Pitfalls in Parallel Programming Language Design

AREN MERZOIAN, University of Twente, The Netherlands

Multithreading is a very important concept for optimizing certain algorithms,
the ability to split up certain workloads into isolated chunks and run an
algorithm on these chunks across multiple threads can affect the performance
of these algorithms by several factors.[13]

In this paper, a programming language called Twice is introduced. Twice
is a minimal compiled language that implements multithreading through
future[2] (or promise) values. Twice is built on top of the LLVM project[9]
to support compilation to many targets and was created to be a learning
tool for future language designers. Twice also implements other non-trivial
features like top-level statements, control flow through if statements and
while loops, a simple type system and access to foreign functions.

This paper will explore the overall development process of the language
compiler, discuss issues that came up during development and provide gen-
eral pointers on what (not) to do when designing a programming language.

Additional Key Words and Phrases: programming language, compilers, LLVM,
multithreading

1 INTRODUCTION

Concurrency and parallelism are two interconnected terms(8]. Par-
allelism describes the ability of a program to perform independent
operations at the same time, whereas concurrency is a more general
term for the ability to manage blocks of code that may be executed
independently. Parallelism implies concurrency, yet the reverse is
not necessarily true.

Including concurrency features in a programming language is
not a trivial task[1]. This paper explores the creation process of a
programming language with parallelism, called Twice. Twice is a
minimal strongly-typed compiled language with a simple concur-
rency model.

This paper aims to answer the following research question through
the creation of Twice:

RQ: What are common pitfalls in the implementation of a pro-
gramming language supporting parallelism?

To aid in answering this research question, it can be split up into
three sub-questions.

RQ1: What language features should be implemented for Twice’s
concurrency model?

RQ2: What problems can occur at the compiler level for a lan-
guage with this concurrency model?

RQ3: How does the compilation target affect the availability of
this concurrency model?

First, the concurrency models of various other programming
languages will be discussed in order to define a fitting concurrency
model for Twice, and thus, answer RQ1. Then, the language features
available in Twice will be discussed with short examples for each of
these features.

TScIT 41, July 5, 2024, Enschede, The Netherlands

© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Following this, implementation details of some non-trivial lan-
guage features are covered to answer RQ2. Finally, there will be a
short section about platform support to answer RQ3. In the appen-
dices, larger programs are shown in Twice.

2 CONCURRENCY IN PROGRAMMING LANGUAGES

There is no single correct way to implement concurrency or paral-
lelism, programming languages vary in their supported concurrency
features and the implementation details[4]. To decide how concur-
rency will be implemented in Twice, it is important to consider the
concurrency features available in other programming languages.

2.1 JavaScript and TypeScript

JavaScript and TypeScript allow concurrency through futures[2]
(called Promises in the language). Futures can be understood as an
implied contract when calling a function. The function will, upon
finishing execution, return a value of a certain type. The caller can
wait until the function has finished executing whenever this value
is needed but can continue executing its own code in the meantime.
The JavaScript/TypeScript runtime keeps track of a queue of tasks,
and whenever a task finishes execution or needs to wait for another
task to finish first, the runtime will start execution of another task
instead[3]. JavaScript and TypeScript clearly support concurrent
programming, however, they do not allow for parallelism (as with
most other interpreted languages). There is always only one task
executing, and that task runs for as long as possible.

2.2 Python

An interpreted language that seems, at first glance, to have imple-
mented parallelism is Python (only the standard CPython implemen-
tation will be discussed). Python has the multiprocessing package
which allows for process-based parallelism[6]. A new Python inter-
preter process is launched, running the specified function in parallel.
Function arguments are serialized to a stream of bytes using the
pickle package[7] and passed to the new process to be deserialized
back into Python objects and used. Return values work similarly, the
new process serializes the return value and passes it back to the main
process which can deserialize it. It is also possible to have shared
memory between these processes through pickle serialization. This
achieves true parallelism, however, it also has a very large cost: the
startup of an entirely new operating system process, along with the
serialization of parameters, return values, and shared memory. This
means that using multiprocessing for trivial tasks can easily end up
being slower than doing the task normally.

2.3 Java and C#

Instead of using multiple processes, parallelism can also be achieved
through multithreading. Languages like Java and C# compile to a
platform-independent format that can be run by their runtimes (the
JVM and .NET runtime respectively). Parallelism in these languages
can be achieved by spawning new threads. Threads are more closely

TScIT 41, July 5, 2024, Enschede, The Netherlands

coupled to each other and have a smaller (but still significant) startup
cost when compared to processes[12]. This also means passing data
across threads is much simpler compared to processes.

