . . . . . . . . . . 41

4.7 Explainability Research Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Feature Importance for Baseline Data . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Feature Importance for Oversampled Data . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Feature Importance for CICST Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Comparison Feature Importance Between Models . . . . . . . . . . . . . . . . . . 49

5.5 The Partial Dependency Values for Every Nominal Input Type for the Baseline

Model Based on Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6 The Partial Dependency Values for Every Nominal Input Type for the Oversam-

pling Model Based on Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.7 The Partial Dependency Values for Every Nominal Input Type for the CICST Model

Based on Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.8 Example of Option 1, Percentage Chance with Reasoning . . . . . . . . . . . . . . 58

5.9 Example of Option 2, Existing and Missing Symptoms . . . . . . . . . . . . . . . . 59

5.10 Example of option 3, Percentual Positive and Negative Influence . . . . . . . . . . 59

5.11 Example of option 4, Strength-Based Reasoning . . . . . . . . . . . . . . . . . . . . 60

5.12 Filled in Answer per Model for the Question if the Model is Understandable and

Intuitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



LIST OF FIGURES ix

5.13 Filled in Answer per Model for the Question if the Model Provides Enough and

Relevant Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.14 Filled in Answer per Model for the Question if it is Possible to Determine a (In)Correct

Diagnosis Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.15 Example of the Final Version of Explainability . . . . . . . . . . . . . . . . . . . . . 62

5.16 LIME Output of a True Positive value for Disease 1-2 . . . . . . . . . . . . . . . . . 64

5.17 LIME Output of a False Positive Value for Disease 1-4 . . . . . . . . . . . . . . . . . 64

5.18 Sequence Diagram of the New Process When Implemented in Practice . . . . . . 65

C.1 Star schema after modelling with example data . . . . . . . . . . . . . . . . . . . . 86

D.1 The process for retrieving the data structures . . . . . . . . . . . . . . . . . . . . . 87

E.1 Selection of features that were used and altered to be usable for ML tasks . . . . . 88

G.1 Confusion Matrix for Model Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . 91

G.2 Confusion Matrix for Model Oversampling . . . . . . . . . . . . . . . . . . . . . . . 92

G.3 Confusion Matrix for CICST Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

I.1 Filled in answers of the questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . 95

J.1 Screenshots of what the final implementation could look like . . . . . . . . . . . . 96



LIST OF TABLES

2.1 Table containing a summary of the criteria used to select the articles . . . . . . . 8

2.2 Review of Type and Quality of Literature . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Question Categories and Input Options for Nominal Data . . . . . . . . . . . . . . 32

4.2 Questions and Input Data for Ordinal Data . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Summary of Diseases By Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Table Which Shows How Missing Data is Handled . . . . . . . . . . . . . . . . . . . 41

5.1 Comparison of Model Performances per Diagnoses . . . . . . . . . . . . . . . . . . 57

5.2 Rankings of the Different Models Before and After Explanation . . . . . . . . . . . 62

A.1 Table containing the full queries used for the literature search . . . . . . . . . . . 78

B.1 Summary of Technical Machine Learning Studies Applied in Health Care . . . . . 79

B.2 Overview of XAI related literature including ways of gaining trust, the used XAI

techniques and findings of the final explanation model or display . . . . . . . . . 82

B.3 Summary implementation process and impact of cdss . . . . . . . . . . . . . . . . 84

F.1 This table shows various features with their count, mean, standard deviation,

minimum, and maximum values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

H.1 Weight factors for the CICST Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



ABBREVIATIONS

AB AdaBoosting.

AI Artificial Intelligence.

AUC Area Under the Curve.

AUROC Area Under the Receiver Operating Characteristic.

AutoML Automated Machine Learning.

Bi-LSTM Bi-directional Long Short-Term Memory.

CDSS Clinical Decision Support System.

CICST Category Imbalance and Cost-Sensitive Thresholding.

CNN Convolutional Neural Networks.

Crisp-DM Cross-Industry Standard Process for Data Mining.

DRF Distributed Random Forest.

DT Decision Tree.

EHR Electronic Health Records.

FWCI Field-Weighted Citation Impact.

GB Gradient Boosting.

GBM Gradient Boosting Machines.

GLM Generalized Linear Models.

GRU Gated Recurrent Unit.

KNN K Nearest Neighbour.

LASSO LASSO Regression.

LIME Local Interpretable Model-Agnostic Explanations.

LR Linear Regression.

LRP Layer-wise Relevance Propagation.

LSTM Long Short-Term Memory.

xi



LIST OF ABBREVIATIONS xii

LSV Linear Support Vector.

ML Machine Learning.

MLC Multi-Label Classification.

MLP Multilayer Perceptron.

MSI-PTDM Multi-Stream Integration Tuberculosis Diagnosis Model.

NB Naïve-Bayes.

NN Neural Networks.

NRS Numerical Rating Scale.

RF Random Forest.

ROC Receiver Operating Characteristic.

SHAP Shapley Additive Explanations.

SLC Single-Label Classification.

SMOTE Synthetic Minority Oversampling Technique.

SS-PTDM Single Stream Tuberculosis Diagnosis Model.

SVC Support Vector Classifier.

SVM Support Vector Machine.

XAI Explainable Artificial Intelligence.

XGBoost eXtreme Gradient Boosting.



1
INTRODUCTION

1.1. INTRODUCTION

The amount of medical data produced and collected in recent years has been growing at a stag-

gering speed [3]. Each phase of a health-related procedure, ranging from scheduling appoint-

ments to conducting surgeries, is meticulously documented and preserved within data storage

systems. The healthcare industry is experiencing a significant increase in the volume of data

being collected, including a wide variety of data types [4]. These data types range from basic

details, such as personal and demographic statistics [5], to more complex forms of informa-

tion. For instance, healthcare data can include medical images and unstructured reports, such

as clinical notes or medical reports [6].

In recent years, the medical field has substantially benefited from collecting large amounts of

data [4]. This helped gain insight into patient health, disease patterns, and the effectiveness of

various treatments [7]. Recognizing these benefits, the healthcare sector has begun to structure

its data collection efforts to maximize the value of the data. Currently, healthcare profession-

als are often required to fill out reports using structured fields that have been pre-determined,

rather than the previously used open-text fields [8]. Structured data, which is organized and

easily searchable, has opened up new avenues for analysis and understanding, providing a

richer, more comprehensive picture of healthcare outcomes [5].

As data collection in the healthcare industry has advanced, so too has the effectiveness of Ma-

chine Learning (ML) algorithms in terms of accuracy, efficiency, and practical utility, marking

significant progress in both domains. The computational limits to create useful ML models

have mostly been overcome [9]. In multiple industries, like finance or energy, ML has already

shown how effective it is in predicting or classifying complex issues [10–12]. ML models are

capable of assisting professionals with intricate tasks, such as supporting financial analysts

and investors in predicting stock prices. Additionally, ML could execute entire processes au-

1



RESEARCH BACKGROUND 2

tonomously, as seen in energy management systems to save energy and reduce costs. Given

the advancements in the field of ML, it is reasonable to expect that the medical field would also

reap significant benefits. The vast array of medical data, available in diverse formats, aligns

seamlessly with the capabilities of ML models. Despite the development of numerous effective

models within the medical field, their translation into practical applications remains limited

[13].

In healthcare, the impact of a decision directly affects the health of a patient. Therefore, a

wrong decision could have detrimental effects. This means that there are multiple barriers to

implementing ML models because of the in-depth expertise needed in computer science and

data analysis. Additionally, there is a requirement for in-depth expertise in other domains like

health science and decision science [14]. Moreover, the interpretability of ML models presents

a significant challenge to their practical implementation. For ML models to be integrated into

existing processes, they must first earn the trust of medical experts. Models that operate as

‘black boxes’, providing only a final output without any explanation, are insufficient for the

rigorous demands of the medical field [15–17].

1.2. RESEARCH BACKGROUND

Company X is a leading healthcare provider in the Netherlands, with an extensive network of

over 280 locations nationwide. Operating under Healthcare Group Y, a conglomerate of enter-

prises in the healthcare industry, Company X leverages this affiliation to provide comprehen-

sive and specialized care services to its clientele.

The recent rapid growth of Company X and Healthcare Group Y is evident, characterized by the

assimilation of numerous companies. This expansion, resulting in a doubling of the group’s

size in the last 2 years, highlights the increasing demand for specialized services. This surge in

acquisitions signifies a significant influx of new patients seeking healthcare. Additionally, the

challenges posed by demographic shifts are apparent. A report commissioned by the Dutch

government emphasizes the escalating demand for healthcare services due to an ageing pop-

ulation and a rise in chronic illnesses. It also highlights the strain of a shrinking healthcare

workforce and escalating costs. Without intervention, accessibility to quality healthcare for all

is at risk [18].

In pursuit of providing the best care possible for its patients, Healthcare Group Y recognizes

the challenge of maintaining quality standards amidst rapid growth. The influx of new patients

and practitioners raises concerns about potentially lowering quality. Therefore, the company

is actively seeking ways to standardize its healthcare processes. Standardized processes lead to

greater control, enabling continuous improvements and ultimately resulting in better patient

care.

To create these standardized processes, the data-driven care department has developed struc-

tured forms in collaboration with practitioners. These forms facilitate structured data collec-

tion during the different processes at Company X, ensuring that relevant information is cap-
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tured effectively. These processes may include patient screening or diagnostic interviews, all of

which are integral to comprehensive patient care. By providing a standardized framework for

assessing patient problems, these questionnaires offer practitioners a systematic approach to

understanding patient needs. Furthermore, the collected data can be analyzed to assist prac-

titioners in decision-making processes, thereby enhancing the quality of care provided to pa-

tients. This research centres on the anamnesis process, which marks the initial encounter be-

tween the practitioner and the patient. During this appointment, the focus is on discussing

the patient’s medical history and current symptoms. The goal of this conversation is to gather

insights into the patient’s past medical experiences and their present condition, this process is

further discussed in Section 4.2.

1.3. RESEARCH MOTIVATIONS AND OBJECTIVES

In recent months, a meticulously selected group of practitioners has filled in structured reports

during their appointments with new patients. The selection of practitioners for the pilot pro-

gram was intentionally diverse, encompassing a wide range of personalities and professional

backgrounds. Creating a focus group of practitioners with different experience levels and mo-

tivations helps identify whether the reports capture data reliably and effectively. It showcases

that less experienced or motivated practitioners also fill in these reports in a good manner,

which could however also lead to a worse data quality. Now that more than a thousand struc-

tured reports have been filled in during the last year, a ML model could be trained. The primary

task for this ML model would be classification, where the goal is to predict patient diagnoses

based on reported complaints and other relevant data from the structured reports. Success-

fully implementing this ML model holds the potential to predict patient diagnoses accurately,

offering invaluable assistance in establishing a standardized approach to patient care.

By harnessing the wealth of historical data encapsulated within these reports, the ML model

can function as a complementary opinion for practitioners, providing consistent diagnostic

insights across the various branches of Company X or Healthcare Group Y. This collaborative

approach promotes providing patients with uniform and high-quality treatment, irrespective

of the clinic they visit.



RESEARCH MOTIVATIONS AND OBJECTIVES 4

Figure 1.1: Motivation & Strategy View for Data Process

The primary objective of this research endeavour is twofold: firstly, to discern the most influen-

tial variables within the reports for disease diagnosis, and secondly, to develop an Explainable

Artificial Intelligence (XAI)-based Clinical Decision Support System (CDSS) to aid practitioners

in their diagnostic processes. It is important to assess the data quality for predictive purposes

thoroughly and to determine the requisite level of explainability necessary for practitioners

to comprehend and trust the model’s outputs. Such insights are pivotal for the eventual de-

ployment of the model in real-world clinical practice. Upon successful deployment, multiple

benefits are expected:

• Standardized Patient Care: Implementing a CDSS to assist practitioners in decision-

making promotes a uniform approach to patient management. By leveraging data from

previous diagnoses made by various practitioners, the CDSS provides consistency across

patient consultations, regardless of the attending practitioner. This standardized ap-

proach supports providing patients with consistent and reliable care irrespective of the

practitioner conducting the examination.

• Efficient Patient Evaluation: During an initial patient consultation, practitioners often

encounter a multitude of potential diagnoses, requiring extensive research to confirm.

By leveraging a Clinical Decision Support System (CDSS), practitioners can filter and pri-

oritize likely diagnoses, significantly reducing research time and shortening the duration

of appointments.

• Mitigate Patient Misdiagnoses: Identifying the correct diagnosis for individual patients

can pose challenges for practitioners, particularly for those early in their practice. Mis-
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diagnoses can result in inappropriate treatment plans, potentially compromising patient

health and straining healthcare resources. Implementation of a CDSS can aid practition-

ers in achieving accurate diagnoses initially, thus minimizing the risk of adverse health

outcomes and optimizing healthcare efficiency.

The benefits mentioned above are also illustrated in Figure 1.1. This figure highlights the overall

goals of Company X, which centre around the triple aim of healthcare as described by Berwick

et al. 2023. The triple aim framework focuses on improving healthcare costs, enhancing the

experience of care, and boosting overall population health. The figure outlines three poten-

tial outcomes or benefits that align with the triple aim. These outcomes are achieved through

specific courses of action, which are the crucial steps implemented during this research. At the

bottom of the figure, the relevant stakeholders involved in this research are shown, highlighting

their roles and capabilities. The established objectives serve as the basis for the main research

question which is formulated below:

How to design and integrate a XAI based CDSS to identify the most influential vari-

ables and support practitioners in diagnosing patients?

To be able to answer this main research question, this research delves into different aspects

through the formulation of sub-questions. These sub-questions serve to explore various im-

portant factors related to the main research question and are formulated below:

1. How can Electronic Health Records (EHR) data be used to classify patient diagnoses?

(a) How can the EHR data be extracted to be used for analysis?

(b) What kind of variables should be used to classify diagnoses?

2. How can diseases be automatically diagnosed during an anamnesis to support the decision-

making of a practitioner?

(a) What ML techniques can be used to classify diagnoses based on patient symptoms?

(b) What type of evaluation metrics can be deployed to assess the performance of the

deployed ML models?

(c) How should a ML model be implemented into the current anamnesis process?

3. How can XAI methods be used to support practitioners in their decision-making during

the anamnesis?

(a) What XAI techniques could be used to improve the interpretability of ML models?

(b) What XAI techniques are considered to be trustworthy by practitioners?

(c) How can XAI techniques contribute in making practitioners critical of CDSS output?

The research adopts the Cross-Industry Standard Process for Data Mining (Crisp-DM) frame-

work for data mining, utilizing H2O’s ensemble ML models like Random Forest (RF). Model
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performance is validated using standard metrics such as F1-Score and Sensitivity. XAI meth-

ods, including Local Interpretable Model-Agnostic Explanations (LIME), are employed for en-

hanced interpretability. Further elaboration on these methods is provided in Chapter 3.

This research makes the following important contributions to the literature. First, it provides

practical insights into the use of structured EHR data to diagnose patients. Given that EHR data

is a relatively new concept in the healthcare industry, use cases for implementing this into a

working ML model are limited. Second, this research provides a comprehensive literature re-

view of XAI in healthcare. This offers insights into how ML should be implemented into health-

care processes and what this explainability could resemble. Finally, this is complemented with

a practical implementation of this explainability, where the research utilizes the literature re-

view as the basis for its practical implementation of XAI. This research contributes the literature

with five possible XAI outputs, from which one is created in a qualitative focus group including

medical experts.

The subsequent chapters are structured as follows. In Chapter 2, a systematic literature review

was conducted. This chapter highlights the trends of ML models in decision support systems

and showcases XAI techniques used in a healthcare setting. Following, Chapter 3 discusses the

methodology which was followed to construct this research. The chapter explains the CrispDM

framework which structured this research. It also defines the ML models and XAI techniques

used. In Chapter 4, the experimental set-up is explained, in which the process from data ex-

traction to model implementation is presented. Following, Chapter 5 analyzes the results of

this implementation. The chapter covers the results of the different ML models and also show-

cases what XAI methods should be used when the CDSS is implemented in practice. Finally,

Chapter 6 covers limitations and future recommendations related to this research. It also in-

cludes a conclusion answering all of the above research questions.



2
LITERATURE REVIEW

2.1. METHODOLOGY

This systematic review utilized two different databases to retrieve scientific papers that directly

contribute to answering the research questions. The first database that was utilized is Sco-

pus 1. Scopus is a comprehensive bibliographic database that is widely recognized and used

for its broad coverage of scientific literature. In the context of this review, Scopus served as a

valuable resource for sourcing papers specifically in the field of computer science. The second

database that was used for this review is PubMed 2. Unlike Scopus, PubMed is a free database

that provides access to the MEDLINE database of references and abstracts on life sciences and

biomedical topics. It primarily focuses on healthcare-related papers, making it an ideal re-

source for sourcing literature in the field of healthcare for this review. The combination of

these two databases ensures a balanced information retrieval. Information about the technical

aspects of Computer Science and the foundational elements of Healthcare is combined into a

multidisciplinary view.

Once these two databases were selected, keywords were chosen to ensure a comprehensive

search of the literature relevant to the research questions. These keywords are selected based

on the research questions formulated in the previous section. The first set of keywords focuses

on the general application of Artificial Intelligence (AI) and ML in the design, implementation,

and deployment of CDSS in healthcare. Furthermore, the second set of keywords narrows it

down to XAI inside of a CDSS. Both queries used over both databases exclude mobile and re-

mote in the title because these are types of papers that are assumed to be meant for CDSS

supporting patients directly instead of aiding healthcare professionals.

1. ’AI’ OR ’Artificial Intelligence’ OR ’Machine Learning’ OR ’ML’

1https://www.scopus.com/home.uri
2https://pubmed.ncbi.nlm.nih.gov/advanced/

7

https://www.scopus.com/home.uri
https://pubmed.ncbi.nlm.nih.gov/advanced/
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AND ’Implementation’ OR ’Design’ OR ’Deployment’

AND ’CDSS’ OR ’Clinical Decision Support System’ OR ’Clinical Decision Aid’ OR ’DSS’

AND ’Healthcare’ OR ’Medical Care’

AND NOT ’Mobile’ AND NOT ’Remote’

2. ’Explainable AI’ OR ’XAI’ OR ’Transparent AI’ OR ’Interpretable AI’ OR ’Explainable ML’

AND ’CDSS’ OR ’Clinical Decision Support System’ OR ’Clinical Decision Aid’ OR ’DSS’

AND ’Healthcare’ OR ’Medical Care’

AND NOT ’Mobile’ AND NOT ’Remote’

Once these keywords were selected, a second filter needed to be made. The process of this

second filter can be found in Figure 2.1. This filter was first based on the article type. For

the Scopus database, only journal papers were selected, while for Pubmed, journal papers and

literature review papers were selected. After this, the papers were filtered to only include free

papers written in English, after 2018 in a certain field. For Scopus, this field was Computer

Science, while for Pubmed, this field was the medical field. Table 5.2 summarizes the in- and

exclusions during this phase. The final queries used on Pubmed and Scopus can also be found

in A.

Table 2.1: Table containing a summary of the criteria used to select the articles

Criteria Decision

Pre-defined keywords are included in the title, abstract, or in the keyword list of the paper Inclusion
The paper was published in a scientific journal and written in English Inclusion
The paper was published before 2018 or not available for free Exclusion
Duplicates of an original paper Exclusion
The paper’s abstract, title, and content are not relevant to the research objective Exclusion

After the final filtering, the results of the four different queries are combined, and duplicates

are removed to create a list of 54 unique papers. From this list, a manual selection identifies the

most relevant studies for the literature review. The manual selection process involves an initial

screening, where relevant information and keywords are extracted from the titles, abstracts,

and results of each paper. This information is then analyzed to determine which papers ad-

dress the main research question or sub-questions. For instance, the research focuses on CDSS

systems that support medical experts. Therefore, papers discussing CDSS systems designed to

directly support patients are excluded. Similarly, papers on XAI methods for image data are ex-

cluded, as they are not relevant to the study’s focus. This careful selection process ensures the

inclusion of papers addressing problems similar to those in this research. Ultimately, 26 papers

are identified for in-depth analysis in the literature review.
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Figure 2.1: Articles selection process

2.1.1. TECHNICAL EXPLORATION

The final selection of papers mentioned above contains great and relevant information about

the research question. Given that the ultimate research is predicated on a ML model used with

structured EHR data, this subject matter was crucial for important information. Therefore,

an additional search was conducted using the keywords "Machine Learning" and "Electronic

Health Records", which further enriched the existing literature. This supplementary search

resulted in the inclusion of five additional papers to increase the knowledge of EHR information

in the literature that was already found [5, 20–23].

2.2. RELEVANT THEMES AND TRENDS IN LITERATURE

This section provides a comprehensive overview of the themes and trends that have emerged

in the literature under review. It is divided into three subsections, each focusing on a specific

aspect of the literature. The first subsection delves into the recent trends in the literature, exam-

ining the years in which the papers were published. This analysis allows us to identify patterns

and shifts in the focus of research over time, providing a temporal perspective on the evolution

of the field. The second subsection focuses on the quality and type of papers that have been

found in the literature. The quality of the papers is assessed using a specific set of criteria, pro-
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viding an objective measure of their academic rigour and contribution to the field. Additionally,

this subsection categorizes the papers into types such as systematic reviews, case studies, re-

view articles, and case studies. Finally, the third and final subsection explores the keywords

used by the authors in their papers. This analysis reveals the main focus points of the research,

highlighting the themes and topics that are currently at the forefront of academic discourse in

the field.

The complete list of literature consulted during this research can be found in Tables B.1, B.2,

and B.3. Table B.1 contains information about the literature papers focused on the implemen-

tation of ML models in a healthcare setting. This Table highlights the data types used in this

research, the ML models, and the evaluation methods of these models. It also shows the results

of the research and some important challenges faced. In Table B.1, two significant papers are

highlighted. The first one is by Pavon et al. [21], which uses structured data to predict func-

tional impairment. The paper demonstrates how clustering classifications together can handle

missing data and make better predictions. The second paper is by Wang et al. [20], which fo-

cuses on predicting tuberculosis using EHR. This paper combines structured EHR data with

unstructured report data and provides a comprehensive architecture of how the model is used

and continuously trained.

Table B.2 contains information about literature focused on the topics XAI. The table covers the

different XAI techniques, how they help in gaining the trust of the end-users, and useful infor-

mation on what the explanation of the output should look like. A paper by Naiseh et al. [24]

provides insights into how different XAI outputs can help in gaining trust. It presents useful vi-

sualizations of these outputs and their pros and cons, emphasizing that humans are more will-

ing to engage with explanations when they are familiar, simple, and casually relevant. Another

paper by Barda et al. [13] discusses the importance of the context in which the explanation is

provided. It suggests that the XAI technique depends on who the explanation is provided to

and why it requires an explanation.

Finally, Table B.3 is focussed on the implementation of CDSS and its impact on the triple aim

of healthcare [19]. A paper by Jia et al. [25] proposes implementations of different XAI methods

and their contribution to the safety inside CDSS models. It also shows the life-cycle of a ML sys-

tem from development, to usage and the feedback loop for when it’s in production. This paper

highlights that even if a model’s rules can perfectly predict outcomes on a test dataset (i.e., they

have 100% accuracy), this does not automatically inspire confidence in those rules among clin-

icians. Therefore, the paper underscores the importance of explainability in ML models used in

healthcare. It’s not enough for a model to be accurate; it also needs to be understandable and

trustworthy to the clinicians using it [16, 26].

2.2.1. EXPLORING LITERATURE TRENDS

The exploration of literature trends indicates that the papers found are recent, spanning the

years 2019 to 2023. As visualized in Figure 2.2, a majority of the papers have been published in
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the last two years. This trend can be attributed to search queries using relatively new keywords

or emerging techniques. Keywords such as ML and CDSS are relatively new in the healthcare

industry. The integration of these advanced technologies into healthcare practices has gained

momentum only in the last few years, leading to a surge in related research and publications.

Furthermore, The growing interest in XAI has led to a rise in research exploring its applications

in healthcare [1]. XAI aims to make the decision-making process of ML models transparent and

understandable to human users [27].

The spike in papers in 2023 [1, 5, 9, 16, 20, 21, 23, 24, 26–32], showcased in Figure 2.2, can also be

explained by the extra literature included from Section 2.1.1. These papers mainly focussed on

EHR data, which is an emerging term in the literature. Healthcare companies are investigating

strategies to fully leverage their data. The approach of standardizing processes and capturing

structured data, like EHR data, represents one notable discovery [29].

Figure 2.2: Year Distribution of Papers per Query Type

2.2.2. TYPE OF RESEARCH

This section highlights the types of research that were analyzed, as can be seen in Table 2.2. It is

important to include different types of research to create an inclusive overview of the literature.

Almost a third of the papers analyzed are systematic review papers. The critical analysis of these

reviews was instrumental in providing a comprehensive understanding of the best practices

and pitfalls in the implementation of CDSS and XAI.
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In addition to the types of research papers, the impact of these papers on the academic com-

munity was also considered. This was measured through the number of citations and the Field-

Weighted Citation Impact (Field-Weighted Citation Impact (FWCI)) of each paper. The impact

factor, the last column in Table 2.2, is a metric provided by Scopus that reflects the yearly av-

erage number of citations to recent articles published in that journal. Assessing the impact of

research articles requires the consideration of metrics such as FWCI, which provides a stan-

dardized measure accounting for disciplinary differences in research behaviour. FWCI adjusts

for the expected number of citations a paper should receive, with different weight factors for

different fields. For instance, the medical field tends to produce a significantly larger num-

ber of papers than the mathematical field. Therefore, citations in fields with fewer papers are

weighted more heavily than those in fields with more articles. An article that is not included

on Scopus or that does not have any citations, does not have this score. Papers with a high

impact factor and/or a large number of citations are considered to have a significant impact

on the literature. For example, the paper of Giuste et al. [27] has retrieved significant attention,

which can be seen by its 14 citations and impact score of 15.17. Papers with a higher score often

represent key findings or innovative ideas in the field, and their high citation count indicates

that many other researchers have built upon or responded to this work in their research. These

types of papers are therefore crucial in shaping this literature review.

Table 2.2: Review of Type and Quality of Literature

Author Type of Research #Citations Impact3

(Barrera Ferro et al. 2020) Empirical study 19 1.67

(Bartels et al. 2022) Perspective Article 2 0.53

(Choudhury 2022) Observational study 4 1.06

(Naiseh et al. 2023) Comparative study 11 11.13

(Barda et al. 2020) Qualitative Research 37 2.79

(Bienefeld et al. 2023) Review Article 4 5.61

(Blanes-Selva et al. 2023) Case study 2 2.91

(Murari et al. 2022) Case study 0 -

(Hasan et al. 2021) Observational study 7 0.9

(Jagadamba et al. 2023) Case study 0 -

(Aiosa et al. 2023) Case study 0 -

(Tapia-Galisteo et al. 2020) Design Study 2 0.17

(Pumplun et al. 2023) Design Study 0 -

(Calisto et al. 2022) Case study 31 8.28

(Chen et al. 2021) Case study 27 2.99

(Jia et al. 2022) Systematic Review 13 3.13

(Giuste et al. 2023) Systematic Review 14 15.17

(Du et al. 2022) Comparative User Stu. 4 0.96

3FWCI score Scopus: https://service.elsevier.com/app/answers/detail/a_id/14894/supporthub/sc
opus/

https://service.elsevier.com/app/answers/detail/a_id/14894/supporthub/scopus/
https://service.elsevier.com/app/answers/detail/a_id/14894/supporthub/scopus/
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(Lambert et al. 2023) Systematic Review 4 2.96

(Mahadevaiah et al. 2020) Systematic Review 49 6.94

(Nuutinen and Leskelä 2023) Systematic Review 0 -

(Magrabi et al. 2019) Systematic Review 105 3.9

(Iqbal et al. 2023) Review Article 1 -

(Rundo et al. 2020) Review Article 47 1.32

(Antoniadi et al. 2022) Case Study 4 1.44

(Di Martino and Delmastro

2023)

Survey Article 1 -

(Wang et al. 2023) Case Study 0 -

(Khodadadi et al. 2023) Case Study 0 -

(Pavon et al. 2023) Case Study 0 -

(Raita et al. 2019) Case Study 191 11.67

(Chiu et al. 2023) Case Study 1 -

Incorporating FWCI scores into research is essential for gauging the impact and relevance of

academic papers. High FWCI scores, papers such as Naiseh et al. (11.13), Giuste et al. (15.17),

and Raita et al. (11.67), showcase significant recognition within their respective fields, indi-

cating influential contributions widely acknowledged by the academic community. Including

such high-impact papers in a literature review improves the credibility and foundation of this

research. However, a balanced approach incorporating papers with varying FWCI scores, in-

cluding moderate and low ones, ensures a comprehensive review that includes established,

emerging, and potentially innovative research areas. While high FWCI scores validate the inclu-

sion of certain papers as foundational or highly influential, moderate and low scores illuminate

the breadth of research and ongoing field development, aiding in identifying research gaps and

future directions.

2.2.3. KEYWORDS

Understanding the keywords used in the literature allows us to gain a deeper understanding of

the prevailing interests and priorities of researchers in the field. The authors choose the key-

words to reflect the core ideas and themes of their research. The frequency of these keywords

is particularly important as it indicates the primary focus areas of the literature. The frequency

of these keywords has been visualized using word clouds, where the most predominant terms

are shown as the largest words.
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Figure 2.3: Word cloud of keywords in papers

The initial word cloud, as depicted in Figure 2.3, provides a snapshot of the primary themes

prevalent in the reviewed literature. The terms “Artificial Intelligence”, “Machine Learning”,

“Clinical Decision Support System”, and “Electronic Health” emerge as the most frequently oc-

curring keywords in the research corpus. These topics dominate the discourse in the analyzed

papers, reflecting their centrality in the field under study. This is not surprising, given that

these were the key terms employed in the literature search across various databases. Therefore,

another word cloud is created.

Figure 2.4: Word cloud of keywords in papers without search query keywords

To gain a more nuanced understanding of the literature, a revised word cloud was generated,

excluding the initial search keywords. This refined word cloud, as illustrated in Figure 2.4, of-

fers a more in-depth perspective on the thematic landscape of the papers. The first aspect

that stands out is the "prediction", "diagnostic" and "analysis" keywords. These refer to the

use case of the ML models. Second, in this revised visualization, keywords such as "safety",

"interaction", "centred modelling", "evaluation", and "critical" gain prominence. This shift in

keyword frequency suggests a paradigmatic shift in the literature towards explainability and
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user-centricity. It underscores the increasing emphasis on the end user in the design and im-

plementation of the final product.

2.3. MACHINE LEARNING IN HEALTHCARE DECISION SUPPORT

This section discusses the use of ML models in healthcare and their application in CDSS mod-

els. First, the types of ML research that was gathered are discussed. Following, the impact

of ML based CDSS on the triple aim will be covered. Finally, the implementation of CDSS in

healthcare will be highlighted.

2.3.1. MACHINE LEARNING RESEARCH

This section reviews ML research, analyzing the models and data used in various studies. It

provides detailed insights into five papers, discussing their settings, use-cases, and results. Ad-

ditionally, it explores how different challenges were addressed in the literature, which can also

be found in Table B.1.

Setting

From the medical papers included in this literature review, two models have emerged as the

most frequently utilized: Neural Networks (NN) and Support Vector Machine (SVM), both of

which are often employed as ML approaches [17, 31]. A multitude of studies have incorporated

eXtreme Gradient Boosting (XGBoost) in their final models or as part of the models tested [7,

20–23, 35]. In a similar vein, NN have been extensively used in the final model or the models

tested across a wide array of researches [4–6, 20, 22, 23, 26, 29, 30, 33, 35]. The data utilized

in these studies varies in form, ranging from structured to unstructured data types. However,

some research also combined these two types of data [4, 6, 20, 23, 29].

Aiosa et al. [26] predicted obesity comorbidities diagnoses of patients using unstructured text

datasets. They gave feature importance values, in which it was observed that BMI is the most

important feature. The models developed using Multilayer Perceptron (MLP) and XGBoost

were classified as the best prediction models. Following this, the research by Tapia-Galisteo

et al. [6] aimed to predict cocaine inpatient treatment success using high-dimensional un-

structured data of healthcare reports. Their best classifier, the Random Forest (RF), which is

an ensemble method composed of multiple decision trees, achieved an accuracy of 82.12%,

outperforming models like SVM, Linear Regression (LR) and MLP. This can be used in identify-

ing patients who may need extra attention to prevent them from dropping out of care.

Wang et al. [20] diagnosed patient with tuberculosis using EHR data. They used an oversam-

pling technique to counter the imbalanced data. The Multi-Stream Integration Tuberculosis

Diagnosis Model (MSI-PTDM) was the highest with 90.91% accuracy, which is a model that can

process sparse data, dense data, and unstructured text data concurrently [20]. However SVM

and XGBoost also had great results. This research could be used to support clinicians in diag-

nosing patients with tuberculosis. Khodadadi et al. [5] developed an end-to-end approach for

learning patient representations from tree-structured information for readmission and mortal-
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ity prediction tasks. They used structured EHR data including demographic data, and personal

data, and had a lot of missing data and imbalanced classes. They used Random Forest (RF) and

extracted an Area Under the Receiver Operating Characteristic (AUROC) score of 0.87. This re-

search can be used to support medical experts and management in predicting mortality. Lastly,

the research by Pavon et al. [21] created a scalable process for the identification of functional

impairment using structured EHR data. This research used k-means clustering and XGBoost to

enable population-based strategies for identifying functional impairment, and precise target-

ing of prevention or treatment resources within health system populations to patients likely to

benefit most.

In conclusion, the papers we analyzed demonstrated diverse applications of ML within health-

care. Some papers utilized ML models to diagnose various diseases, including diabetes and

tuberculosis [3, 5, 20, 26]. On the other hand, several other papers aimed to predict future cases

[6, 22, 23, 33, 35], This prediction could be related to the no-show behaviour of patients or pre-

dicting clinical outcomes. Table B.1 includes more findings of different ML based research. The

diversity in the objectives of these studies underscores the versatility and potential of ML in

healthcare, opening up new avenues for patient care and management.

Challenges Faced

This section delves into the various challenges encountered in the reviewed literature, Table

B.1. A recurring theme was class imbalance, where certain diseases or diagnoses were more

prevalent than others. Wang et al. [20] addressed this by employing down-sampling and up-

weighting strategies. Here, down-sampling refers to reducing the frequency of the dominant

classes, while up-weighting involves assigning greater weights to the less frequent classes. On

the other hand, Khodadadi et al. [5] chose to maintain the data imbalance and trained their

model accordingly.

Another issue pertains to the presence of missing data in the studies. Pavon et al. [21] tackled

this by using a clustering approach, where data clusters with missing values were assigned the

same value. Subsequently, Chiu et al. [23] utilized XGBoost, which is known for its superior

handling of missing data. Lastly, the task of identifying the most significant features posed a

challenge. Aiosa et al. [26] employed feature tables to discern the most crucial features, while

Tapia-Galisteo et al. [6] used a correlation-based feature search to determine the features to be

included in the model.

2.3.2. IMPACT ON TRIPLE AIM

The implementation of ML based CDSS has had a profound impact on the triple aim of health-

care. The triple aim of healthcare is a framework developed to improve and optimize overall

care and health [19]. It consists of the following three categories:

1. Experience of Care: Improving the experience individual patients have when accessing

medical care
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2. Improving Population Health: Improving the quality of the medical processes and act-

ing preemptively

3. Reducing Costs: Control costs more effectively and create more value for patients for less

money

The framework can be used to determine the benefits of implementing new technology. Below,

we cover the impact on the three categories of the triple aim framework.

Experience of Care

ML-based CDSS have been instrumental in enhancing the quality of care. By providing more

accurate and efficient protocols [28, 32], these systems have improved service quality. They

have also increased patient safety by reducing advice against protocol [28, 32]. Furthermore,

they have contributed to improved diagnostic accuracy [15], thereby enhancing the overall pa-

tient experience.

Improving Population Health

ML-based CDSS have also shown promise in improving population health. They have im-

proved clinician satisfaction [9] and have proven beneficial for training novice clinicians [9].