24 Go

In situations where the programmer is unsure whether the task that
can be separated warrants creating a new thread, a feature from
the Go programming language is very useful[10]. Go’s concurrency
model revolves around the concept of a "goroutine". The program-
mer can separate out their independent tasks into goroutines, and
the Go scheduler decides whether to spawn new threads for these
tasks, execute them consecutively, or a mix of both. Furthermore,
Go offers a language feature called "channels" which can be used to
transfer data back and forth between these goroutines.

25 C

In C, the programmer has a lot of explicit control over how concur-
rency can be managed. Programs targeting UNIX-like platforms can
make use of the pthread library[11]. This library makes it possible
to execute a function in a new thread executing in parallel and wait
for the thread to finish when the result is needed.

OpenMP is another popular option for parallelizing on UNIX-like
platforms[5]. OpenMP specifies various compiler directives that
allow the programmer to easily parallelize certain code structures.
For loops, for example, could be parallelized by simply placing an
OpenMP pragma (like #pragma omp parallel for) before the loop in
certain cases.

Programmers targeting Windows platforms can make use of func-
tions like CreateThread from the standard library to achieve func-
tionality similar to pthread. OpenMP support on Windows is also
available, however, more limited.

3 THE TWICE LANGUAGE

For Twice, the decision was made to implement a concurrency model
that resembles Promises in JavaScript because of the ease of use of
this feature. In Twice, a function can be marked as "threaded", which
implies the function will run in the background in a new thread upon
being called. The function returns a Promise type which contains
a subtype (or void). When execution finishes, the function should
return a value of that subtype.

Unlike JavaScript, these are real threads and offer parallelism,
however, they also come with the startup cost of a thread which is
more significant than the event loop mechanism in JavaScript. The
programmer needs to be aware of this and avoid using threaded
functions for small tasks, as the cost of starting a thread may out-
weigh the benefit of parallelism.

Twice is designed to have minimal syntax while still supporting
features that allow the implementation of a variety of programs.
Features of Twice include, but are not limited to: functions (and
recursion), while loops, if statements, variables (and shadowing),
and mathematical operations. It does not include features like arrays,
iterators, and classes/objects.

This means that Twice should not be used as a programming
language for production applications. It is a learning tool made for
language designers who want to target LLVM for their language

Aren Merzoian

and want to include concurrency in their language. It can be seen
as a starting point or a reference for how language features could
be implemented.

3.1 Types

Twice is a strongly typed language and supports a few basic types,
promises that may contain another type, and function types that
describe the types of all function parameters and the type of the
function return value.

The following is a list of all supported types in Twice, the name
of the type in the language is italicized.

e Twice supports 32-bit signed integers allowing users to spec-
ify integers between -2147483648 and 2147483647 and use
them for calculations. The type is called int.

e Twice supports 64-bit floating point numbers (called a double).
Mixing doubles and integers in calculations is not allowed.

o Twice supports strings, a string is represented internally as
character arrays.

o Twice supports booleans, along with boolean operations like
AND (&&) or OR (||). The type is called bool.

e Twice supports promise values, they have a dual purpose
as they represent a handle to another thread, and contain
information about what type the function running in that
thread will return. It is possible to wait for the thread to finish
and obtain the return value using the await statement.

o The type of a function can also be specified. This has the
use case of specifying parameters and return types when
importing an external function through LLVM (like printf).
It’s possible to import any function that can be described
entirely using types supported by Twice. Functions that do
not return a value can be described using void as the return
type.

The decision to use 32 bits for integers and 64 bits for doubles
came from a desire to keep the initial prototype of the language
simple. Initially, Twice used 32-bit integers and floats, however, to
support calling variadic functions doubles were chosen instead. This
is because of C promoting floats to doubles in these cases, using
doubles ensures types line up more often.

3.2 Statements

Statements are the core of a Twice program, they represent an action
that affects the state of the program, like storing a value in a variable
or taking action based on the current value in a variable. There are
many types of statements.

3.2.1 Variable declarations and assignments. Twice allows users to
define variables, store values in them, and reassign them later.

let x = -5; -- The value of x is -5
Listing 1. It is possible to declare a variable and store a value inside of this
variable using the let keyword

In the above example, a new variable x is created which contains
the value -5. The value of x can be changed through reassignment.

let x = -5; -- The value of x is -5

» X = 3; -- The value of x is now 3

Listing 2. It is possible to reassign the value of x

Pitfalls in Parallel Programming Language Design

let x = -3;
let x = -5; -- Not allowed, x was already defined in this
scope.

Listing 3. It is not possible to redeclare a value in the same scope

L (

let x = 3;
-- The value of x is 3 here
let x = "Hi!";
-- The value of x is "Hi!" here
}
-- The value of x is 3 here again
Listing 4. It is possible to redeclare x in a new scope
let x = 5; -- The type of x is int
» x = "Hi!"; -- Not allowed, assignment of a string to an

int variable.

Listing 5. Assigning a value with an invalid type

3.2.2 Blocks. Blocks are groups of statements that will execute
consecutively. Blocks create a new scope for variable information,
and upon leaving the scope these variables are not accessible any-
more. Variables from higher scopes are accessible, but may also be
shadowed with new declarations

let x = 3;
-- The value of x is 3 here
{
x = 5;
-- The value of x is 5 here
¥
-- The value of x is still 5 here
Listing 6. Modifying a variable in an outer scope
let x = 3;
-- The value of x is 3 here
{
let x = 5;
-- The value of x is 5 here
¥

-- The value of x is back to 3 here

Listing 7. Shadowing

3.2.3 Functions. Functions are reusable pieces of code that can take
input parameters and may produce a return value based on these
parameters. A function always has a signature, specifying the name
of the function, the type of all parameters, and the type of the return
value.

Twice allows the programmer to include external functions from
a different LLVM module (like the C standard library), this can be
done using the extern statement and requires knowing the function’s
signature. The signature for printf specifies vararg, which means
that it can take additional optional arguments. Furthermore, printf
specifies the return value void, which means it does not return any
value. It has one required parameter, which must be a string. The
following is an example of an extern statement for printf.

extern vararg fn printf: void(string);

Listing 8. Including printf from the C standard library

Functions can be called, which executes the code in the function
with the given parameters.

o

TSclT 41, July 5, 2024, Enschede, The Netherlands

extern vararg fn printf: void(string);
printf("Hello, World!");

Listing 9. Hello, World! in Twice

Functions can also be defined by the programmer, through a
function definition.
extern vararg fn printf: void(string);

fn addOneAndPrint(x: int): void {
printf ("your number: %d", x + 1);

addOneAndPrint (4); -- your number: 5

Listing 10. Function definition example

Functions may return values using the return statement, the caller
can then use this value.

extern vararg fn printf: void(string);

fn justAddOne(x: int): int {
return x + 1;

printf("return value: %d", justAddOne(4));

Listing 11. Function return values

Functions can also be marked as threaded, which will make them
run in the background in a new thread. Threaded functions must
return a value wrapped in a promise, however, this may be void.
Threaded functions may not affect variables outside of the function,
all input must be passed through parameters.

The following example is an incorrect use of threaded functions,
a variable is declared outside the threaded function and the threaded
function attempts to read from and modify the variable. Twice
does not allow this behavior, as it can often lead to unpredictable
programs. In this case, it is impossible to predict whether the value
of x will be 4 or 5.

extern vararg fn printf: void(string);

let x = 4;
threaded fn waitAndAdd(): promise<void> {

x = x + 1; -- Not allowed, x is declared outside
3

waitAndAdd () ;

printf ("x: %d", x);
Listing 12. Incorrect example, bypassing promise system
The programmer needs to choose whether they want to wait for

the thread to finish and get a return value, or use the value before it
was passed to the function.
extern vararg fn printf: void(string);

let x = 4;

threaded fn waitAndAdd(x: int): promise<void> {
Xx = x + 1; -- Overwrites a copy of x

}

await waitAndAdd(x);
printf("x: %d", x); -- This will always output x: 4

Listing 13. Correct example, x is 4

TScIT 41, July 5, 2024, Enschede, The Netherlands

extern vararg fn printf:
let x = 4;

void(string);

threaded fn waitAndAdd(x:
return x + 1;

int): promise<int> {

printf("x: %d", await waitAndAdd(x));
output x: 5

-- This will always

Listing 14. Correct example, x is 5

The above example uses the await statement to wait until the
thread finishes execution and obtain the return value from the func-
tion. This guarantees that the function will always execute entirely,
and is the only way to obtain the return value from a threaded
function.

3.24 If statements. Twice supports if-then-else statements, this al-
lows the programmer to only execute a certain block of code in
some cases. Optionally, an else block can be included. If the condi-
tion holds, the then block gets executed, otherwise, the else block
gets executed if it is specified. These statements can also be chained
together.

extern vararg fn printf:
let myNumber = 15;

void(string);

if (myNumber % 3 == @ && myNumber % 5 == 0) {
printf("FizzBuzz");

} else if (myNumber % 3 == @) {
printf("Fizz");
} else if (myNumber % 5 == @) {

printf ("Buzz");
} else {

printf ("%d", myNumber);

Listing 15. A simple one number FizzBuzz example

When returning a value with an if statement, the else path is
required and must return a value of the same type. This limitation
is further explored in section 6.1.

fn test(): int {
if (false) {
return 4;
} else {
-- Not allowed, this path must return an integer
}
}

Listing 16. Non-matching return types in if statement

3.2.5 While statements. The final statement in Twice is the while
statement. This allows the programmer to repeatedly execute a
block of code while a certain condition holds. A typical use case of
a while loop is to implement a counter variable.

extern vararg fn printf: void(string);

let x = 1;

while (x <= 100) {
printf ("%d\n",

X + 1;

X);

X =

Listing 17. While loop to implement a counter

Aren Merzoian

3.3 Expressions

Expressions represent a value in Twice: whether that be a literal,
the result of a calculation, the return value of a (threaded) function,
or the value stored inside of a variable.