Moreover, practitioners have observed that AI could enhance consistency in healthcare deliv-

ery [31, 34], thereby contributing to better population health outcomes.

Cost Reductions

Lastly, ML-based CDSS have contributed to cost reductions in healthcare. By speeding up pro-

cesses, these systems have enabled healthcare providers to assist more patients [15]. They have

also reduced repetitive tasks, freeing up clinicians to engage in other, more critical activities

[38]. Additionally, by reducing instances of incorrect diagnoses, they have led to fewer costs

associated with misdiagnosis [32].

2.3.3. IMPLEMENTATION CDSS IN HEALTHCARE

Implementing CDSS systems into healthcare has been challenging. Despite the potential bene-

fits of CDSS, only a small fraction of these systems have found their way into existing healthcare

processes [14].

The adoption rate of ML based CDSS is surprisingly low. van de Sande et al. [39] revealed that

89.3% of their papers did not make it past the prototyping or development phase. There are

different reasons for this low adoption rate. First, practitioners are likely to prioritize risk fac-

tors [34], medical professionals do not have the feeling that the systems are accurate enough

to provide support in their decision-making. Adding to this, many practitioners are unfamiliar

with Artificial Intelligence (AI) and technology, this further increases the fear of wrong outputs

of the CDSS [28, 34, 38]. When these employees do not trust the output, the model will not

be used. There is a fear among healthcare professionals of being replaced or losing their au-

tonomy [9, 28, 34]. It was stated in multiple papers that clinicians fear that the system would

start taking over and their knowledge would not be necessary anymore. Finally, there is often a



XAI IMPLEMENTATION IN HEALTHCARE 18

misalignment between expectations and the actual output of the system [28, 31].

Mitigating the discrepancy between the output of a ML model and the expectations of the users

is crucial. Stakeholders should therefore be included in the development stages of the project.

Their knowledge and goals should be included when designing the CDSS [25, 36, 37]. The ability

for clinicians to accept or decline the CDSS’s recommendations can enhance their sense of

control and positively influence their experience with the model [15]. Finally, quality measures

and assurance of the model are needed to guarantee safety [7, 14, 34, 36].

When it comes to integrating ML by implementing it into a medical process, several strategies

have proven effective. Establishing a helpdesk or central point for ML malfunctions has been

beneficial [14]. Forming a multidisciplinary team for model output has also shown promise

[28, 38]. The importance of training and communication cannot be overstated [9, 28]. Rigorous

initial and ongoing evaluation is critical to ensuring safe and effective integration [36]. Lastly,

the system should be designed in a way that it does not take too much time to document or use

[38].

2.4. XAI IMPLEMENTATION IN HEALTHCARE

This section covers the implementation of XAI in healthcare and contains three subsections.

The first subsection focuses on the different XAI methods. Following, the second and third

subsection highlights different parts of the explainability process. The second subsection cov-

ers the ante-hoc explanation and the third subsection describes the post-hoc explanations.

2.4.1. XAI METHODS

Transparency in AI decision-making is crucial in many fields, particularly in healthcare, where

XAI has shown significant benefits in CDSS [17]. Medical experts advocate for XAI due to its

potential to enhance the interpretability and explainability of AI models, which is essential for

ensuring their reliability and safety in healthcare settings. They need to understand why a par-

ticular decision or recommendation has been made to trust the system, especially when it con-

tradicts their clinical judgment. There are different methods to make a model explainable, and

it is not always clear what works best for the end-users of the models [13].
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Figure 2.5: XAI Methods in Healthcare Overview, Inspired By Research Di Martino and Delmastro [1]

In the exploration of XAI methods, different researchers created a unique syntax and perspec-

tive of XAI methods. Jia et al. [25] distinguish between explanations that are inherent to the

model (model explanations) and those generated after the model has made a prediction (post-

hoc explanations). Pumplun et al. [30] further categorizes explanations into global and local.

Global explanations aim to provide an overall understanding of the model’s behaviour, while lo-

cal explanations focus on individual predictions. Di Martino and Delmastro [1] propose a tem-

poral perspective, dividing the explanation process into pre-modeling, model-development,

and post-modeling stages. Interestingly, they further divide the model-development stage into

ante-hoc (before the fact) and post-hoc (after the fact) explanations. Naiseh et al. [24] delves

deeper into post-hoc explanations, dividing them into four different categories:

1. Local Explanation: It quantifies the importance of each input data feature to the recom-

mendation.

2. Example Based: The AI justifies its decision by providing examples from the dataset with

similar characteristics.

3. Counterfactual: The AI answers “what-if” questions to observe the effect of a modified

data feature on the recommendation.

4. Global Explanation: It explains the overall logic of the model, including presenting the

weights of different data features as decision trees, rules, or ranking styles.

The findings about XAI techniques during this literature research and the different perspec-

tives from these papers have led to Figure 2.5. This overview provides a clearer picture of the

current state of XAI and the different aspects that can be focussed on during the design and

implementation of XAI systems.
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2.4.2. ANTE-HOC EXPLANATIONS

Ante-hoc explanations in XAI refer to the explainability of the model itself [1]. These explana-

tions are used to distinguish important features and interpret the inner structure of the model

[1]. Ante-hoc explanations can also be a simple model or a rule-based approach, as demon-

strated in the research by Chen et al [3].

Ante-hoc XAI plays a crucial role in evaluating reliable output, improving trust, revealing new

insights, identifying potential weaknesses, and tuning [26]. Moreover, XAI can help in the train-

ing and creation of machine learning models. It provides insights into the model’s decision-

making process, which can lead to a better understanding of the model’s behavior and, conse-

quently, improved performance [27].

During the training phase, XAI can highlight important variables and features [17]. This allows

for a more focused and efficient training process as the model can concentrate on the features

that significantly influence the predictions. By understanding the importance of different fea-

tures, engineers can fine-tune the model to capture the underlying patterns in the data better.

Moreover, XAI methods can help improve models based on better understanding and faster

debugging. For instance, if a model is not performing as expected, XAI can provide insights

into why the model is making certain decisions. This can help identify any issues or biases in

the model, leading to targeted measures to improve the model [16]. It is also important that this

information is supported by domain knowledge, to create better output [13]. Overall, XAI can

be critical in making an understandable and fair model. However, XAI can also lead to worse

performance, so the trade-off between model explainability and performance also has to be

taken into account [25]

2.4.3. POST-HOC EXPLANATIONS

Post-hoc explanations in XAI refer to the interpretability methods applied after a model has

made a prediction. These methods aim to shed light on the reasoning behind the model’s deci-

sion, thereby enhancing transparency and trustworthiness [24].

There are several types of post-hoc explanations, with the most commonly used models being

LIME and Shapley Additive Explanations (SHAP) [25, 40, 41]. These models provide visualiza-

tions that help users understand the contribution of each feature to the prediction.

To gain trust and reduce errors, it is essential to provide training or tutorials on how to interpret

these visualizations[24]. However, the implementation of these explanations should take into

account the specific needs of the target group, as different stakeholders may have different

goals [16].

When displaying the final explanation, it is crucial not to overwhelm the user with too much

information, as this could lead to the user skipping important details[13, 24]. The techniques

used to present the information should depend on the audience[13]. Consistency and good

interpretation are vital for effective communication[27], and evidence is needed at the cohort
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level[1]. While there is a need for more assessment of explanation methods, it is crucial to

involve end-users in the design process. They need to understand how the explanation works

and what information is important[1, 13, 24].

2.5. CONCLUSION

This systematic literature review investigated the implementation, design and deployment of

XAI in CDSS within the healthcare domain. The research retrieved valuable information from

both the Scopus and PubMed databases using queries based on specific keywords. The sys-

tematic nature of the literature search ensured the collection of relevant journal papers and

research, enhancing the multidisciplinary perspective by synthesizing computer science and

medical literature. The most crucial information of the literature is collected in Tables B.1, B.2,

and B.3.

After the collection of the data, the study delves into the dominant themes and trends in the

literature. This is done in Section 2.2, which also covers the research types in the literature.

Following, Section 2.3, shifts the focus to an in-depth exploration of ML applications within

CDSS and healthcare contexts, encompassing both research insights and practical implemen-

tations. Finally, Section 2.4 reviews the landscape of XAI methods, explaining how the literature

has approached and implemented these methods in the context of CDSS. The findings of these

sections created insights used to answer the research questions:

1. Main trends and themes in literature: The literature review reveals a significant trend of

CDSS and XAI models in 2022 and 2023. The analysis of publication years indicates a pro-

nounced focus on these topics. Furthermore, the types of research encompass a variety

of methodologies, with systematic reviews and case studies being prominent. Finally, the

themes of the literature show an emphasis on user-centric approaches and explainabil-

ity, highlighting a shift towards more transparent and user-friendly applications of ML in

healthcare decision-making.

2. ML in healthcare and impact on triple aim: The analysis of ML research in healthcare

reveals a predominant use of models such as NN, SVM, and XGBoost across diverse med-

ical settings. The studies varied in the usage of unstructured or structured EHR data.

Importantly, the impact of ML-based CDSS on the triple aim of healthcare is significant,

enhancing the patient experience, improving population health, and contributing to cost

reductions through increased efficiency and accuracy in healthcare delivery.

3. CDSS implementation healthcare: The implementation of CDSS in healthcare faces sig-

nificant challenges, leading to a low adoption rate. The reluctance among practition-

ers stems from practitioner concerns about accuracy, unfamiliarity with AI, fear of job

displacement, and misalignment of expectations. Overcoming these challenges requires

collaborative development with stakeholders, empowering clinicians to control system

recommendations, implementing quality assurance measures, and transparent output

of the CDSS.
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4. XAI methods: XAI is integral to healthcare, ensuring trust and transparency in decision-

making. The diverse landscape of XAI methods, as illustrated in Figure 2.5, encompasses

ante-hoc and post-hoc explanations. Ante-hoc explanations, such as rule-based mod-

els, play a pivotal role during model training, aiding in the identification of crucial fea-

tures and refining the model’s understanding of data patterns. Post-hoc explanations,

facilitated by models like LIME and SHAP, offer transparency into the decision-making

process after predictions, providing visualizations that elucidate the contribution of each

feature. To ensure effective implementation, it is crucial to tailor these XAI methods to

the specific needs of stakeholders, incorporating user-friendly interfaces, and targeted

tutorials, and involving end-users in the design process for optimal understanding and

trust.

In conclusion, the literature review highlights a growing interest in CDSS and XAI over the past

two years. The diverse research methodologies employed reflect a nuanced exploration, with a

notable trend towards user-centric and transparent approaches in healthcare decision-making.

ML research in healthcare, particularly using models like NN, SVM, and XGBoost, demonstrates

a significant impact on improving patient experience, population health, and reducing costs.

However, the implementation of CDSS faces challenges, necessitating collaborative strategies

and transparent outputs. XAI remains integral for ensuring trust and transparency, with diverse

methods tailored to stakeholders’ needs. Involving end-users in the design process is crucial for

effective XAI implementation and fostering understanding and trust.
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METHODOLOGY

3.1. CROSS-INDUSTRY STANDARD PROCESS FOR DATA MINING

The Crisp-DM model is a framework used in the field of data mining and analytics. Its purpose

is to provide a structured approach for conducting data mining projects, guiding practitioners

through the various stages from understanding the business problem to deploying a solution

[2]. The model is iterative, allowing for flexibility and adaptation as the project progresses, as

shown in Figure 3.1.

Figure 3.1: CRISP-DM Process Model Kristoffersen et al. [2]

1. Business understanding: This phase involves understanding the business objectives and
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requirements for the project. It requires identifying the problem to be solved and de-

termining how data science can contribute to addressing it. Finally, it includes gaining

information about the processes and businesses involved.

2. Data understanding: The second phases focuses on collecting and exploring the avail-

able data relevant to the problem at hand. This includes identifying data sources, assess-

ing data quality, and gaining insights into the characteristics of the data.

3. Data preparation: Once the data of the previous phase is collected, it needs to be anal-

ysed. This phase involves cleaning the data, integrating data from different sources, and

transforming it into a suitable format for analysis.

4. Modeling: This phase is where the actual data analysis takes place. It involves select-

ing appropriate models and algorithms, building predictive or descriptive models, and

evaluating their performance.

5. Evaluation: After building and testing the models, they need to be evaluated to ensure

they meet the business objectives and requirements. This involves assessing the perfor-

mance of the models, validating their accuracy, and determining their effectiveness in

addressing the problem at hand.

6. Deployment:The final phase involves deploying the solution into the operational envi-

ronment. This includes implementing the models into production systems, integrating

them with existing processes, and providing support for ongoing monitoring and main-

tenance.

The Crisp-DM model offers a structured framework for initiating data science projects. By ad-

hering to its defined steps, practitioners can systematically leverage data for various initiatives.

3.2. AUTOMATED MACHINE LEARNING

Automated Machine Learning (AutoML) is a process where ML models are created automati-

cally with minimal human intervention. The goal is to make the process of building ML models

more accessible to non-experts and to streamline the workflow for experts, allowing them to

focus more on the problem at hand rather than the nitty-gritty details of model building.

AutoML systems typically handle tasks such as data preprocessing, feature engineering, model

selection, hyperparameter tuning, and model evaluation. They leverage techniques like evolu-

tionary algorithms, Bayesian optimization, and meta-learning to search through the space of

possible models and configurations efficiently.

This research utilized the auto ML models from H2O.ai 1. H2O.ai is a company that offers

a popular open-source platform called H2O, which includes tools for AutoML. H2O.ai’s Au-

toML functionality automates the process of training and tuning ML models, allowing users to

quickly experiment with different algorithms and configurations to find the best model for their

1https://h2o.ai/

https://h2o.ai/
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data. H2O.ai’s platform is known for its scalability and performance, making it suitable for both

small-scale and large-scale ML tasks. H2O provides multiple different kinds of ML models to

be trained. The models used during this research are shortly explained below:

• Gradient Boosting Machines (GBM): GBM are ensemble learning methods that build a

series of decision trees sequentially. Each tree corrects the errors of the previous one,

leading to a strong predictive model [42].

• Distributed Random Forest (DRF): A DRF is an ensemble learning method that con-

structs multiple decision trees across a distributed computing environment to enhance

accuracy and robustness. Each tree is trained on a subset of the data, often using dif-

ferent subsets on different nodes in the computing cluster. The final prediction is made

by aggregating the predictions from all individual trees, typically through averaging for

regression tasks or voting for classification tasks. This distributed approach allows for

handling larger datasets and reduces computation time by leveraging parallel processing

[43].

• Generalized Linear Models (GLM): GLM are a class of linear models that generalize linear

regression to accommodate different types of response variables and error distributions.

GLMs are widely used for regression and classification tasks and are particularly useful

when the relationship between the predictors and the response variable is not linear [44].

3.3. EXPLAINABLE ARTIFICIAL INTELLIGENCE

3.3.1. PARTIAL DEPENDENCY

Partial dependency plots are a popular method for visualizing the effect of a set of features on

the predictions made by a model. They can help to understand the interaction between these

features and the target variable, and can also provide insights into the behavior of the model in

different regions of the feature space.

3.3.2. LIME

LIME is a novel explanation technique that explains the predictions of any classifier in an inter-

pretable manner, by learning an interpretable model locally around the prediction[40]. LIME

provides insights into the model, which can be used to transform an untrustworthy model or

prediction into a trustworthy one[40]. The utility of explanations via LIME has been demon-

strated in various scenarios that require trust: deciding if one should trust a prediction, choos-

ing between models, improving an untrustworthy classifier, and identifying why a classifier

should not be trusted[40].

3.4. VALIDATION METHODS & METRICS

Validation methods and metrics are crucial in assessing the performance of a ML model. They

provide quantitative measures that reflect how well the model will generalize to unseen data.
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3.4.1. METHODS

Cross-Validation This research uses a validation method called x-fold cross-validation, one

of the most common validation methods used in ML. This technique involves partitioning the

data into x subsets or "folds". The model is trained x times, each time using x−1 folds for train-

ing and the remaining fold for validation. This process ensures that every data point is used for

both training and validation, which provides a comprehensive evaluation of the model’s per-

formance [45].

3.4.2. METRICS

Precision Precision, also known as the positive predictive value, is the proportion of true pos-

itive predictions among all positive predictions [46]. It is given by the formula:

Precision = True Positives

True Positives+False Positives

A high precision indicates a low false positive rate, but does not take into account any false

negatives.

Sensitivity Sensitivity, also known as recall or true positive rate, measures the proportion of

actual positives that are correctly identified as such [46]. It is given by the formula:

Sensitivity = True Positives

True Positives+False Negatives

A model with high sensitivity will detect most of the positive examples, but may also produce

many false positives.

F1-Score The F1-score is the harmonic mean of precision and sensitivity, and it tries to find

the balance between these two values [46]. The F1-score is given by the formula:

F1-Score = 2× Precision×Sensitivity

Precision+Sensitivity

The F1-score is a good metric to consider if you need both precision and sensitivity to be high.

Accuracy Accuracy is the proportion of correctly predicted instances (both true positives and

true negatives) among the total instances evaluated [46]. It is given by the formula:

Accuracy = True Positives+True Negatives

Total Predictions

While accuracy is a simple and intuitive metric, it can be misleading in cases of imbalanced

datasets where one class significantly outnumbers the other.
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4.1. EXPERIMENTAL SET-UP

This study explores the potential of a ML-based CDSS within the domain of healthcare. The

foundation of this CDSS will be EHR data, collected using structured reports created over a year

ago. After a year of data retrieval, the dataset now contains sufficient information for deploying

AI. This research will examine the performance and utility of the accumulated data, provid-

ing insights and guiding future advancements. In light of the advancements and motivations

outlined in Chapter 1, the CDSS is expected to fulfill the following requirements:

• Selection of Relevant Variables: It is important to ensure that the CDSS selectively in-

tegrates variables directly linked to specific diseases. Unrelated variables should be ex-

cluded to maintain the interpretability of the CDSS. This precaution is crucial for foster-

ing trust in its reliability among users.