3.3.1 Literals. Most types allow you to create a value through a
literal. Literals are simple expressions that represent a constant
value.

let intLiteral = 3;

let otherInt = -213;

let floaty = 1.2;

let otherFloaty = 15.0;

let boolValue = true; -- or false
let myName = "Aren";

Listing 18. Various examples of literals

3.3.2 Mathmetical operations. Twice supports several mathemati-
cal operations for integers and doubles. Integers and doubles may
not be mixed in mathematical operations.

let add = 1 + 2; -- Addition, 3

let addWrong = 1 + 2.0; -- Not allowed, int and double
let sub = 1 - 2; -- Subtraction, -1

let mul = 1 x 2; -- Multiplication, 2

let div = 4 / 2; -- Integer division, 2

let divFloat = 1.0 / 2.0; -- Float division, 0.5

let mod = 15 % 4; -- Modulo/remainder, only for ints, 3

Listing 19. Supported mathematical operations in Twice

Twice also allows for the comparison of two numeric values. A
comparison always results in a boolean value. Once again, these
numbers must be of the same type.

let 1t = 2 < 1; -- Less than, @ (false)

let 1lte = 2 <= 2; -- Less than or equal, 1 (true)

let gt = 2 > 1; -- Greater than, 1 (true)

let gte = 2 >= 3; -- Greater than or equal, @ (false)
let eq = 3 == 3; -- Equality, 1 (true)

let neq = 3 != 3; -- Inequality, @ (false)

Listing 20. Comparisons in Twice

Equality and inequality can also be used on booleans, as well as
several boolean operators.

let or = false || false; -- Boolean OR, false.
let or2 = true || false; true

let or3 = true || true; -- true

let and = false && false; -- Boolean AND, false.
let and2 = true && false; -- false

let and3 = true && true; -- true

let neg = !true; -- false

let neg2 = !false; -- true

Listing 21. Boolean operators

3.3.3 Variables. A variable may be referenced as an expression, the
value represents the content of the variable

extern vararg fn printf: void(string);
let x = "Hello!";

printf(x); -- Hello!

> fn myFunc(y:

Pitfalls in Parallel Programming Language Design

3.3.4 Function calls. Function calls can also be expressions when
the function has a return value. Threaded functions always return a
promise, and await may be used to wait for the function to complete
and obtain the return value (where relevant).

extern vararg fn printf:
int): int

void(string);

y + 1

5 let x = myFunc(4);

®

o printf("x: %d",

)5 == %g 5

threaded fn myTFunc(y:
y +1

int): promise<int>

printf ("threaded: %d", await myTFunc(5));

While this initial version of Twice definitely has its limitations,
this set of features still shows a powerful language. In section 6,
features that did not make it into the initial version of Twice are
discussed. These features could be implemented in the future.

4 IMPLEMENTATION DETAILS

During the creation of Twice some language features proved to be
difficult to implement, this paper covers these difficulties and the
solution that was found for each of these features.

4.1 Type checking
The Twice compilation process consists of several steps:

(1) Tokenizing the input and parsing tokens into a parse tree

(2) Transforming the parse tree into an Abstract Syntax Tree
(AST)

(3) Performing type analysis on the AST

(4) Generating LLVM bitcode based on the AST and type infor-
mation

(5) Compiling LLVM bitcode into native binary.

For step 3 specifically, a type checker has to be implemented. The
type checker walks down the AST and defines the type of a node
based on its children.

The type of an expression is simply the type of the value it rep-
resents. Adding two integers together should result in an integer,
comparing whether an integer is larger than another should result
in a boolean value.

Additionally, expressions make sure the types of their child ele-
ments make sense. It’s not possible to use boolean operators like
&& on strings, for example. These invalid expressions result in type
errors and stop the program from compiling.

The type of a statement in Twice represents the ability of this
statement to return a value. This is useful for determining whether
the return value of a function matches the function’s signature, for
example.

4.1.1 LLVM types. The type checker must store the type of an
expression or statement using some form of data structure. Twice
uses a dictionary from AST nodes to internal LLVM types.

The benefit to this is that every AST node has a corresponding
LLVM type and this reduces the complexity of the IR generation
step later.

TSclT 41, July 5, 2024, Enschede, The Netherlands

The downside to this is that LLVM types can be quite limited.
In newer LLVM versions, pointers do not store information about
the type of value they point to. This meant that certain types, like
arrays, would prove to be very difficult to implement without major
changes to the type checker.