• Accurate Disease Diagnoses: The foremost objective of the CDSS is to establish accurate

diagnoses for patients to support practitioners in decision-making. While minor inac-

curacies may occur, correct diagnostic options within its output are the most important

factor. Misclassification of the CDSS can be rectified by practitioners during subsequent

clinical evaluation, ensuring the accuracy of the final diagnosis. This should still be pre-

vented as much as possible but has a lower priority than the correct classification being

included.

• Explanatory Transparency: The CDSS should explain its decision-making process clearly

and understandably. This transparency is essential for facilitating comprehension and

critical evaluation by practitioners. The CDSS aims to improve clinical decision-making

by offering insights into the reasoning behind its outputs. It is essential that this reason-

ing be validated to ensure it is reliable and useful for practitioners who will use the CDSS

in practice. Therefore, this research will validate the transparency of the CDSS using a

27
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questionnaire among practitioner and a focus group including domain experts.

Meeting these critical requirements presents significant challenges, necessitating thorough re-

search into the problem statement. In Chapter 4, a structured approach using the Crisp-DM

framework is adopted, with modifications tailored to the specific needs of the study. The ex-

perimental setup, depicted in Figure 4.1 , begins with a focus on understanding the business

processes. This section of the experimental setup focuses on the anamnesis process. It is the

only section on the business level, which can be seen by the yellow colour. Moving forward, the

experimental setup extends to the application level, which starts with the data understanding.

This step delves into the data generated by the anamnesis process, including the information

contained within the three reports completed during anamnesis. With a grasp of both the data

and business process, the crucial step of data preparation needs to be done. Here, the focus is to

first model the data into a star schema, which offers a robust format for analysis and querying.

Additionally, this phase involves data cleaning and feature enhancement to ensure the data is

useable for ML tasks. This means preparing the data so that it is accurate, consistent, and in a

suitable format for ML algorithms to process effectively. Following data preparation, the tran-

sition to the modelling phase is made. Here, three distinct types of machine learning models

are developed: two Single-Label Classification (SLC) models tailored to accommodate varying

class distributions, and one Multi-Label Classification (MLC) model integrating weight factors.

Finally, the performance of the best models is evaluated using the metrics covered in Section

3.4, and options for explainability are explored. Practical implementation considerations are

also factored into the evaluation process.

All of the processes and sub-processes mentioned in the experimental setup were developed

through the use of several Python libraries and tools supported by Jupyter Notebook1, a web-

based development environment for creating data science projects. The Jupyter notebooks

were mainly used for data explorations. Once a structured and trustworthy data pipeline was

created, it was turned into a python script that could run periodically.

1https://jupyter.org

https://jupyter.org
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Figure 4.1: Overview of the Experimental Set-Up
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4.2. BUSINESS UNDERSTANDING

The anamnesis process, a fundamental component of healthcare, is the primary focus of this

study. An anamnesis involves a thorough questioning of past medical events, experiences, and

pertinent information from patients. It serves as the initial appointment between a practitioner

and a patient, crucial for understanding the patient’s medical history and current symptoms.

This comprehensive gathering of data is essential for accurate diagnosis and effective treatment

[47]. For this research, the anamnesis process consists of more than just this anamnesis con-

versation. The process also includes the examination of the patient and the set-up of a treat-

ment plan, as illustrated in Figure 4.2. The process typically initiates with the identification

of a patient in need of treatment, either through self-observation or referral from other medi-

cal professionals such as physicians or physiotherapists. Subsequently, an appointment with a

practitioner at the company is scheduled, marking the commencement of the anamnesis.

Figure 4.2: Business View of the Anamnesis Process

During the anamnesis appointment, the practitioner initiates the process by gathering the pa-

tient’s medical history and current symptoms. This initial discussion serves as a crucial step in

understanding potential underlying conditions. During this discussion, there are lots of differ-

ent types of questions a practitioner could ask. For example, the practitioner asks the patient if

they have consulted other healthcare professionals, inquires about the location of their issues

or pain, and prompts the patient to describe their symptoms in detail, including the type of

pain experienced or any inflammatory symptoms. This questioning gives the practitioner in-

sights into the patient’s condition, helping them formulate potential diagnoses. As mentioned

in the introduction, a select group of practitioners currently fill in structured reports during

this anamnesis process, which is the main focus point of this study. These structured reports

will be adopted company wide when the current test phase is deemed a success. The reports

offer a standardized format for gathering patient information, ensuring that important details

are not overlooked. Furthermore, it also standardizes the data collection during the anamnesis
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process, ultimately leading to more informed decision-making. Details regarding the standard-

ization efforts and the impact on data understanding will be discussed in Section 4.3.

After the anamnesis conversation, the practitioner gains insight into potential conditions the

patient may be experiencing. Typically, there are several possible diseases that the practitioner

considers at this stage. Therefore, a comprehensive examination is essential to pinpoint spe-

cific diseases or issues. This phase entails an evaluation of the patient’s pain location through

observation or other examination techniques. Different types of examinations may be required

depending on the suspected diseases, each tailored to identify the correct condition accurately.

If the examination proceeds as planned, the practitioner can ascertain the patient’s diagnosis,

which may consist of one or multiple diseases.

Finally, after the examination is completed, a treatment plan is established. In this plan, the

practitioner collaborates with the patient to discuss the next steps aimed at reducing symp-

toms or improving participation in day-to-day activities. This may involve prescribing special-

ized drugs, crafting custom-made gear, or referring the patient to another medical specialist.

Currently, within the existing process, only one structured report is completed at this stage. In

the current process, only one structured report is completed at this stage. However, in the CDSS

pilot group, three reports are completed following this appointment: one for anamnesis, one

for examination, and one detailing the treatment plan.

4.3. DATA UNDERSTANDING

As stated in the previous section and illustrated in Figure 4.2, three distinct reports are com-

pleted within the business process. For this section, our attention will be directed solely to-

wards the first and final reports. This decision was made because the initial report contains the

symptoms, akin to variables in our context, which will serve as inputs for the ML model during

its training phase. Conversely, the concluding report contains the definitive diagnosis provided

to a patient, the labels in our model’s training dataset. Reports are filled in using a structure

from an external company. This partner provides the interface for users to fill in these reports.

After the report is filled in, the input data is sent to the database. Below, both reports will be

explained profoundly and the data types in these reports will also be covered.

4.3.1. ANAMNESIS REPORT DATA

The anamnesis report contains information regarding the patient’s medical background and

prevailing symptoms. Within this dataset, the medical history component comprises a wide

array of information, including past medications, treatments, surgeries, and consultations with

medical professionals. However, for the purpose of this research, this dataset is excluded from

the analysis. The rationale behind this exclusion stems from the limited correlation between

this historical data and the specific disease under examination. Including such data could po-

tentially introduce noise and bias into the predictive models due to their low relevance to the

target outcome. Following, the symptom data is included in this research. This data encap-
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sulates the patient’s current symptoms, what kind of pain he has and where it is located. This

data consists of three types: nominal, ordinal and interval. The rest of the section explains these

three data types and their corresponding input values.

The first, and primary, data type utilized in the anamnesis report is nominal data. Represented

as checkboxes within the report interface, this data type simplifies questions into binary op-

tions of ’yes’ or ’no’. Table 4.1 showcases the different types of options a practitioner can fill

in. Each checkbox corresponds to a specific question category, providing insights into various

aspects of the patient’s condition. For instance, one such category might pertain to the kinds of

symptoms the patient has, in this case offering a selection of ten distinct options. Notably, pa-

tients may present with multiple symptoms, allowing for the selection of multiple checkboxes

or none at all, thus ensuring comprehensive data capture. The amount of filled-in features can

be found in Appendix F, which highlights the descriptive statistics of all included features.

Table 4.1: Question Categories and Input Options for Nominal Data

Question Category Input Options

Diagnosis Location* Diagnosis-Location-1, Diagnosis-Location-2, Diagnosis-Location-3,

Diagnosis-Location-4, Diagnosis-Location-5, Diagnosis-Location-6,

Exact Location* Exact-Location-1, Exact-Location-2, Exact-Location-3, Exact-

Location-4, Exact-Location-5, Exact-Location-6, Exact-Location-

7, Exact-Location-8, Exact-Location-9, Exact-Location-10, Exact-

Location-11,

Symptoms* Symptom-1, Symptom-2, Symptom-3, Symptom-4, Symptom-5,

Symptom-6, Symptom-7, Symptom-8, Symptom-9, Symptom-10,

Inflammatory Symp-

toms*

Inflammatory-1, Inflammatory-2, Inflammatory-3, Inflammatory-4,

Inflammatory-5,

Caused by trauma? Yes / No

When does pain oc-

cur?*

Start complaints after rest, Rest, During ADL (Activities of Daily Living)

activities, After ADL activities, During warm-up, During sports, After

sports, During work/school, After work/school, End of the day, At night

Are the complaints re-

curring?

Yes / No

Side? Left, Left>Right, Both, Right>Left, Right

Are the complaints

equipment specific?

Yes, in for every type of equipment; Yes, in some types of equipment;

No, only without equipment; No, with or without equipment

*Multiple options can be selected for this datatype

The second type of data is the ordinal input type. This data type is represented as radio buttons
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or tiles on the interface. For this data type, only one option can be selected by the user. This

constraint is needed because the values within each question are typically mutually exclusive or

hold a hierarchical relationship. This makes selecting one option conflict with wanting to select

a second option. Table 4.2 presents a structured overview of questions and corresponding input

options.

Table 4.2: Questions and Input Data for Ordinal Data

Question Input Options

Existence period symp-

toms?

<1 week, <1 month, <2 months, 2-6 months, >6 months, >1 year

The course of the com-

plaints?

Complaints have decreased, Complaints are indifferent, Complaints

are mixed, Complaints have increased

Pain during walking? None, Light, Medium, Severe, Not able to do this activity, Unknown

Pain during daily activ-

ity?

None, Light, Medium, Severe, Not able to do this activity, Unknown

Pain during intensive

activity?

None, Light, Medium, Severe, Not able to do this activity, Unknown

*Only one option can be selected for this datatype

The final data type is the interval data. This data type only occurs once for the Numerical Rating

Scale (NRS). The NRS is a widely utilized tool for assessing pain intensity, providing a quantita-

tive measure of the severity experienced by patients. Respondents are presented with a range

of integers from 0 to 10, where 0 signifies no pain, and 10 represents the worst imaginable pain.

This comprehensive scale enables patients to articulate their pain intensity with granularity,

facilitating accurate pain assessment and monitoring over time. However, it could be argued

that this data is not truly interval data because the differences between scale points may not

represent equal intervals of pain intensity as perceived by patients.

It’s essential to recognize a significant detail regarding all input types: they allow for multiple

entries per pain location. As depicted in Table 4.1, the report delineates six distinct symptom

locations. For instance, if a practitioner notes that a patient experiences symptoms in two dif-

ferent pain locations, each question will be posed twice, once for each symptom location. This

would lead to twice as many variables for each inputted report. Further elaboration on this

scenario will be provided in Section 4.4.3.

4.3.2. TREATMENT REPORT DATA

As mentioned, the Treatment Report contains the final diagnoses given to the patients. This

report also covers the future steps that need to be taken to treat the patient, however, this data

is less relevant for this research. Currently, there are two types of variants of the treatment
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report included in this study. The first type is an older version which is built on the in-house IT

system. Following, there is a new type of report that was created using the EHR structure. This

report was created months after the anamnesis report and is currently used interchangeably

with the other treatment report. Because of the large amount of data already captured using

the older version of the treatment report, and the fact that it is still in use, both versions were

included in this research.

There are two key differences between the treatment reports that should be noted. Firstly, the

new report version includes more questions that could be asked by practitioners. These addi-

tional questions, such as those delving deeper into a patient’s medical history, were excluded

from the research. This exclusion was due to the data being relatively new and not widely filled

out, as many questions were not relevant to a large group of patients. Following, there is a sec-

ond crucial difference between the reports that should be stated. In the older treatment report,

a practitioner could only input one diagnosis for a patient. For the new CDSS treatment report,

this changed into the option for multiple diagnoses. Currently, 10% of the reports in this re-

search contain more than 1 diagnosis, whereas <1% even contain 3 or more diagnoses. It should

be noted, however, that the percentage of multiple diagnoses per report is likely to increase as

the new CDSS report is used more extensively. Therefore, this has been taken into consider-

ation when creating the models in Section 4.5. One step of the research involves identifying

the best performing machine learning model. As the dataset gradually shifts from single-label

to multi-label, the best-performing model may also change. Thus, it is important to highlight

this potential bias and critically assess the evolving data when selecting the most appropriate

model.

Finally, the diagnoses in the database are categorized into 15 distinct groups each represent-

ing a specific aspect of the human body. These categories, which can be seen in Table 4.3, have

been created by medical experts. It must be stated that subjectivity exists in the classification of

these diseases into categories. Conditions classified under one category may also be deemed

relevant to the other categories due to their anatomical proximity. Despite potential differ-

ences in medical expert opinions, a final decision was made for each diagnosis. Following, the

database encompasses 177 unique diagnoses, which can be filled into these treatment reports.

To streamline the analysis and focus on a more cohesive subset of conditions, this research only

focuses on a subset of the locations and includes corresponding diagnoses, which can be seen

in Table 4.3. This table summarizes the diseases by category, indicating the total number of

diseases within each category, the number of diseases included in our research dataset per cat-

egory, and whether the disease category was considered in this study. For this research, only a

subset of the classes were selected relevant to a specific part of the body, which led to a total of

20 classes. The decision for only a specific part of the body was made because of the amount of

data available for these categories. Furthermore, by concentrating solely on one specific sub-

set of diagnoses, the prediction process becomes less complex. This is because these disease

categories frequently exhibit similarities, allowing for more effective comparison and contrast.
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Table 4.3: Summary of Diseases By Category

Disease Category Amount of Diseases Amount Currently Used Included?*

Category 1 23 6 Yes

Category 2 22 6 Yes

Category 3 14 3 Yes

Category 4 8 1 Yes

Category 5 6 1 Yes

Category 6 12 3 Yes

Category 7 10 0 No

Category 8 27 0 No

Category 9 5 0 No

Category 10 13 0 No

Category 11 8 0 No

Category 12 7 0 No

Category 13 1 0 No

Category 14 18 0 No

Category 15 3 0 No

Total 177 20 -

*Only a subset of 20 classes has been selected for research purposes.

4.4. DATA PREPARATION

After gathering insights from the data, the next step is to get it ready for use in ML models.

Initially, the data was not structured in a format that was suited for analysis. Therefore, this

chapter focuses on three main things. First, Section 4.4.1 talks about changing the data format

to simplify the ability to handle and modify the data. Secondly, Section 4.4.2 discusses data

selection, detailing the types of data incorporated into the models and the exclusion criteria

applied. Finally, Section 4.4.3 covers the feature engineering, encompassing the refinement of

the chosen data to optimize its suitability for ML models, thereby transforming its format for

seamless integration into the modelling process. Figure 4.3 gives a visualized view of the data

preparation process.
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Figure 4.3: Technology and Application View for Data Process
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4.4.1. DATA MODELLING

The initial step in data preparation involved the modelling of the dataset to render it conducive

for analysis. Initially, the data provided consisted solely of questions accompanied by answers.

Notably, the variables in the input values column of Table 4.1 lacked any linkage to their re-

spective question categories. Consequently, disparate types of data, ranging from diagnoses

and symptoms to medical history information, were intermingled. The current form of data

storage lacks additional content to the data. The dataset can only be queried using specific

questions outlined in the report, but the categories for these questions are not included. For in-

stance, there are five different questions related to the inflammatory symptoms of a patient, but

the category "inflammatory symptoms" is missing. Consequently, these five questions must be

extracted individually, which hinders future-proofing. If the wording of a question changes, it

would require updates in the data queries as well. Figure 4.4 shows an example of the old data

format, in which headers, diseases, and different question types are all through each other in

the database. To make the final output of this research scalable and future-proof, this data had

first to be modelled in a way that was suitable for analysis.

Figure 4.4: Example of Data Storage Before Modelling

To enhance the utility of the data, a schema was devised to establish relationships between

its various components. This star schema configuration facilitates richer and more efficient

querying of the data. The provider of the report structures offers an API that furnishes infor-

mation about the underlying structure in JSON format. Subsequently, a script was developed

to interface with this API, triggered upon detection of new reports or report versions. Upon

invocation, this script retrieves the pertinent data via the API, enabling the establishment of in-

terconnections between different data elements. Consequently, the association between ques-

tions, answers, and their respective categories becomes significantly more discernible. The full

process of capturing this underlying data format into a star schema can be seen in Appendix D.

The star schema, depicted in Figure D.1, comprises a fact table and four dimensions. The fact

table encompasses the input values that users can populate, segregated by their respective in-

put types such as enum, float, or string. Additionally, the fact table includes a unique identifier,



DATA PREPARATION 38

the report ID, which corresponds to the report being filled in. The primary dimension in our

fact table is the CDSS structures dimension, which holds crucial details about the input values

recorded. This dimension encompasses information regarding the source of the report and its

corresponding version, alongside the linked question and its category. Categories could include

diagnoses, symptoms, inflammatory symptoms, or medical history. Additionally, the fact table

is linked to three other existing dimensions. The employee dimension specifies the employee

who filled in the report, with their function and name being the relevant features. The date di-

mension solely captures the exact date variable. Lastly, the patient dimension is connected to

the fact table but isn’t currently utilized for data analysis.

Figure 4.5: Starschema of Data After Modelling

The completion of data modelling has led to a more flexible approach to filtering question cate-

gories and made the system less vulnerable to changes in question formulations. By structuring

the data in a star schema format with corresponding categories, the questions themselves can

change, while still keeping most of the data queries working. An example of this data, in the

form of the given star schema, can be found in Appendix C.

4.4.2. DATA SELECTION AND INTEGRATION

Upon data modelling, information can be selected, and features from reports can be excluded

that are least relevant to the diseases or rarely filled in. The following section will cover the

features and labels that were selected, and sequentially the data that was filtered out. After, this

section will cover how the features of the anamnesis report were connected to the diagnoses of

the treatment reports.

• Relevant Reports: During the data selection process, careful consideration was given
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to select reports pertinent to the scope of the study. Test patients and their associated

reports were excluded from the dataset. Furthermore, patients without any symptoms

filled in were also excluded from the dataset. Finally, sometimes practitioners won’t fill in

any symptoms because of recurring patients or patients without any symptoms. These

reports were also filtered out. This approach aimed to ensure the inclusion of cases about

a new patient coming in without a diagnosis.

• Final Diagnoses: In some cases, a practitioner may only complete an anamnesis report

before proceeding with treatment for a patient. Consequently, if a treatment report is

not filled out for a patient, it indicates that a final diagnosis has not been recorded in the

system. Since a label is essential for a supervised ML model to make predictions, patients

without a final diagnosis are excluded from the dataset.

• Specific Diagnosis: The dataset was filtered on only diseases and corresponding symp-

toms related to a subset of the dataset. As mentioned in Section 4.3.2, everything of only

a certain part of the human body was included. This decision aimed to enhance predic-

tion accuracy and promote coherent data analysis by focusing on diagnosis groups with

similar characteristics.

• Symptom Features: The features filled in during the anamnesis are filtered to only in-

clude direct symptoms of the patient to possible diseases. As mentioned in Section 4.3.1,

the report also covers factors concerning medical history, such as visits to medical pro-

fessionals or medical operations. However, these elements are deliberately excluded to

focus solely on data possibly correlated to potential diagnoses for the patient.

• Robust Representation: As seen in Section 4.3, only a subset of the diseases were selected

for this research. The selection of the total amount of diseases was essential to guarantee

a foundational level of data for each diagnosis. This threshold not only provides a basic

representation of each condition but also helps mitigate potential biases or anomalies

that could arise from insufficient data.

After the selection of features and labels, the next step is to combine them into a cohesive

dataset. This is achieved by linking entries based on patient identifiers and report creation

dates. Patient numbers are assigned by the system to ensure that the right reports are linked

to each other. Furthermore, since the reports were not linked to a certain appointment, they

were matched based on creation dates within a 30-day window. This accommodated potential

delays in report submission, which is especially common among novice practitioners, ensuring

effective linkage despite temporal variations.

4.4.3. FEATURE ENGINEERING

Once the data was prepared and the relevant variables were selected, the features underwent

refinement and modification for the ML models. The first type of feature engineering was a cru-

cial step in the feature engineering process. Data points specific to a location were combined
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to reduce the number of variables. As discussed in Section 4.3.1, when a practitioner records

pain locations, they may input separate data for each instance, often duplicating values. Hence,

these variables were grouped to significantly decrease the variable count. Following, Features

that were similar to each other were also combined into one regularized feature. For example,

left and right-specific features were combined into one overlapping feature.

The steps mentioned above reduced the feature space. As illustrated in Appendix E, the original

1153 features were already reduced by nearly 75% by selecting only features that have the high-

est correlation to diseases and were filled in regularly. However, with 299 features remaining,

further reduction was imperative for the classification task. Feature engineering ultimately re-

duced the feature count to 54, a reduction of 95%. This consolidation ensured that the retained

features provided richer information for model interpretability and improved model perfor-

mance by prioritizing the most informative variables.

With the feature space reduced, the data types were altered to fit into the ML models. The

nominal values which had True and False values were set to be one and zero respectively. Addi-

tionally, nominal data types with more than two options were converted to a numeric format,

assigning a unique number to each option. Furthermore, ordinal values were standardized to a

numeric format, ranging from 1 (lowest) to the highest value corresponding to the top category.

For example, the degree of pain experienced while performing intensive activities, previously

described from mild discomfort to complete inability to walk, was encoded from 1 to 4, en-

abling better predictive performance with fewer variables. These steps meant that all of the

variables were now easily implementable into ML models for training.

Finally, once all of the features were improved, the missing values were handled. For nomi-

nal data types, missing values were set to 0, as their absence could imply either oversight by

the practitioner or the absence of the symptom in the patient. For example, when one of the

inflammatory symptoms is not filled in, it could imply that the practitioner forgot or that this

inflammatory symptom did not occur. Because this distinction could not be made, these fea-

tures are not handled. However, the missing numerical and categorical values could be identi-

fied, because these can only be zero when they are not filled in. For the numerical values, it was

decided to change the missing values to the overall average, which was around 120 records in

the dataset. Following, the categorical data, the median values were selected. This choice was

made because these values were set to an incremental value, and the average value for these

data types was sometimes the least filled in, which could lead to creating unnecessary noise

for crucial information. Therefore, the missing values were set to the Median values for this

datatype. The average amount of missing data for these features combined was around 16%,

the exact amount of missing values can be seen in Table 4.4. Concluding this section, with the

feature engineering complete, the models were equipped with well-suited data, and the reduc-

tion in feature noise supports model performance and interoperability.
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Table 4.4: Table Which Shows How Missing Data is Handled

Feature Amount Missing Percentage Missing Missing value replaced in

NRS 120 11.5% Average, which is 5

Course of complaints 161 15.5% Median, which is 3

Daily Activities 155 14.9% Median, which is 2

Intensive Activities 308 29.6% Median, which is 2

Walking 175 16.8% Median, which is 2

Side of symptoms 24 2.3% Median, which is 1

4.5. MODELING STRATEGIES FOR CLASS IMBALANCE

During the ML models implementation phase, we elucidate the implementation process and

rationale behind various decisions made during this phase. Figure 4.6 illustrates a highly skewed

distribution of diagnoses within the dataset. Notably, the most recorded diagnosis is 17 times

more common than the least recorded diagnosis. This skew presents a potential challenge, as

it may lead models to exhibit bias towards the predominant diagnoses. Consequently, a model

could achieve seemingly high accuracy by simply predicting the most frequent diseases, which

could yield misleading recommendations, particularly for cases outside this subset.

Figure 4.6: Distribution of Diagnoses Included in This Research

To address this imbalance, various class-balancing techniques can be employed. Among these

techniques, undersampling involves removing data from the overrepresented classes, but given

the limited dataset in this research, an oversampling approach was preferred. Specifically, ran-

dom oversampling was chosen, wherein instances from the minority classes are duplicated.



MODELING STRATEGIES FOR CLASS IMBALANCE 42

While Synthetic Minority Oversampling Technique (SMOTE) is another option, it was deemed

less suitable due to its potential impact on explainability; SMOTE generates artificial data,

which could lead the model to make predictions based on synthetic instances not present in

the original dataset, thus compromising interpretability.

Moreover, as discussed in Section 4.3.2, the nature of the problem is evolving from a SLC to

a MLC scenario, owing to the possibility of multiple diagnoses being selected in the new treat-

ment report. Hence, it becomes imperative to consider the appropriate classification approach.

Below, we analyze three different options for addressing the classification problem, each tai-

lored to suit the evolving problem type:

• SLC with Class Imbalance: Serves as a baseline, demonstrating model performance with-

out any manipulation of class distribution.

• SLC with Random Oversampling: Randomly selects data from the minority class and

duplicates them, offering fairer representation to underrepresented classes. However, it

may inflate the importance of certain variables due to duplication.

• MLC with Weight Factors: Adapts the Category Imbalance and Cost-Sensitive Threshold-

ing (CICST) model proposed by Liu et al. [48], assigning weight factors to each disease

and triggering predictions when they exceed a certain threshold.

The training will involve exploring various strategies to address both SLC and MLC problems.

In the subsequent sections, we will delve into a more detailed explanation of how we plan to

tackle class imbalance and multi-label classification challenges using different techniques.

4.5.1. SINGLE-LABEL CLASSIFICATION

For single-label classification, the H2O platform was utilized due to its robustness and scal-

ability 2. The implementation involved training multiple models with varying strategies for

handling class imbalance. Notably, two approaches were adopted:

• Equal Representation: Each label was duplicated to match the frequency of the most

common class, ensuring balanced representation across all diagnoses. This most com-

mon class had a sample size of 198, which meant that the other diagnoses were dupli-

cated until they reached the same size.

• Shared Representation: Alternatively, labels were associated with the same row, allowing

models to learn from shared features across multiple diagnoses. These strategies aimed

to assess the impact of class balancing techniques on model performance and interoper-

ability.

2https://h2o.ai/
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4.5.2. MULTI-LABEL CLASSIFICATION

Drawing from the CICST model proposed by Liu et al. (2021) [48], the multi-label classification

framework was designed. This approach emphasizes the automatic classification of multiple

helathcare conditions while addressing class imbalance and cost-sensitive thresholding.

The model structure and training process were adapted to suit the healthcare diagnostic con-

text, with a focus on:

• Automatic Multi-Label Classification: Predicting multiple diagnoses simultaneously to

cater to the complex nature of healthcare conditions.

• Category Imbalance Handling: Employing weight factors to account for class imbal-

ances and ensure fair representation of all diagnoses.

• Cost-Sensitive Thresholding: Setting threshold values based on the severity and preva-

lence of each condition, thereby enabling prioritized predictions. The implementation

closely followed the structure outlined in the literature [48], with necessary adjustments

to align with the specifics of the healthcare domain.

4.5.3. EVALUATION METRICS

The three models in question will be evaluated using a variety of metrics. Given that two of the

models are of the SLC type and one is a MLC type, we will assess them based on their precision

and sensitivity scores for each disease. These scores will be contextualized within potential use

cases to identify the most suitable model for each scenario. The evaluation will include:

• Sensitivity for Each Diagnosis

• Precision for Each Diagnosis

• F1-Score for Each Diagnosis

Additionally, the overall sensitivity, specificity, and F1-score will be examined. By comparing

these metrics, insights into which models perform best for different types of use cases can be

obtained. The values for these

4.6. EXPLAINABILITY

The final part of the research covers the explainability output of the ML model. This step is

crucial in ensuring the model’s outputs are interpretable and actionable. The explainability

process is executed in three stages, illustrated in Figure 4.7. First, four different possible local

explainability models were created, based on the research of Naiseh et al. [24]. These models

are detailed in Section 5.3. These four models gave more tangible options for practitioners to

decide what they would prefer.

Next, a questionnaire was conducted involving thirteen practitioners to account for variations

in explainability needs across different sectors, companies, and individuals. Inspired by Naiseh
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et al.’s work, the questionnaire aimed to capture practitioners’ perceptions and preferences on

three topics for each model: Understandability, Information Sufficiency, and Reliability Evalu-

ation. The statements evaluated were:

• I understand the information that the visual is showing me.

• I receive enough information to determine which disease to examine.

• I can determine (in)correct diagnoses from the output.

Additionally, the questionnaire included a ranking of the models before and after an explana-

tion of the information displayed. This ranking assessed the intuitiveness of the explainability

models, as training can be costly for organizations. The goal was to ensure that the explainabil-

ity felt intuitive to practitioners from the first use. The questionnaire concluded with a query

on whether parts of the post-hoc explainability models should be combined. This question

aimed to gather detailed insights, allowing the integration of highly rated elements from differ-

ent models into a final, optimized model.

The results from the questionnaire informed the final step: a focus group discussion with key

stakeholders and experienced practitioners. The focus group included the director of health-

care at Company X, the coordinator of integral care, and a member of the data-driven care

team. This group reviewed the questionnaire results, selected the best-scored elements from

each model, and refined features that received mixed feedback. This three-step process is done

to make the final model well-suited to its specific implementation context because it is impor-

tant to create the final model with the end-user in mind.

Figure 4.7: Explainability Research Process
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5.1. EXPLORATORY DATA ANALYSIS

This section presents the global feature importance for the three models discussed in Section

4.5. We will first highlight the global feature importance, identifying the most critical variables

for each model. Following this, we will examine partial dependency, providing insights into the

most influential features of each specific diagnosis.

5.1.1. GLOBAL FEATURE IMPORTANCE

The global feature importances were calculated using the built-in global feature importance

functions of H2O. Unlike local feature importance, which evaluates feature importance for in-

dividual predictions, global feature importance aggregates the importance of each feature over

the entire dataset. Using H2O the global feature importance for the GBM and RF models is cal-

culated based on the splits at each node within the decision trees. For every split, the reduction

in variance is determined. The reduction in variance is the change in variance from the parent

node to the corresponding child nodes, where a larger reduction indicates greater importance.

The variance is calculated using the following formula 1:

VAR = 1

N

N∑
i=1

(yi − ȳ)2 (5.1)

Where VAR represents the variance on a single node. In this multiclass problem, the y values are

treated as binary using a One-vs-Rest approach. Specifically, the target value yi for observation

i is 1 if the observation belongs to the class of interest, and 0 otherwise. The mean (ȳ) is the

average of these binary values across all observations in a node.

The variance reduction values are summed for every decision tree in the RF or for the single

1https://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html
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decision tree in the GBM to obtain a final importance score for each feature. To normalize

these scores and facilitate comparison, the final scores for each feature are summed, and the

importance score of each feature is divided by the total sum of all scores. This provides a relative

importance measure for each feature.

This method allows for the comparison of feature importance across the entire model, pro-

viding insights into which features have the greatest impact on the predictions. By revealing

which features significantly influence the final predictions of the ML models, this approach of-

fers an understanding of the model’s behaviour. Features with a score of 0 are not utilized by

the model, indicating that they have never determined a split in any of the trees. Conversely,

features with high importance scores either determine multiple splits or significantly reduce

variance when they determine a split. Additionally, the variables are categorized into seven

groups based on their similarities. This categorization helps identify the most crucial groups of

variables for the model and facilitates an understanding of the relative importance of variables

within each group.

In the first model, shown in Figure 5.1, two key

feature groups emerge: diagnosis location and

the specific location of symptoms. These two

feature groups respectively have the highest

two feature importance scores, which means

the baseline ML model focuses most on these

feature sets. This distinction highlights the

model’s ability to differentiate diagnoses based

on where the patient experiences symptoms

most prominently. Furthermore, the symptoms

and inflammatory symptoms surprisingly had

a low feature importance score. These features

normally are very important for practitioners

to identify the right diagnosis of a patient but

are not used quite as much by the model based

on the baseline dataset. In machine learning

models, features that strongly correlate with

the most frequently occurring classes in the

dataset tend to gain higher importance in the

model’s predictions. This is because the model

learns that predicting these prevalent classes

increases the likelihood of making correct pre-

dictions.

Figure 5.1: Feature Importance for Baseline Data

Consequently, features associated with these common classes become more influential, re-

flecting the model’s bias towards predicting the most prominent categories within the dataset.
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This bias towards frequent classes results in higher feature importance scores for character-

istics closely linked to these categories. This is mainly seen by the fact that the two diagnosis-

locations and exact-locations with the highest feature importance are also correlated to the two

most prominent labels.

Figure 5.2: Feature Importance for Oversampled Data

In contrast to the previous model, the second

model depicted in Figure 5.2, which utilizes

oversampled data, exhibits a more balanced

distribution of feature importance. Unlike be-

fore, where certain features stood out signifi-

cantly, here we observe a more evenly spread

of importance among features. While the gen-

eral ranking of feature categories remains con-

sistent, no conspicuous spikes indicate dispro-

portionately influential features.

This shift can be attributed to the model’s al-

tered perspective on the data. By treating

all classes as equal through oversampling, the

model no longer favours features associated

with frequently occurring diagnoses. Instead,

it assigns greater importance to features distin-

guishing less common diagnoses. For instance,

the feature ’After Rest’ experiences a notable

decrease in importance compared to the pre-

vious model, suggesting a recalibration of rel-

evance.

Furthermore, there’s a noticeable emphasis on the history of complaints in this model. With

each diagnosis receiving equal consideration, features capturing the progression or duration

of symptoms become more significant. It’s plausible that these features are better suited to

discerning accurate diagnoses when all conditions are weighted equally.
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In the previous models, which were based

on SLC, there was a noticeable emphasis

on certain features. This was likely due

to their prevalence or higher variance in

the data. Although it was less prevalent

for the oversampled data, it still existed.

However, the latest model, which employs

a MLC, presents a more balanced distri-

bution of feature importance. Interest-

ingly, the ‘amount of pain’ category has

emerged as the highest scoring category in

this model, a shift from the earlier mod-

els where the locations of the symptoms

were deemed significant. Additionally, the

patients’ abilities to perform specific tasks

have also gained prominence in influenc-

ing the model. This finding is somewhat

unexpected. While the ‘amount of pain’ is

indeed an important feature, it is surpris-

ing to see it considered as the most critical

piece of information for decision-making

by practitioners. This shift in feature im-

portance underscores the nuanced capa-

bilities of the MLC in balancing the influ-

ence of different features.

Figure 5.3: Feature Importance for CICST Data

In summary, the shift towards a more balanced distribution of feature importance in the over-

sampled model indicates a recalibration of the model’s focus. By considering all diagnoses

equally, the model highlights features that effectively differentiate between less common con-

ditions, potentially enhancing its diagnostic accuracy across the board. Following, the intro-

duction of an MLC seems to balance the feature importance further. All of the features in this

final model seem to be around the same level of importance compared to each other. Another

interesting condition to note is that the symptoms and inflammatory symptoms categories

scored very low for every model. It would be expected that these would be higher scoring be-

cause practitioners consider this a crucial factor in diagnosing a patient. A closer look into the

data showcases that most of the patients did not have inflammatory symptoms. Furthermore,

two of the symptoms were filled in for most diagnoses, while others were far less common. It

could be that these two feature sets were similar for every disease, and therefore not a good

distinguishing factor for the models to base a decision.

Finally, identifying the most critical features mentioned above can assist with feature selec-
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tion. For instance, the feature ’During Warming-Up’ shows minimal importance in the current

models. However, determining whether certain features should be combined, altered, or re-

moved remains challenging because the models are trained on only a subset of the features.

Features that appear insignificant in the current models might still hold importance for differ-

ent diagnoses that have not yet been included. The combined global feature importance from

all models is illustrated in Figure 5.4. This figure highlights that some features have little to no

influence on the final predictions.

Figure 5.4: Comparison Feature Importance Between Models
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5.1.2. PARTIAL DEPENDENCY

Partial dependency plots are traditionally effective tools for visualizing the influence of specific

features on the final prediction. They are particularly valuable in multi-class problems for dis-

cerning feature-class correlations. However, given the extensive number of features and classes

in this study, generating all necessary dependency plots is impractical. With three models, fifty-

one features, and twenty labels, creating 3060 plots would be unfeasible. As a pragmatic alter-

native, the analysis focuses on examining the disparity in mean response values when certain

features are either True or False. Given that most features are nominal values, this approach of-

fers valuable insights into the impact of feature states on predictions. The resulting differences

in response values indicate the strength and direction of correlation between a feature and a di-

agnosis, or lack thereof. These insights are encapsulated in heatmaps presented in Figures 5.5,

5.6, and 5.7, utilizing testing data to underscore the models’ performance with new data. For

instance, these figures reveal a strong positive correlation between the diseases and the True

values for some of the features. This would mean that these features strongly correlate to these

diseases.