Because of the restriction to LLVM types, the promise type in
Twice was implemented in a unique way, it is stored as an LLVM
struct containing a single value (a handle to the thread). As structs
are otherwise not used in Twice as expressions, this does not conflict
with any other Twice features. This struct is only visible to the type
checker, and will not appear in generated code. This is a workaround,
and ideally, the type checker would be able to work with promise
types. A reimplementation of the type checker that would allow
this to work more nicely is explored in section 6.1

4.1.2 Lexical scoping. Variables in Twice are scoped and can be
shadowed. This means that they must be stored in a data structure
that can contain two values with the same name in some cases, but
not in other cases.

Twice uses a data structure internally called a Variable Stack for
this, it is defined with two fields, a dictionary mapping from strings
to LLVM types, and, optionally, a reference to a parent Variable
Stack. When a new scope is entered, a new Variable Stack is created
with the current Variable Stack set as its parent. When a scope is
left, the parent Variable Stack becomes the current Variable Stack.

When Twice tries to look up information about a variable, it
checks the current Variable Stack to see if the variable can be found.
If not, it recursively checks the parents to find the first instance of
the variable.

When a variable is declared, it must not already exist in the
current Variable Stack, as this would imply two declarations in the
same scope. It may, however, appear in one of the parent Variable
Stacks.

During IR generation, a data structure similar to Variable Stacks
is used. However, instead of containing LLVM type information,
they contain a reference to the location of the variable.

4.2 Functions and top-level statements

Functions in LLVM consist of interconnected basic blocks that con-
tain instructions, these basic blocks must end with special terminator
instructions that indicate the end of the block. A block must have
exactly one terminator instruction, and may not have regular in-
structions after the terminator instruction. During code generation,
the Twice compiler keeps track of the current basic block being
worked on. Instructions can not appear outside of a basic block (and
thus, a function).

According to this model, statements in Twice would always be-
long to a function. However, it is clearly possible to have statements
in Twice that are not part of a function (called top-level statements)
as shown in prior listings. Twice works around this problem by cre-
ating a main function that contains the top-level statements during
code generation.

When a new function is defined, a new basic block is created for
this function too. During code generation for this function, this new
basic block is used as the current basic block. Once the function
definition ends, the previous basic block is restored for further code

© o @ w o e

TScIT 41, July 5, 2024, Enschede, The Netherlands

generation. This means Twice can interrupt code generation for the
main function to start generating code for a different function, and
go back to the main function afterwards.

4.3 Control flow

Twice allows the programmer to modify the flow of the program
through if statements and while loops. These features are imple-
mented by connecting basic blocks together in LLVM. It is important
to keep in mind all basic blocks must have exactly one terminator,
control flow has to be implemented with this restriction.

4.3.1 If statements. In an if statement, at least 2 basic blocks are
used. When the if statement also includes an else portion, an ad-
ditional third basic block is required. The basic blocks have the
following tasks:

e Basic block 1 (then block) contains code that executes when
the condition is true. At the end of the code, a branch termi-
nator is placed that will always continue execution at basic
block 2. If the code inside of basic block 1 already generates
a terminator (because of an early return, for example), this
branch terminator is not included.

e Basic block 2 (after block) contains code that is executed after
the if statement. The if statement does not generate any code
inside of this block, it is simply marked as the next primary
block for code generation after the if statement.

e Basic block 3 (else block) is only used when the if statement
includes an else portion. It is identical to basic block 1 and
behaves similarly, but runs when the condition is false, not
true.

In the original basic block, code is inserted to jump to basic block
1 when the condition holds. When the condition does not hold, code
is inserted to jump to basic block 3 if an else portion is present, or
basic block 2 otherwise.

The following is an example of an empty if statement that always
jumps to basic block 1 in LLVM IR.

define void @ifTest() {

entry:
br i1 true, label %thenBlock, label %elseBlock
thenBlock: ; preds = %entry
br label %afterBlock
elseBlock: ; preds = %entry
br label %afterBlock
afterBlock: ; preds = %elseBlock, %thenBlock
ret void
¥

Listing 22. Code generation for empty if statement in IR

4.3.2 While loops. While loops always use three basic blocks in
Twice.

e Basic block 1 (check block) is used for verifying whether the
statement holds or not. It generates code for an expression
that results in a boolean value and jumps to basic block 2 if
this boolean is true or basic block 3 if this boolean is false.

%

Aren Merzoian

e Basic block 2 (loop block) is used to contain the statements
that are inside of the while loop. A branch terminator is placed
at the end of these statements to jump back to basic block 1
unless a terminator is already present.

o Basic block 3 (after block) behaves similarly to basic block
2 in an if statement. The while statement does not generate
any code inside of basic block 3, rather, it is used as the next
primary block for code generation.

The following is an example of a while loop with a variable
counting from 0 to 99. IR used for generating the variable is not
included in this example.
define void @whileTest () {
entry:

. ; %x is allocated and initialized with @
br label %check

check: ; preds = %entry, %loop
%0 = load i32, ptr %x, align 4
%1 = icmp slt i32 %0, 100
br i1 %1, label %loop, label %after

loop: ; preds = %check
%2 = load i32, ptr %x, align 4
%3 = add i32 %2, 1
store i32 %3, ptr %x, align 4
br label %check

after: ; preds = %check
ret void

}

Listing 23. Code generation for simple counter in IR

4.4 Threaded functions

To support threaded functions, Twice makes use of POSIX threads[11].
Twice programs automatically include both the pthread_create and
pthread_join functions. These library functions are used internally
by the Twice compiler to generate code for threaded functions.

Functions that can be used with pthread need to have a specific
signature, they may only accept a single pointer as a parameter
and can return a pointer. Twice allows threaded functions to accept
multiple arguments, and thus, needs to work around this issue.

When creating a threaded function, instead of passing the param-
eters to the function through normal function parameters, the Twice
compiler passes function arguments through a single struct. The
types contained in the struct depend on the function parameters.
A pointer to this struct can then be used as an alternative to the
regular function parameters.

Instead of directly returning a value, the start of a threaded func-
tion allocates memory for the return value. When a return statement
is encountered, instead of generating a ret terminator and ending
the function, it first writes the return value to this memory loca-
tion. It then always uses ret to return a pointer to this memory
location. This works around the issue of always having to return a
pointer. When await is used, the value this pointer points to is read
to retrieve the actual return value.

The call to pthread_create returns a handle to the thread. Twice
represents this handle internally using the promise type. Await
statements or expressions can then pass this handle to pthread_join,

Pitfalls in Parallel Programming Language Design

this will block the current thread until the execution of the other
thread is finished. Following this, pthread_join returns the pointer to
the return value. Twice can then load the value stored in the pointer
and use it.

5 SUPPORT FOR MULTIPLE PLATFORMS

The Twice compiler is written in C# using .NET 8.0, with the only
dependencies being ANTLR for parser generation and LLVMSharp
for the LLVM bindings. This means that the Twice compiler itself
can run on many platforms without issue.

Twice programs using threaded functions additionally depend
on libpthread (or an equivalent implementation) during runtime.
macOS and Linux platforms widely support pthread, on Windows
libwinpthread is available through Cygwin and must be placed on
the PATH.

Additionally, depending on what external functions are included
in the Twice program, more modules might have to be linked in
during compilation. Depending on the functions, this may break
support for certain platforms. The programmer additionally has to
make sure the module is linked in during the final step of compilation
with clang.

6 FUTURE WORK

For the initial version of Twice, there were certain planned changes
and missing features that would have fit well into the language but
could not be implemented for various reasons.

6.1

The type checker in Twice can only store limited type information,
and, as such, can behave strangely in certain situations where a clear
type can not be discerned. An example of this is the if statement,
the type checker will allow the following code.

New type checker

let x = 4;
2 fn test(): int {
if (x == 3)
return 1;
}

Listing 24. Non-exhaustive return from function

This code is allowed through the type checker, as the type checker
does not have a way of specifying a "possible" return and won’t
fail. Either a statement returns a value, or it doesn’t return. In this
case, the type checker assumes the if statement will always return
an integer. This is not a major problem as code generation will
fail because one of the blocks in the function does not terminate,
however, ideally, the type checker should be able to find this problem
and give an error.

Furthermore, some features could not be implemented like sup-
port for arrays and iterating them using for loops. Code generation
for arrays could not be implemented, as there is not enough type
information to access an element from an array. Arrays are stored as
pointers to the first value and contain information about the length.
However, LLVM does not store the type a pointer resolves to, and
as such, during code generation the type of a value inside an array
is unknown. Implementation of a new type checker would allow
arrays (and other data structures) to be added to Twice.

TSclT 41, July 5, 2024, Enschede, The Netherlands

6.2 Additional concurrency features

Due to setbacks during development, implementation for the con-
currency features in Twice started late in the development cycle.
There were some additional concurrency features planned that did
not make it in the initial version of Twice, like channels.