The heatmaps underscore the varying degrees of influence that features exert on the models.

Notably, the CICST model appears significantly more responsive to feature states compared to

the other two models. Examination of the legend in Figure 5.7 reveals a wider axis range of

0.6 to -0.25, whereas the models in Figures 5.5 and 5.6 span from 0.2 to 0.2. This discrepancy

suggests the potential superiority of the CICST model in disease prediction and feature-disease

correspondence discernment. However, elevated influential values may also signal overfitting.

For instance, the feature Inflammatory-Symptom-4 elicits a notably high response for this di-

agnosis despite lacking a strong correlation. Hence, meticulous identification of such instances

aids in guiding subsequent feature engineering or modeling iterations. Moreover, the dispar-

ities in these values offer insights into operational discrepancies among different ML models.

Take the variable ’nagelklachten’ as an example: the two GBM models exhibit negligible impor-

tance assigned to this specific variable, with mean response differences close to 0. Conversely,

the RF model presents a distinct pattern, assigning notably high or low scores to ’nagelklachten’

for certain classes. This discrepancy underscores how the SLC GBM models interpret distinct

patterns compared to the MLC RF model, leading to disparate conclusions.

The ML models play a crucial role in identifying features or labels that exhibit negligible impact

across all scenarios. For instance, the feature ’eind van de dag’ consistently elicits no response

in any model. This suggests a potential lack of importance for this variable, warranting consid-

eration for removal from the dataset. However, it’s essential to acknowledge that these features

might still hold value in diagnosing conditions not currently captured by the ML model. Addi-

tionally, it underscores the reality that certain diagnoses lack distinct feature sets. Upon closer

examination of diagnosis values, it becomes evident that some lack high or low mean response

values for any feature. This implies the model’s inability to effectively differentiate this diagno-

sis based on existing features. This can be seen when comparing the values from Tables 5.5, 5.6

and 5.7 to the performance per diagnosis in Table 5.1.
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Figure 5.5: The Partial Dependency Values for Every Nominal Input Type for the Baseline Model Based on Test Data
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Figure 5.6: The Partial Dependency Values for Every Nominal Input Type for the Oversampling Model Based on Test Data
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Figure 5.7: The Partial Dependency Values for Every Nominal Input Type for the CICST Model Based on Test Data
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The diagnoses with the lowest performances like diagnoses 2-4 or 2-5 are also the diagnoses

with the lowest total mean response. The limitation of effectively differentiating diagnoses

could stem from biases inherent in the small sample size or the absence of defining features

for this diagnosis. In conclusion, these findings indeed reflect the models’ identification of im-

portant features for each diagnosis, emphasizing the need for more extensive sample sizes to

discern the distinguishing characteristics of certain diagnoses.

5.2. MODEL COMPARISON BASED ON DIAGNOSIS-SPECIFIC PERFORMANCE

This section provides a comparative analysis of the performance of three trained ML models.

Prior to discussing the actual performance of each model, the training conditions for develop-

ing the ML models will be explained.

The first two ML models were trained using H2O. H2O was configured to only train ensemble

methods, in which H2O supports GBM, DRF, and GLM. Ensemble methods are chosen due

to their robustness and ability to improve predictive performance by combining the strengths

of multiple models, reducing the risk of overfitting and increasing generalization. In both in-

stances, H2O was configured to train ten different models, selecting the one with the lowest

mean per class error, a useful metric in multi-class classification problems as it provides an av-

erage measure of the classification error across all classes. Interestingly, in both the baseline

and oversampling datasets, the model with the best performance was consistently a GBM. This

preference for GBM may be attributed to its effectiveness in handling complex, non-linear rela-

tionships and its capacity to manage various data types and distributions [42]. GBM’s iterative

boosting approach also helps in sequentially correcting the errors of weaker models, leading to

a more accurate and robust final model.

For the MLC, a RF model was selected. The choice of RF for the MLC model was motivated

by several reasons. Firstly, RF models are known for their ability to handle high-dimensional

data and provide robust performance even in the presence of noise. Secondly, RF models can

capture complex interactions between features, making them particularly suitable for multi-

label problems with a large number of features.

5.2.1. MODEL PERFORMANCE

After looking at the features that are important for each model, it is also crucial to know which

models perform the best in terms of precision, sensitivity and F1 score. This chapter will first

discuss each model separately, and then compare them afterwards.

Baseline: The initial model, trained on the original dataset with a skewed class distribution,

demonstrates satisfactory performance predominantly for the most frequent classes. As indi-

cated in Table 5.1, the model accurately predicts the top classes most of the time. For instance,

Disease 1-1 achieves a sensitivity of 0.83, indicating high sensitivity for this class. However, the

precision for this class is relatively low, at 0.56, suggesting a significant number of false posi-

tives. This outcome highlights the model’s bias towards predicting the more common classes
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due to their prevalence in the training data. The overall accuracy of the model stands at 54%,

largely because the model tends to favour the prediction of frequent classes, thereby correctly

predicting them more often. Nevertheless, the model’s performance deteriorates substantially

for less common classes. In fact, there are seven classes that the model fails to predict entirely.

This failure occurs because these rare classes share feature similarities with the more common

classes, but due to their lower representation in the dataset, the model is less likely to predict

them.

Oversampling: The second model, which was trained on oversampled data, exhibits an overall

accuracy of 49%. This slight decrease in accuracy compared to the baseline model can be at-

tributed to the model’s increased focus on less frequent classes, thereby lowering the average

accuracy. While the performance of the most common classes has declined, there is a notable

improvement in the prediction of less frequent classes. Specifically, the classes that performed

poorly in the baseline model show improved scores in this model. Despite these gains, the

overall precision and sensitivity of this model have decreased relative to the baseline. Interest-

ingly, this model also fails to predict six classes entirely, which is unexpected since oversam-

pling should theoretically balance the importance of all classes. This anomaly may be due to

the nature of random oversampling, which can provide the model with information limited to

the specific instances included in the training set. During dataset splitting, where 80% of the

data is used for training and 20% for testing, minority classes are divided into small subsets.

If the three samples in the testing set are not similar to the twelve samples in the training set,

which are heavily duplicated, the model fails to predict these classes. Even though these 12

samples are cross-validated using H2O, they can still be different from the final 3 testing cases.

While SMOTE could have mitigated this issue, as discussed in Section 4.5, it was not employed

to preserve model explainability. Another significant improvement is observed in the top-k hit

ratio. Although the accuracy remains at 49%, similar to the overall accuracy, the top-3 hit ratio

has improved markedly. This model includes the correct diagnosis in its top 3 predictions 79%

of the time, compared to 70% in the baseline model. This indicates that the model performs

better when allowed to output multiple potential diagnoses.

CICST: The final model, an implementation of the RF model utilizing a one-vs-rest classifier

for MLC, is employed. This model generates a one-vs-rest classifier for each diagnosis. If the

expectancy of a diagnosis surpasses a predetermined threshold, it is predicted as True. The

thresholds are determined through iterative exploration of various threshold values, selecting

the one that maximizes the combined F1 and Sensitivity Scores. The final threshold values

can be found in Appendix H. In terms of accuracy, this model outperforms previous iterations,

achieving a significantly higher combined accuracy of 92%. However, this figure can be some-

what misleading, as an accuracy of 80% would still be attained even if the model predicted

every diagnosis as false. Therefore, other evaluation metrics provide a more accurate assess-

ment of the model’s performance. On these alternative metrics, the RF model shows substan-

tial improvements, achieving 1.5 times the sensitivity and F1-score, and double the precision

compared to the other models. This model was optimized for higher precision, emphasizing
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the importance of including the correct diagnosis as an option rather than ensuring it is the

top prediction. Despite these improvements, two classes—Disease 2-4 and Disease 2-5—still

receive no predictions, consistent with the results from the previous models. As discussed in

Section 5.1.2, these conditions exhibit very low mean responses across their values. The model

struggles to distinguish these diagnoses from others given the current dataset.

Overall, considering all metrics, the CICST model performs the best. This superior perfor-

mance can be attributed to several factors. Firstly, to enable the models to function as SLC,

some records had to be duplicated. For example, if a patient has two diseases, there will be one

set of features for the first disease and a duplicate set for the second. This duplication can pre-

vent the model from accurately predicting the correct diagnoses because the same features are

repeated. Additionally, some diagnoses may have overlapping features for different diseases,

making it challenging for SLC models to distinguish which features correspond to each dis-

ease. While this is still a challenge for MLC, it is easier for MLC models to handle. Furthermore,

the CICST model was specifically trained to optimize the precision score, which is reflected in

its superior performance. The first two models were trained using mean squared error as the

objective, which limited their effectiveness. If these models had been trained with a focus on

precision, their scores would likely be higher, as they would have been optimized with precision

as the primary criterion.

5.2.2. PRACTICAL IMPLICATIONS

When considering the practical implications of implementing these models, the CICST model

stands out as the best performer. Firstly, it’s important to note that the CICST model excels

in both precision and F1-score. This means it not only provides accurate diagnoses more fre-

quently but also includes the correct diagnosis in its output more often. This is crucial for prac-

titioners, who can then verify the diagnosis. The higher precision score is particularly valuable

because it ensures that the correct diagnosis is likely to be among those suggested.

Additionally, as discussed in Section 4.3.2, the new treatment reports allow for multiple diag-

noses to be recorded. With approximately 10% of records currently involving multiple diag-

noses, this number is expected to grow. Therefore, the CICST model’s ability to handle multiple

diagnoses will become increasingly beneficial over time. This model is not only the best choice

now but is also expected to outperform the other models in the future.

Lastly, the CICST model offers greater flexibility in practical application. If certain diagnoses

become too frequent or too rare, the weight factors can be adjusted to improve performance.

This adaptability empowers practitioners and data-driven care departments to fine-tune the

model to better suit their needs, enhancing its practical utility. The final weight factors for this

model are displayed in Appendix H.
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Table 5.1: Comparison of Model Performances per Diagnoses

Class (n)
Baseline Oversampling Cicst

Sensitivity Precision F1-Score Sensitivity Precision F1-Score Sensitivity Precision F1-Score
Disease 2-1 (190) 0.78 0.59 0.67 0.70 0.59 0.64 0.54 0.82 0.65
Disease 1-1 (215) 0.83 0.56 0.67 0.67 0.61 0.64 0.66 0.84 0.74
Disease 1-2 (59) 0.78 0.78 0.78 0.67 0.55 0.60 0.56 0.77 0.65
Disease 1-6 (28) 0.00 0.00 0.00 0.14 0.14 0.14 0.31 0.63 0.42
Disease 1-4 (35) 0.75 0.75 0.75 0.50 0.44 0.47 0.67 0.29 0.40
Disease 2-2 (95) 0.62 0.65 0.63 0.43 0.60 0.50 0.85 0.68 0.76
Disease 5-1 (27) 0.75 0.33 0.46 0.75 0.43 0.55 0.75 1.00 0.86
Disease 3-3 (19) 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50
Disease 4-1 (34) 0.57 0.40 0.47 0.71 0.50 0.59 0.70 0.78 0.74
Disease 3-2 (29) 0.29 0.33 0.31 0.14 0.17 0.15 0.25 0.75 0.38
Disease 1-5 (30) 0.17 0.25 0.20 0.33 0.50 0.40 0.39 0.70 0.50
Disease 2-3 (94) 0.39 0.54 0.45 0.39 0.33 0.36 0.32 1.00 0.49
Disease 3-1 (44) 0.25 0.38 0.30 0.17 0.33 0.22 0.63 0.56 0.59
Disease 2-6 (15) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.50 0.67
Disease 2-4 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Disease 1-3 (36) 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.71 0.31
Disease 6-3 (18) 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.60 0.33
Disease 6-1 (24) 0.20 0.50 0.29 0.40 0.33 0.36 0.23 0.88 0.36
Disease 2-5 (15) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Disease 6-2 (18) 0.20 0.50 0.29 0.20 0.33 0.25 0.21 0.80 0.33

Average 0.33 0.33 0.31 0.31 0.29 0.29 0.45 0.64 0.48
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5.3. EXPLAINABLE OUTPUT

Understanding the model is essential for effective implementation in practice. As practition-

ers start using the model, they need to be capable of critically assessing its classification out-

puts. Hence, tailoring the explainability to the end-user is crucial, as these techniques may

vary depending on the user group [13, 16]. This chapter will initially explore four explainability

options, followed by presenting the results of a questionnaire administered to the end-users

regarding these options. Finally, it will discuss the development of a final design, achieved

through a qualitative focus group session, incorporating insights from both the questionnaire

and the four initial options. The full answers to the questionnaire with its corresponding ques-

tions can be found in Appendix I.

5.3.1. LOCAL EXPLAINABILITY OPTIONS

The four explainability options in this section are all based on the same model outcome. In

these scenarios, the practitioner has conducted an initial assessment of the patient, collecting

relevant information. Once the practitioner enters this data into the system, the model gener-

ates three possible diagnoses. The number of diagnoses presented may vary depending on the

model’s confidence level and the input provided by the practitioner. Following the model’s out-

put, the practitioner can access an "explanation" tab, indicated by the letter ’i’, accompanying

each diagnosis. In each example, this tab is available for both the first and second diagnoses.

Below, each explainability option will be examined in detail.

Option 1 . Probability with Reasons: The first op-

tion for explainability presents two types of data.

Firstly, it displays a percentage at the top, indicat-

ing the likelihood the model assigns to a particular

diagnosis. This percentage differs between the SLC

and the MLC. In the case of the SLC, the percent-

ages sum up to 100%, while for the MLC, each per-

centage represents an independent probability. Sec-

ondly, the model provides information on the fea-

tures contributing to its diagnosis prediction. It lists

the four features with the strongest positive corre-

lation to the predicted diagnosis. Each feature ei-

ther positively or negatively influences the model’s

prediction, and this display highlights the four most

positively influential features that are filled in by the

practitioner.

Figure 5.8: Example of Option 1, Percentage
Chance with Reasoning
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Figure 5.9: Example of Option 2, Existing and
Missing Symptoms

Option 2 . Existing and Missing Diagnoses: The

second option shows the practitioner two opposite

types of explanations. The first values are values that

the practitioner filled in as true and are correlated to

this disease. For instance, if the patient experiences

a sharp sensation, the practitioner documents this

symptom, which aligns with the identified disease.

Conversely, the second option also highlights symp-

toms that are absent or not disclosed by the patient.

These are manifestations typically associated with

the disease but are not documented in the report.

This enables the practitioner to independently as-

sess whether the condition remains a plausible di-

agnosis despite the absence of these symptoms.

Option 3 . Percentage of Positive and Negative In-

fluences: The third option offers insight into the

most impactful factors associated with the disease,

irrespective of the practitioner’s input. This model

presents five values demonstrating the highest pos-

itive or negative influence on the disease. In this

explanatory approach, the emphasis is on the sig-

nificance of features influencing the disease’s likeli-

hood. Positive influences are visually highlighted in

green, while negative influences are depicted in red.

Additionally, the model provides the percentage of

influence each value holds within the model. Such

explanatory mechanisms offer the practitioner valu-

able insights into the behaviour of the model, aiding

in informed decision-making processes.

Figure 5.10: Example of option 3, Percentual
Positive and Negative Influence
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Option 4 . Strength-Based Reasoning: The last ex-

plainability option shows the strength a feature has

on the prediction of the final diagnosis. It exclu-

sively highlights values entered by the practitioner,

ensuring that only documented symptoms are con-

sidered. For instance, if a patient lacks one symp-

tom and it is omitted from the report, it does not fac-

tor into this explanation. Moreover, this model em-

ploys a visual representation of feature importance

using plus and minus symbols. The prominence of

a filled-in value is indicated by the number of plus

or minus symbols assigned to it. This approach re-

places percentages, offering an alternative ranking

mode for individuals who may find numerical rep-

resentations challenging.

Figure 5.11: Example of option 4,
Strength-Based Reasoning

5.3.2. QUESTIONNAIRE RESULTS

To create the best possible post-hoc explainability, a questionnaire was conducted involving

thirteen practitioners. The evaluation of model explainability through a structured question-

naire, inspired by the work of Naiseh et al. [24], provided valuable insights into the perceptions

and preferences of practitioners regarding different model presentations. This section covers

the results of the questionnaire for each three of the topics. Furthermore, it highlights the rank-

ings and extra information the practitioners filled in. This information was also used for the

focus group which will be covered after.

1. Understandability: The initial segment of the questionnaire focused on assessing the intu-

itiveness of the models. Option 1 and Option 2 emerged as the top performers, a trend sup-

ported by participant feedback. Respondents expressed concerns regarding Option 3, citing

an overload of percentage figures, while the interpretation of the +/- indicators in Option 4 re-

mained ambiguous. Conversely, Option 1 and Option 2 were praised for their intuitive design

and ease of comprehension. This preference for simplicity and clarity underscores the impor-

tance of user-friendly interfaces in enhancing model understanding.

Figure 5.12: Filled in Answer per Model for the Question if the Model is Understandable and Intuitive
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2. Information Sufficiency: The second category of questions revolved around the adequacy

and clarity of information provided by the models. Participants noted that while Option 4 of-

fered sufficient information, its presentation style was not well-received. Specifically, there was

a desire to visualize which values exerted positive or negative influences on the model’s deci-

sions. Conversely, feedback indicated that both Option 2 and Option 1 left participants feeling

as though they lacked some essential information necessary to fully understand the rationale

behind the model’s decisions. This sentiment underscores the importance of providing com-

prehensive insights to users, ensuring transparency and confidence in the decision-making

process.

Figure 5.13: Filled in Answer per Model for the Question if the Model Provides Enough and Relevant Information

3. Reliability Evaluation: The final criterion assessed whether practitioners could ascertain the

accuracy of the diagnosis output from the models. Reliability, particularly concerning the pre-

sentation of percentages, emerged as a contentious issue among respondents. While some par-

ticipants expressed that the inclusion of percentages instilled confidence in the model and ad-

vocated for their presence in the final model, others found the percentage representation over-

whelming and preferred a more simplified approach. Moreover, Option 4’s structure elicited

scepticism among participants, as its composition left them uncertain about its meaning, con-

sequently diminishing trust in the model’s reliability. In summary, the evaluation of reliability

highlighted the importance of clear and transparent representations in fostering trust and con-

fidence in the diagnostic models among practitioners.

Figure 5.14: Filled in Answer per Model for the Question if it is Possible to Determine a (In)Correct Diagnosis Output

Table 5.2 outlines the preferences for various models both before and after explanations were

provided. It was evident that Option 2 was the favoured choice by most respondents, both
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initially and post-explanation, indicating its strong appeal. However, there was a consensus

among participants that while Option 2 was preferred, it lacked some crucial information for it

to be deemed perfect. Interestingly, after the explanation, there was a notable shift in prefer-

ences. Option 1 surpassed Option 3 in perceived efficacy, attributed to clearer reasoning pro-

vided at the bottom. This indicates the significance of transparent explanations in influencing

model preference. It was also important to keep this fact in mind when starting the focus group,

trying to solve the reasons why some models were not perceived as intuitive.

The final question on the questionnaire asked for the option of combining different elements

of the explainable models. Responses were divided into two categories: some advocated for

a synthesis of Option 2’s chance information with Option 2’s details, while others suggested

incorporating either Option 3 or Option 4 to provide a comprehensive overview, enhancing the

understanding of the subject matter. It’s worth noting that while respondents favoured the use

of colours, excessive colouration was deemed detrimental to comprehension. Thus, a balance

between visual appeal and readability was recommended.

Table 5.2: Rankings of the Different Models Before and After Explanation

Model
Before Explanation After Explanation

Avg. Rank Std. Dev. Avg. Rank Std. Dev.
Existing and Missing Symptoms 1.69 ±0.82 1.77 ±0.89

% Chance with reasons 2.77 ±1.05 2.38 ±1.00
Positive and Negative Influence 2.54 ±1.15 2.69 ±1.14

Strength based Reasoning 3.00 ±0.96 3.15 ±0.95

5.3.3. FINAL LOCAL EXPLANATION FORMAT

The final model was developed through col-

laboration with a focus group comprising

four individuals, including the director of

healthcare at Company X, the coordinator

of integral care, and a member of the data-

drive care team. Integrating insights gath-

ered from a questionnaire, a final explain-

ability model aimed at clarity and trustwor-

thiness was crafted. This model amalga-

mates key elements from four distinct ex-

plainability options. Its primary objective is

for practitioners to critically evaluate model

outputs, enabling them to validate potential

diagnoses. Additionally, it serves to guide

practitioners away from tunnel vision, en-

couraging consideration of alternative dis-

eases they did not consider.

Figure 5.15: Example of the Final Version of
Explainability
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The final version delineates four quadrants, as illustrated in Figure 5.15. The left-side quadrants

present information derived from values inputted into the patient’s anamnesis report. The up-

per left quadrant highlights values with the highest positive correlation to the given diagno-

sis, affirming symptom correspondence. Conversely, the lower left quadrant identifies filled-in

variables that lack correlation with the diagnosis, prompting reflection on their inclusion in

the examination process. To further orient practitioners, the lower right quadrant showcases

variables that align with the diagnosis, akin to those in the upper left. For instance, inputting

an inflammatory symptom like redness prompts the model to suggest corresponding inflam-

matory symptoms specific to the diagnosis, rather than random variables. These groupings

echo those discussed in Section 5.1.1. Finally, the upper right quadrant validates the correct-

ness of variables in the upper left. The number of variables in the upper and lower halves may

vary. For example, if no variables contradict the diagnosis, the count of positive variables may

expand beyond the illustrated three in Figure 5.15.

It is important to note that this model does not include any percentages for the features or the fi-

nal prediction score. This decision stems from its polarizing reception, with some practitioners

favouring it while others disapprove. Moreover, omitting percentages aims to mitigate tunnel

vision among practitioners. By encouraging consideration of less prevalent diseases alongside

common ones, this approach fosters improved patient care through more nuanced diagnostic

deliberation.

5.3.4. LIME EXPLAINABILITY

The final explainability of the model incorporates both positive and negative influences on the

predictions. A prime example of such output is provided by LIME. For the CICST model, LIME

was used during the modelling phase to illustrate its outputs and assist in refining the model.

As demonstrated in Figure 5.16, LIME can help identify why a particular prediction was made,

highlighting relevant factors. These insights can be integrated into the final explainability ver-

sion discussed in Section 5.15.

However, while LIME is beneficial during model development, it is not ideal for the final output

provided to practitioners. LIME tends to include many unfilled values, which might be useful

for understanding what the model considers important but can be confusing for practitioners.

These values are often not filled in by practitioners and typically default to "no", leading to

unnecessary complexity in the explanations.
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Figure 5.16: LIME Output of a True Positive value for Disease 1-2

Not only do LIME outputs aid in recognizing correct diagnoses, but they are also instrumen-

tal in identifying incorrect ones. Figure 5.17 illustrates a diagnosis that met the threshold for

model output. The expected probability of 13% exceeds the threshold of 10%, as detailed in

Appendix H. However, this diagnosis is incorrect. Notably, the patient does not experience any

pain during sporting or warming-up activities. In a real-world scenario, this discrepancy could

prompt a practitioner to ask follow-up questions, steering the diagnosis in the right direction.

Figure 5.17: LIME Output of a False Positive Value for Disease 1-4

Finally, LIME proves valuable in understanding why certain diagnoses are not selected. These

insights during modelling are crucial for comprehending how the model reacts to data vastly

different from the actual disease, shedding light on its decision-making process.

5.3.5. INTEGRATION OF ML BASED CDSS IN CURRENT ANAMNESIS PROCESS

The integration of the ML model into the current process primarily involves the improvement

of filling in the anamnesis report. With the implementation of the ML model, this process will

undergo slight modifications. Figure 5.18 illustrates how the final model could be integrated

into the workflow.

In practice, once the practitioner completes the anamnesis report, the data will be submitted

to the ML model. The model will then return a set of potential diagnoses, which is formatted

using the explainability discussed in Section 5.3.3. Upon reviewing the model’s output, the

practitioner can determine which diagnoses warrant further examination. This may include

the diagnoses suggested by the model, a subset of these diagnoses, or additional diagnoses that
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the model may have overlooked. Following this decision, the subsequent steps in the diagnostic

process will proceed as they currently do.

This sequence allows for effective monitoring of the model’s performance in a real-world set-

ting. By saving the output from step 3.1 alongside the outputs from steps 4 and 10, it will be

possible to evaluate how often the practitioner adopts the model’s suggested diagnoses. Fur-

thermore, this comparison can highlight the model’s accuracy in predicting correct diagnoses.

A prototype has been developed based on the CICST model, which mimics steps 2 and 3. In

this prototype, features can be entered into a digital document, which then provides a list of

potential diagnoses along with explanations. An visual example of this prototype can be found

in Appendix J. This prototype serves as an initial draft, offering practitioners a preview of the

model’s functionality and the type of support they can expect. By integrating the ML model in

this manner, the diagnostic process can become more efficient and potentially more accurate,

benefiting both practitioners and patients.

Figure 5.18: Sequence Diagram of the New Process When Implemented in Practice
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CONCLUSION

This research focused on developing a XAI based CDSS utilizing EHR data. The primary ob-

jective of this CDSS is to assist practitioners in diagnosing patients during anamnesis appoint-

ments. The system aims to help practitioners by classifying potential diagnoses and providing

explanations for these classifications based on the information recorded in the anamnesis re-

port. In this chapter, we will address the main research questions using the insights gained

throughout this study.

How can EHR data be used to classify patient diagnoses?

The data collected during CDSS reports during the anamnesis were initially presented in an

unorganized format. It was therefore necessary to first model the data into a star schema for-

mat, with dimensions for the relevant information. After successfully modelling the data, it was

possible to filter the features that were not correlated to the disease or were rarely filled in. This

filtering resulted in a reduction of 1153 features to 299. The structured EHR data enables the

application of predetermined answers, which is beneficial for feature engineering. By combin-

ing the data, the feature space was further reduced from 299 to 51 features. Additionally, the

model identified and addressed missing data for both nominal and ordinal values. For the NRS

feature, the missing values were replaced with the average value of the corresponding feature,

resulting in the cleaning of approximately 13% of the data. For ordinal data, the missing values

were set to the median, which was applied to five features on average, accounting for 16% of the

missing data per feature. The organized structure of these reports will facilitate the application

of ML and data science techniques.

How can diseases be automatically diagnosed during an anamnesis to support the

decision-making of a practitioner?

Three distinct models were trained on the anamnesis data. The MLC models were trained us-

ing a GBM provided by the H2O platform, while the MLC model was trained using a RF. The
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models were evaluated using Sensitivity, Precision, and F1-score metrics. Regrettably, the SLC

models did not achieve high scores due to some diagnoses receiving zeros in all three metrics

for multiple diagnoses. The two SLC models both had scores close to 0.3 for all three metrics re-

spectively. However, the MLC model was deemed the best choice due to its flexible thresholds,

current good performance, and anticipated superior performance in the future. The current

performance of the MLC model stands at 0.64 for precision, 0.45 for sensitivity, and 0.48 for

F1-score. In this particular use case, precision is of particular importance. Additionally, intro-

ducing the new treatment report is expected to increase the percentage of reports containing

at least one diagnosis from the current 10% to an even higher percentage in the future. Lastly,

the flexible thresholds of the MLC model provide the practitioner with the ability to adjust the

frequency of diseases that occur too often or not often enough.

How can XAI methods be used to support practitioners in their decision-making dur-

ing the anamnesis?

The analysis of global feature importance was conducted to identify the features with the biggest

reductions in variance for the distinct ML models. The study found that the location variables

were crucial for all models. Partial dependency analysis was utilized to determine the most

important features for each diagnosis, and the results showed that the models produced sim-

ilar findings. This underscores the significance of location in predicting diagnoses. Moreover,

the local explainability output was assessed by creating four models and analyzing the prefer-

ences of practitioners. The findings were used to create a final model that offers insights into

the rationale behind the final diagnosis. The final explainability model poses critical questions

to practitioners and highlights incorrect symptoms and their alternatives. Furthermore, it in-

dicates what inputted variables are related to the classified diseases. This explainability pro-

motes practitioners’ ability to critically analyze the ML model’s output and make autonomous

decisions on which diagnoses to further examine. The CICST Model implementation of LIME

provides the underlying values for the final explainability model. LIME is a useful tool for exam-

ining model outputs during the modelling phase and understanding why certain results were

generated. The final model serves as a good indication of what the final model could look like,

which is visualized in Appendix J.

How to design and integrate a XAI based CDSS to identify the most influential vari-

ables and support practitioners in diagnosing patients?

Overall, this study provides a detailed application of the Crisp-DM framework in developing

a ML model for the anamnesis process, covering all phases from business understanding to

evaluation. The current iteration has progressed to the stage of actual deployment, resulting

in the creation of a prototype and an analysis of potential future developments. Although the

present performance of the models is not yet sufficient for full implementation, a solid foun-

dation has been laid. Each part of the process, from data gathering, data cleaning, and feature

engineering, to modeling, has been systematically addressed, leading to the development of a

prototype that demonstrates the system’s current capabilities. The ML model shows promising
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results but requires further refinement to be deployment-ready. Additional data collection is es-

sential for making significant improvements, particularly in the feature engineering and mod-

elling phases. This ongoing process will enhance the model’s performance, ultimately making

it more robust and effective for clinical use.

6.1. PRACTICAL AND SCIENTIFIC CONTRIBUTIONS

From a practical standpoint, this research has provided valuable insight to Company X on the

feasibility of utilizing structured EHR data. The entire process, ranging from data retrieval,

cleaning, and feature engineering for a machine learning model, has been demonstrated. More-

over, the modelled data applies to other types of CDSS reports that can be generated, resulting

in a more comprehensive analysis for all possible report types at Company X, which can be

found in Section 4.5. Lastly, the research showcases a possible XAI output that can be used for

the final version of the ML model based on this anamnesis data, displayed in Section 5.3.3.

From a scientific perspective, this research examines the use of structured EHR data in the

healthcare industry. Although structured data in healthcare is relatively new, there is a growing

interest in using it to make reliable analyses and conduct further data science projects. This

research highlights how structured EHR data can be utilized for a ML model, as can be seen

in Chapter 4, and the challenges that may arise when creating or using such data. In terms of

generalization, the MLC model performed better than the two SLC models while looking at the

cross-validated performances from Table 5.1. However, the performance of the classification

model appeared weaker for less common classes, suggesting room for improvement in han-

dling imbalanced data. Following, the research showcases how global feature importance and

dependency values could be handled for variables and their relation to diseases, showcased in

Section 5.1.1.

Finally, the main contribution of this research focuses on explainability. First, a thorough liter-

ature review is conducted in Chapter 2, exploring the current activities of XAI in a healthcare

setting. This review showcases other researchers’ investigations into various XAI techniques

in healthcare, highlights the challenges of implementing XAI, presents different XAI options,

and examines the impact of XAI in healthcare. Building on the insights from the literature re-

view, this research implements a custom XAI output. Currently, there is limited information in

the literature on final designs validated by healthcare professionals. This research addresses

this gap by introducing four different explainability options, showcased in Section 5.3. It em-

phasizes a user-centric implementation approach, involving practitioners in a questionnaire to

review these options and utilizing a specialized focus group to develop the final explainability

model, detailed in Section 5.3.3. This study underscores the importance of involving end-users

in creating XAI models, particularly in the healthcare sector.
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6.2. LIMITATIONS AND FUTURE RESEARCH RECOMMENDATIONS

Despite the valuable insights presented in the previous section, this research has several limi-

tations that must be considered when evaluating the outputs and steps of this study critically.

Furthermore, there is scope for further research that can build upon this study to make addi-

tional contributions to the literature and provide practical implications.

6.2.1. LIMITATIONS

The following are the limitations of this study that need to be taken into account when review-

ing the results. These are areas where improvements can be made to enhance the insights in

this study.

1. Limitation to Subset of Diseases: This study is focused only on a subset of diseases, leav-

ing nine other disease categories unexplored. Additionally, many of the diagnoses within

the included categories did not meet the threshold of 15 samples. Therefore, the set of 20

diseases could be expanded to include all 177 diagnoses.

2. Amount of Data: Currently, there is insufficient data to train a complete ML model for

practical application. It is challenging to quantify the amount of data required for accu-

rate predictions. However, looking at the results of the current model, it can not success-

fully predict diseases yet for a practical implementation.

3. Data Quality: The anamnesis reports used in this research are still in their early stages

and are being improved and restructured to enhance their quality and usability. Addi-

tionally, the practitioners involved in the study were new to these reports, which could

have impacted the data’s quality. It is possible that the models were trained on data that

was still in development, leading to inaccuracies and errors in the model’s classification.

4. Final Explainability Restrictions: The final model had to be text-based to be compatible

with the current system, which limited the model’s ability to include graphical explana-

tions. These explanations are commonly used by LIME and SHAP. This restriction on

explainability could have limited the model’s ability to fully utilize its explainable capa-

bilities. However, this depends on the preferences of the end-users.

6.2.2. FUTURE RESEARCH RECOMMENDATIONS

Lastly, in light of the current research’s restrictions and findings, additional research could be

conducted to expand upon this study. This section highlights three potential areas for further

exploration.

1. Diagnostic Classification Categories: Presently, the research only encompasses twenty

of the potential one hundred seventy diagnoses. Establishing a reliable machine learning

(ML) model for all one hundred seventy diagnoses presents a significant challenge. As

a result, it is essential to explore strategies for possibly grouping these diagnoses prior

to utilizing an ML model to make final determinations. The following are potential ap-
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proaches to be investigated for creating these categories:

• Cost Sensitive Thresholding: During the research of Liu et al. [48], Cost sensitive

thresholding was used. However, for this study, this aspect was not implemented,

and only normal thresholds were implemented. Introducing cost sensitivity could

be beneficial for diagnoses that exhibit strong similarities. Currently, each disease

has its own threshold and one-vs-rest classifier. It would be advantageous if the

model only returned the pertinent diagnosis based on the cost matrix, rather than

presenting two highly similar diseases.

• Clustering: Instead of constructing the cost matrix, clustering or consolidating di-

agnoses could be explored as an alternative approach. Grouping diagnoses based

on similarities and then developing classifiers for these groups is an effective means

of accurate disease classification. However, implementing explainability in cluster-

ing models may prove to be more challenging.

• Rule-Based Disease Separation: Prior to allowing the ML model to make determi-

nations, it may be feasible to employ three or four general questions to separate

most of the diagnoses. Implementing rule-based separation methods beforehand

could significantly reduce the number of predictions required by the model.

2. Enhanced Features: The report and feature engineering could be refined based on the

outcomes of the global and local feature analysis. This would provide insights into the

relative importance of different data points and suggest potential combinations or elim-

inations. Additionally, it could offer insights into which types of features might be intro-

duced to better distinguish between different diagnoses.

3. Autonomous Patient Diagnosis: Once the model demonstrates improved performance,

research could also be conducted on developing an autonomous system. In this sce-

nario, patients could complete a questionnaire independently. Given the high pressure

on healthcare resources and the growing demand for them, patients could potentially

engage in certain exercises or preventive measures that would not worsen their condi-

tion during the wait for an appointment with a practitioner, based on the model’s output.

This would enable patients to prevent the progression of their condition while awaiting a

consultation.

4. Researching a bigger dataset: Currenlty, the dataset is not large enough for ML predic-

tions. However, these reports are currently still being used, and are probably expanded

organization-wide. Therefore, after a certain timeframe, the dataset will have enough

data for a follow-up research of the practical implementation of the ML models. Typi-

cally 5-10 samples per feature would be expected, meaning at least 255 samples per class

would be necessary. However, even the most common class does not have this amount

of data yet.