Channels would have allowed the programmer to pass values of a
specific type between threads. A channel of a specific type could be
created before calling a threaded function and then passed to that
function as a parameter. Channels are intended for communicating
with threads that should run for a long time, where parameters and
return values do not fit the requirements.

threaded fn add3(channel:
let ¢ = 0;
let sum = 0;
while (c < 3) {

channel<int>): promise<int> {

sum = sum + (<- channel);
c=c+ 1
3
return sum;
Listing 25. An example of how channels would be used
6.3 Globals

Twice does not have the concept of a global variable, all variables
are only accessible to functions they’re defined in. Due to the way
top-level statements are implemented in Twice, all variables defined
in the top-level appear to be global variables, however, they are
actually variables local to the main function. This means that they
are not accessible in other functions.

let x = "Hello, World!\n";

fn test(): void {

printf(x); -- x is not defined

5}

)

%

printf(x); -- this is allowed

test();

Listing 26. Code attempting to use a non-existant global

Ideally, variables declared in top-level statements should be han-
dled differently and represent globals that are accessible across the
entire module. Threaded functions should not have access to these
globals to prevent many race conditions.

6.4 Testing

Currently, language features in Twice are mostly untested. With
the addition of new features to Twice, especially if these features
require many changes, it is quite possible that older features stop
behaving correctly. To ensure stability, it is important to ensure all
language features are tested automatically.

Ideally, a framework would be written to allow full compiler
tests. The test specifies Twice source code, its expected output, and
any libraries that need to be linked. The framework should then
compile the source code, link it appropriately, and then execute the
test. Finally, the output is compared against the expected output
concluding the test.

TScIT 41, July 5, 2024, Enschede, The Netherlands

Such a framework would allow the addition of new features with
a guarantee that the new feature does not break existing tested
features.

7 DISCUSSION

Overall, Twice in its current state is a programming language with
upsides and downsides. The goal of this research was to explore the
difficulties when developing a programming language that includes
features related to concurrency and parallelism. Through the im-
plementation of threaded functions (which work using promises),
Twice offers a simple concurrency model that lets the user perform
tasks (which do not rely on the global state) in the background.
All information needed by a task is passed through function argu-
ments, and when the function finishes, it returns its value through
a promise.

To clarify on RQ1: this is not an all-encompassing concurrency
model, it is for example very difficult to implement a thread pool
in Twice, as the concurrency model is designed around threads
performing a single task where all input is known beforehand. How-
ever, the decision was made to go for this simpler model as Twice
is designed to be a minimal language, and threaded functions ab-
stract away much of the work for the programmer. Twice initially
only supports threaded functions, however, it could be expanded to
include other features like channels as mentioned in section 6.2.

Furthermore, regarding RQ2, shortcuts and workarounds had to
be taken due to time constraints, however, the threaded function
system was implemented. During code generation for function calls,
it is important the caller knows the type of the return value. It
can be looked up through type checker information and can be
accessed correctly. For threaded functions, this is more difficult, as
threaded functions return a promise. When this promise (internally
a pointer) is stored, information about the underlying type is lost
due to limitations in the type checker. This means that, later, it is
non-trivial to retrieve the underlying type when attempting to await
a promise. This was worked around by storing a struct instead of a
pointer during the type checking phase.

Finally, as for RQ3, supporting multiple platforms turned out
to be simpler than expected for this concurrency model. Twice’s
threaded functions represent a very simple use of threads, they do
not share global state and only take in function arguments. This
means that the implementation of threaded functions could be done
using pthread, a lightweight C library that has been ported to many
platforms. With this being the only required dependency, simple
Twice programs are just as portable.

8 CONCLUSION

Designing a programming language, especially when supporting
concurrency, is a goal that requires a lot of preparation. Having an
understanding of useful data structures to maintain during type
checking and code generation, knowledge about the specifics of
your target, and an understanding of how language features should
be implemented at a low level can reduce much of the load during
development. The most significant pitfall encountered during the
development of Twice was not necessarily related to the implemen-
tation of parallelism, nor was it related to other language features. It

1

Aren Merzoian

was, in fact, a much more general issue. A lack of sufficient prepara-
tion and research (especially with regard to type checking) limited
the initial prototype. Twice had to be entirely rewritten in the mid-
dle of the development cycle due to an oversight with regard to
library compatibility. Better preparation could have prevented this
and would have led to a prototype with a more complete language.

ACKNOWLEDGMENTS

I would like to thank my supervisor, Peter Lammich, for the time
and effort put into supporting the project through his advice and
feedback during the meetings.

Additionally, while they were not directly involved with the
project, I'd like to thank Victor Tran and John Tur from the bits &
Bytes community for their advice and debugging expertise.

REFERENCES

[1] Peter A. Buhr and Glen Ditchfield. 1992. Adding Concurrency to a Programming
Language. University of Waterloo (1992), 207-224.