5. Ontology and Linked Data: Currently, the data is structured in a star schema to retrieve
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additional information behind the questions in the reports. However, exploring the cre-

ation of an ontology or even a Linked Data set would be very beneficial. This approach

could enhance explainability by highlighting the semantics behind the data, making it

more understandable for outsiders. Additionally, it could facilitate the integration of data

from different reports. For instance, Linked Data could connect symptoms to possible

diseases and link these diseases to corresponding treatment and examination steps. This

would enable the identification of treatment and examination steps practitioners use for

various symptoms and diseases, providing valuable insights.
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Table A.1: Table containing the full queries used for the literature search

Website Final Query Used
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TITLE-ABS-KEY ( ai OR "Aritificial Intelligence" OR "Machine Learning" OR ml ) AND
TITLE-ABS-KEY ( implementation OR design OR deployment ) AND TITLE-ABS-KEY (
cdss OR "Clinical Decision Support System" OR "Clinical Decision Aid" OR dss ) AND
TITLE-ABS-KEY (healthcare OR "Medical Care" ) AND NOT TITLE-ABS-KEY ( mobile
OR remote OR monitor ) AND PUBYEAR ≥ 2019 AND PUBYEAR ≤ 2023 AND ( LIMIT-
TO ( DOCTYPE , "ar" ) ) AND ( LIMIT-TO ( SUBJAREA , "COMP" ) ) AND ( LIMIT-TO (
LANGUAGE , "English" ) ) AND ( LIMIT-TO ( OA , "all" ) )

Scopus
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TITLE-ABS-KEY ( xai OR xml OR Explainable AI OR Transparent AI OR "Explainable Arti-
ficial Intelligence" OR Interpretable AI OR Explainable Machine Learning ) AND TITLE-
ABS-KEY ( cdss OR "Clinical Decision Support System" OR "Clinical Decision Aid" OR
dss OR Key Variables ) AND TITLE-ABS-KEY (healthcare OR "Medical Care" ) AND NOT
TITLE-ABS-KEY ( mobile OR remote OR monitor ) AND PUBYEAR ≥ 2019 AND PUB-
YEAR ≤ 2023 AND ( LIMIT-TO ( DOCTYPE , "ar" ) ) AND ( LIMIT-TO ( SUBJAREA ,
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Pubmed
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AND (English[Language]) AND ("2018/01/01"[Date - Publication] : "3000"[Date - Pub-
lication]) AND ("Review"[Publication Type] OR "Systematic Review"[Publication Type])
AND ("free full text"[sb])

Pubmed
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("explainable artificial intelligence" OR XAI OR "Explainable AI" OR "Transparent AI"
OR "Interpretable AI") AND (cdss OR dss OR "clinical decision support systems"
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APPENDIX B: LITERATURE FINDINGS

B.1. FINDINGS LITERATURE REGARDING ML IMPLEMENTATIONS IN HEALTH CARE

Table B.1: Summary of Technical Machine Learning Studies Applied in Health Care

Author Data Type Machine Learning Tech-

nique(s)

Metric of Evaluation Main Findings

(Barrera Ferro

et al. 2020)

Appointment and Pa-

tient Var. Data

LASSO Regression (LASSO),

Layer-wise NN

effective visits, target lead time,

%appointments, AUROC

Relation of Variables on No

Show Behavior

(Murari et al.

2022)

Open Text, and struc-

tured text / variables

datasets

Elman NN, K Nearest Neigh-

bour (KNN)

Sensitivity, Specificity, Accu-

racy, F-score, Kappa

Better results using BDA-OENN

model than common ML mod-

els

(Hasan et al.

2021)

structured Data: pa-

tient and treatment ad-

herence

Decision Tree (DT),

RF,XGBoost, LR,NN, SVM

Precision, Recall, F1 score, C-

statistics, Receiver Operating

Characteristic (ROC) curve

Model could help predict pa-

tients who risk discontinuing

(Jagadamba

et al. 2023)

Structured and Un-

structured EHR

RF, KNN, Naïve-Bayes (NB) Accuracy, Precision, Perfor-

mance (speed)

(Aiosa et al.

2023)

Text datasets from Kag-

gle or surveys

MLP, XGBoost, LR, NN, RF, DT,

Linear Support Vector (LSV)

Accuracy, Precision, Recall, F1,

ROC AUC

Models to diagnose obesity

types where MLP and XGB were

best

79



F
IN

D
IN

G
S

L
IT

E
R

A
T

U
R

E
R

E
G

A
R

D
IN

G
M

L
IM

P
L

E
M

E
N

T
A

T
IO

N
S

IN
H

E
A

LT
H

C
A

R
E

80

(Tapia-

Galisteo

et al. 2020)

Unstructured data of

healthcare reports

SVM, RF, LR, MLP AUC, Recall, Specificity, F1,

Matthews Correlation Coeffi-

cient

82% accuracy of prediction

treatment success

(Pumplun

et al. 2023)

Image data Deep Neural Network with

DenseNet Architecture

Sensitivity, Specificity, ROC

Curve

Physicians perceiving the ML

CDSS as more explainable and

usable

(Chen et al.

2021)

Discrete Data about

Glucose, BMI levels

Fuzzy DT Accuracy per dataset Understandable model with

90% accuracy

(Wang et al.

2023)

Structured and un-

structured data

MSI-PTDM, Single Stream Tu-

berculosis Diagnosis Model

(SS-PTDM), XGBoost, Text-

Convolutional Neural Networks

(CNN), RF, SVM, Bi-directional

Long Short-Term Memory (Bi-

LSTM),Gated Recurrent Unit

(GRU), Long Short-Term Mem-

ory (LSTM)

sensitivity, specificity, accuracy

and Area Under the Curve

(AUC)

Model with 91% accuracy

(Khodadadi

et al. 2023)

Structured EHR records DRF AUROC AUROC Scores of 0.8

(Pavon et al.

2023)

EHR of activi-

ties/instruments

KNN + XGB Accuracy, AUROC, AUPRC Accuracy of 71%

(Raita et al.

2019)

Structured EHR data LR, RF, GB Decision Tree, Deep

NN

AUC, ROC AUC values of 0.86
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(Chiu et al.

2023)

Structured EHR data,

Unstr. diagnosis data

AdaBoosting (AB), Bagging,

Gradient Boosting (GB), Light

GB model, LR, MLP, Support

Vector Classifier (SVC), XGBoost

Precision, Recall, F1-Score, Ac-

curacy, AUROC



F
IN

D
IN

G
S

L
IT

E
R

A
T

U
R

E
R

E
G

A
R

D
IN

G
X

A
I

82

B.2. FINDINGS LITERATURE REGARDING XAI
Table B.2: Overview of XAI related literature including ways of gaining trust, the used XAI techniques and findings of the final explanation model or display

Author Trust Via XAI XAI Techniques XAI models, Displays

(Naiseh et al.

2023)

- Cognition-based trust and affect-

based trust (HCT Gregor) - Explanations

task-centred, familiar, simple, reliable,

casually relevant - Ensure model is up to

date

- Local, Example-based, Counter-

factual, Global Explanations - Example-

based and counter-factual had higher

perceived understandability

Interpretable Local Surrogates, Occlu-

sion Analysis, Integrated Gradients and

Layerwise Relevance Propagation

(Barda et al.

2020)

- Verify model information - Assess

model credibility - Include domain

knowledge in model

- Global or instance level explanation -

Type of techniques, Input, Output, Cer-

tainty, Why, Why not, What if, When -

Reduce information processing effort

- Unit of explanation - organization of

the units - Dimensionality, and size of

expl. - Manner data is represented

(Bienefeld

et al. 2023)

- Should rely on domain knowledge -

Ability to explore knowledge, exploit ex-

isting knowledge

- What-if and Example-based are usefull - shapely values were not helpful, clini-

cians are not mathematicians

(Aiosa et al.

2023)

XAI helps in evaluating reliable output,

improving trust, revealing new insights,

finding possible weaknesses, tuning

Global Explanation / Input SHAP feature importance - Display

needs ways to evaluate if output is reli-

able

(Jia et al.

2022)

Explainability and safety: performance,

explainability, robustness, human UX,

Data management, other safety controls

- Approximation - Example - Feature

Relevance - Visual Explanation

-LIME, SHAP, Deeplift, Layer-wise Rele-

vance Propagation (LRP) - Counterfac-

tual can give clinicians the option to

think about output

(Giuste et al.

2023)

XAI can improve model performance,

instil trust, and provide the value

needed to affect user decision-making

Perturbation, Activation, Gradient,

Mixed, Attention

Consistency and interpretation are cru-

cial for a good XAI output
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(Du et al.

2022)

Edge between self-reliance and over-

reliance on the CDSS

- Explanation by feature importance -

Explanation by example

Clinician predict a GDM risk, the model

displays similar patient and important

features, Clinician prefered explanation

by feature

(Di Martino

and Delmas-

tro 2023)

Unfamiliarity with ML features, lack

of contextual information, need for

cohort-level evidence

- Local and Global methods - Tech-

niques, quality and frameworks differ

because different data, models and ex-

planations - Model-agnostic explana-

tions

- Lime, SHAP - Clinical validation ba-

sic requirement - Similar predictions for

sim. Data - Explanation based on user

goals and expected reasoning
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B.3. FINDINGS LITERATURE REGARDING IMPLEMENTATION AND IMPACT OF CDSS
Table B.3: Summary implementation process and impact of cdss

Author Implementation Process Improve adoption rate Impact on Triple Aim

(Bartels et al.

2022)

- Quality measures by manufacturer -

User responsibility in the process - Au-

tomated testing and manageable code

- Helpdesk/Central Point for ML mal-

functions - Instructions and guidance

documentation - Training of end-users

Only a small fraction of ML has been im-

plemented in CDS

(Choudhury

2022)

- Fear of being replaced, myths, reliabil-

ity, resilience, inexplicability of AI, unfa-

miliarity with the technology

The Perception of AI and the expectancy

of AI all had negative effects of the

amount of risks practitioners saw in us-

ing AI models in practice - Reduce Risk

concerns

- Practitioners mostly saw that AI could

improve consistency - practitioners are

very likely to prioritize the risk factors

(Blanes-Selva

et al. 2023)

- Low adopt. Social factors and usability

- Multidisciplinary team, especially for

model and UX design - Think out loud

method

-Loss of autonomy / Feeling of being re-

placed - Low computer literacy/lack of

trust in AI - Don’t see Need for system -

Missallignment design and the need

- Increased patient safety by reduc-

ing advice against protocol - Diagnosis

support/ workflow improvement - Im-

proved service quality due better proto-

col

(Calisto et al.

2022)

- HAII - Check mental and physical de-

mand

Ability to reject and accept gave positive

impact and a higher feeling of control

- Diagnostic accuracy - Time perfor-

mance - Ability

(Jia et al.

2022)

- Development: Data management,

ML Algorithm, Model Learning, Model

Comparison

- Local Feature importance and coun-

terfactual explanations to explain -

Safety Argument

Trade-off between performance and ex-

plainability is crucial in healthcare pro-

cess

(Lambert

et al. 2023)

- Training and inclusion of medical pro-

fessionals is very important

Fear of loss of autonomy and difficul-

ties integrating AI into clinical work-

flows were unanimously reported to be

hindering factors

- Clinician satisfaction improvements

- More information - Better practical

training
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(Mahadevaiah

et al. 2020)

Selection, Acceptance testing, commis-

sioning, implementation, quality assur-

ance

- quality assurance (safe and effective

CDSS) - rigorous selection process - ac-

ceptance testing - Ensure CDSS is main-

tained and problems solved quickly

Improve patient safety

(Nuutinen

and Leskelä

2023)

Determine based on information and

the people involved what the CDSS and

UI should look like

Perception and Expactancy of AI should

be handled for the end user (clinicians)

AI can improve consistency

(Magrabi

et al. 2019)

Determine if it should look at all types

of patients or specific types (discrimina-

tory features)

- Look into data quality issues or model

performance. - Define monitoring goals

and identify key stakeholders

Helps evaluate the medical process

(Iqbal et al.

2023)

transparent communication with pa-

tients and comprehensive evaluation of

AI’s implementation is crucial

- Transparency in the model - privacy

protection - Look at stakeholder inter-

ests

- Increase patient safety - Improve ser-

vice quality - Reduce workflow against

protocol

(Rundo et al.

2020)

- Physician-centered approach because

some have difficulties using technol-

ogy - think aloud method, focus groups,

walkthrough with end-users (near-live)

-Task, User, Representation, Function

(TURF) Framework - User-centred de-

sign

- Abundance of information could over-

whelm capabilities clinicians during

daily decision ma. - Reducing repetitive

tasks - Improve various aspects of work

(Antoniadi

et al. 2022)

Use XAI to validate the model during

production, testing and development

- Safety, Fairness, Usability - Keep clini-

cians part of the process

patient safety, costs, prescription prac-

tices, preventive and optimal treatment,

recommended standards



APPENDIX C: EXAMPLE STARSCHEMA WITH DATA

Figure C.1: Star schema after modelling with example data
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APPENDIX D: PROCESS DATA EXTRACTION

Figure D.1: The process for retrieving the data structures
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APPENDIX E: FEATURE ENGINEERING

Figure E.1: Selection of features that were used and altered to be usable for ML tasks
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APPENDIX F: DESCRIPTIVE STATISTICS OF

THE DATA AFTER CLEANING

Feature Count Mean Std Min Max

At Night 1040 0.028 0.165 0 1

Diagnosis-Location-5 1040 0.338 0.473 0 1

Exact-Location-1 1040 0.012 0.107 0 1

Existence Period 1040 1.858 1.068 0 3

Symptom-5 1040 0.162 0.368 0 1

Symptom-8 1040 0.007 0.082 0 1

Daily Activities 1040 1.818 0.618 1 4

Diagnosis-Location-2 1040 0.138 0.345 0 1

Symptom-3 1040 0.076 0.265 0 1

Exact-Location-5 1040 0.163 0.370 0 1

End of Day 1040 0.067 0.251 0 1

Diagnosis-Location-6 1040 0.073 0.260 0 1

In Rest 1040 0.125 0.331 0 1

intensive Activities 1040 2.066 0.621 1 4

Exact-Location-11 1040 0.024 0.153 0 1

Exact-Location-9 1040 0.043 0.204 0 1

Exact-Location-10 1040 0.001 0.031 0 1

Gear Specific 1040 0.612 0.488 0 1

Symptom-9 1040 0.021 0.144 0 1

Exact-Location-4 1040 0.110 0.313 0 1

Exact-Location-8 1040 0.006 0.076 0 1

During Walking 1040 1.796 0.605 1 4

Exact-Location-3 1040 0.258 0.438 0 1

Exact-Location-7 1040 0.009 0.093 0 1

Diagnosis-Location-4 1040 0.139 0.347 0 1

After ADL Activities 1040 0.328 0.470 0 1

After Sporting 1040 0.100 0.300 0 1

After Work/School 1040 0.111 0.314 0 1

Diagnosis-Location-1 1040 0.012 0.107 0 1

NRS 1040 6.165 1.625 1 10

Continued on next page
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Table F.1 – continued from previous page

Feature Count Mean Std Min Max

Inflammatory-

Symptom-4

1040 0.072 0.259 0 1

Exact-Location-6 1040 0.595 0.491 0 1

Exact-Location-2 1040 0.104 0.305 0 1

Inflammatory-

Symptom-1

1040 0.131 0.337 0 1

Symptom-1 1040 0.481 0.500 0 1

After Rest 1040 0.285 0.451 0 1

Symptom-10 1040 0.032 0.175 0 1

During ADL Activities 1040 0.661 0.474 0 1

During Warming-Up 1040 0.030 0.170 0 1

During Work/School 1040 0.150 0.357 0 1

Symptom-4 1040 0.093 0.291 0 1

trauma 1040 0.040 0.197 0 1

Symptom-2 1040 0.037 0.188 0 1

Course of Complaints 1040 2.386 0.846 1 3

Inflammatory-

Symptom-5

1040 0.021 0.144 0 1

Diagnosis-Location-3 1040 0.370 0.483 0 1

Inflammatory-

Symptom-2

1040 0.065 0.247 0 1

Symptom6 1040 0.482 0.500 0 1

Side 1040 1.387 0.487 1 2

Inflammatory-

Symptom-3

1040 0.134 0.340 0 1

Inflammatory-

Symptom-Total

1040 0.423 0.838 0 5

Table F.1: This table shows various features with their count, mean, standard deviation, minimum, and maximum
values.



APPENDIX G: CONFUSION MATRICES

Figure G.1: Confusion Matrix for Model Baseline
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Figure G.2: Confusion Matrix for Model Oversampling
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Figure G.3: Confusion Matrix for CICST Model



APPENDIX H: THRESHOLD VALUES FOR

THE LABELS IN THE CICST MODEL

disease threshold

Disease 2-1 (190) 0.26

Disease 1-1 (215) 0.37

Disease 1-2 (59) 0.52

Disease 1-6 (28) 0.19

Disease 1-4 (35) 0.1

Disease 2-2 (95) 0.24

Disease 5-1 (27) 0.24

Disease 3-3 (19) 0.18

Disease 4-1 (34) 0.36

Disease 3-2 (29) 0.23

Disease 1-5 (30) 0.1

Disease 2-3 (94) 0.23

Disease 3-1 (44) 0.14

Disease 2-6 (15) 0.05

Disease 2-4 (15) 0.05

Disease 1-3 (36) 0.34

Disease 6-3 (18) 0.37

Disease 6-1 (24) 0.05

Disease 2-5 (15) 0.05

Disease 6-2 (18) 0.28

Table H.1: Weight factors for the CICST Model
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APPENDIX I: EXPLAINABILITY QUESTIONNAIRE ANSWERS

Questions asked during questionnaire:
• 0. Rank the models from best to worst
• 1-4a. Do you understand the information that the model is showing you?
• 1-4b. Does the model give enough information to determine which further examination you should do?
• 1-4c. Does the explanation of the model provide the information to determine if it is a right or wrong diagnosis prediction?
• 1-4d. Do you have any tips or remarks for this model?
• 5. Rank the models again from best to worst
• 6. Do you have any final remarks? Or would you prefer combinations of these models?

Figure I.1: Filled in answers of the questionnaire
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APPENDIX J: PREVIEW IMPLEMENTATION

Figure J.1: Screenshots of what the final implementation could look like
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