[2] A. Chatterjee. 1989. FUTURES: a mechanism for concurrency among objects. In
Proceedings of the 1989 ACM/IEEE Conference on Supercomputing (Reno, Nevada,
USA) (Supercomputing *89). Association for Computing Machinery, New York, NY,
USA, 562-567. https://doi.org/10.1145/76263.76326

[3] Node.js contributors. 2024. The Node.js Event Loop. https://nodejs.org/en/learn/
asynchronous-work/event-loop- timers-and-nexttick

[4] Silvia Crafa. 2015. The role of concurrency in an evolutionary view of program-
ming abstractions. Journal of Logical and Algebraic Methods in Programming 84,
6 (2015), 732-741. https://doi.org/10.1016/j.jlamp.2015.07.006 “Special Issue on
Open Problems in Concurrency Theory”.

[5] L. Dagum and R. Menon. 1998. OpenMP: an industry standard API for shared-
memory programming. IEEE Computational Science and Engineering 5, 1 (1998),
46-55. https://doi.org/10.1109/99.660313

[6] Python Software Foundation. 2024. multiprocessing - Process-based parallelism.
https://docs.python.org/3/library/multiprocessing.html

[7] Python Software Foundation. 2024. pickle - Python object serialization. https:
//docs.python.org/3/library/pickle.html

[8] Dan Grossman and Ruth E. Anderson. 2012. Introducing parallelism and con-
currency in the data structures course. In Proceedings of the 43rd ACM Techni-
cal Symposium on Computer Science Education (Raleigh, North Carolina, USA)
(SIGCSE ’12). Association for Computing Machinery, New York, NY, USA, 505-510.
https://doi.org/10.1145/2157136.2157285

[9] C.Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation and
Optimization, 2004. CGO 2004. 75-86. https://doi.org/10.1109/CGO.2004.1281665

[10] Jeff Meyerson. 2014. The Go Programming Language. IEEE Software 31, 5 (2014),

104-104. https://doi.org/10.1109/MS.2014.127

Frank Mueller. 1993. A Library Implementation of POSIX Threads under UNIX.

In USENIX Winter. https://api.semanticscholar.org/CorpusID:702400

Oracle. 2014. Processes and Threads. https://docs.oracle.com/javase/tutorial/

essential/concurrency/procthread.html

[13] M Shanthi and A Anthony Irudhayaraj. 2009. Multithreading-an efficient tech-
nique for enhancing application performance. International Journal of Recent
Trends in Engineering 2, 4 (2009), 165.

[11

[12

A STATEMENT REGARDING USE OF Al

During the preparation of this work the author did NOT use any
form of Al The author takes full responsibility for the content of
the work.

B COMPLETE FIZZBUZZ

FizzBuzz is a simple program that counts from 1 to 100, replacing
all multiples of 3 by "Fizz", all multiples of 5 by "Buzz" and replacing
all multiples of both by "FizzBuzz", on one line.

A simple version for one number was shown in 3.2.4, however, a
full version can be seen below.

extern vararg fn printf: void(string);

https://doi.org/10.1145/76263.76326
https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick
https://nodejs.org/en/learn/asynchronous-work/event-loop-timers-and-nexttick
https://doi.org/10.1016/j.jlamp.2015.07.006
https://doi.org/10.1109/99.660313
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://doi.org/10.1145/2157136.2157285
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/MS.2014.127
https://api.semanticscholar.org/CorpusID:702400
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html

Pitfalls in Parallel Programming Language Design

let x = 1;
while (x <= 100) {
if (x %3 ==0 & x % 5 == 0) {
printf("FizzBuzz\n");
} else if (x % 3 == 0) {
printf("Fizz\n");
} else if (x % 5 == @) {
printf ("Buzz\n");
} else {
printf ("%d\n", x);

X = x + 1;

Listing 27. FizzBuzz

TSclT 41, July 5, 2024, Enschede, The Netherlands

C PARALLELISM SHOWCASE

A simple program that showcases parallelism in Twice can be im-
plemented using a threaded function that counts to 10000 with
printf. Running this function twice will, in most cases, show two
interleaved counts going up.

1 extern vararg fn printf: void(string);
2 threaded fn count(): promise<void> {
3 let x = 0;
4 while (x < 10000) {
5 printf ("%d\n", x);
6 X = x + 1;
}
8 3}
9 let x = count(); let y = count();
10 await x; await y;

Listing 28. Two independent counters to 10000

	Abstract
	1 Introduction
	2 Concurrency in programming languages
	2.1 JavaScript and TypeScript
	2.2 Python
	2.3 Java and C#
	2.4 Go
	2.5 C

	3 The Twice language
	3.1 Types
	3.2 Statements
	3.3 Expressions

	4 Implementation details
	4.1 Type checking
	4.2 Functions and top-level statements
	4.3 Control flow
	4.4 Threaded functions

	5 Support for multiple platforms
	6 Future Work
	6.1 New type checker
	6.2 Additional concurrency features
	6.3 Globals
	6.4 Testing

	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Statement regarding use of AI
	B Complete FizzBuzz
	C Parallelism showcase

