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The most popular languages for online and on-site coding competitions are
C++, Java, and Python. While C++ and Java offer exceptional efficiency in
handling algorithms and data structures, they require more verbose code.
Python, conversely, allows for concise code with high-level features such as
list comprehensions and compound literals but trades off memory efficiency
and speed. In this paper, we introduce a new programming language that
integrates the strengths of these languages, specifically tailored to allow
participants of such competitions to translate their solutions into code easily.
We present a prototype compiler for this language and evaluate its perfor-
mance and effectiveness based on execution time, memory utilization, and
code conciseness using a series of contest problems.
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1 INTRODUCTION

Programming contests and competitions are events where partic-
ipants develop solutions for a list of algorithmic problems set by
the organizers. While the ranking strategies vary from contest to
contest, the most common metrics are:

e The number of problems the participant solved correctly

o The time taken to develop each solution

e The number of attempts the participant needed to arrive at a
correct solution

Each attempt at a solution is verified against a list of tests for
correctness, speed, and memory efficiency. A submission is only
accepted once all these requirements are met. As a result, both
the efficiency and speed of the development process, as well as
the efficiency and speed of the resulting program, are valued by
participants.

Therefore, when choosing a language, participants have two op-
tions. They can either opt for a high-level language with simple,
easy-to-write syntax, such as Python, at the expense of runtime
speed, or they can choose a low-level language, such as C++, which
guarantees top performance at the expense of a more verbose syntax,
resulting in slower development.

In this research project, we propose to define and develop a lan-
guage specifically designed for programming contests. This lan-
guage will offer high-level features and easy-to-write syntax without
sacrificing speed and efficiency.

We define the following two goals for this project:

e Goal 1: Define the syntax of the language, along with addi-
tional features, aimed at simplifying the process of writing
solution programs for coding competitions;
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e Goal 2: Implement a cross-compiler from our defined lan-
guage to a low-level language to analyze and validate the use
of our language in this context.

To achieve these goals, we will start by analyzing how the syn-
tax of existing languages is utilized in coding contests, identifying
areas for improvement, and adapting our syntax to address these
inefficiencies. We will then define additional language features that
would be useful in this context. We will discuss the design used
to develop the prototype compiler and its limitations. Finally, we
will compare existing correct solutions for competitive problems
with solutions developed in our language, analyzing both in terms
of code conciseness and performance compared to the developed
prototype.

As a result of this research, we aim to answer the following
research questions:

e RQ1: How can a programming language be defined to facili-
tate competitive coding and problem-solving effectively and
easily?

e RQ2: How can a compiler for such a language be designed
and implemented in order to maintain efficiency and speed?

Through this research, we aim to provide an exact specification of
the language, including the motivations for the design choices. Ad-
ditionally, we aim to develop a prototype compiler for the language
and provide an analysis of its efficiency, particularly measuring
the performance overhead imposed by using a layer of abstraction
compared to coding directly in the target language.

2 DOMAIN ANALYSIS

Answering the first research question requires analyzing how cur-
rent contest participants utilize features of their preferred program-
ming languages. In Table 1 are presented the language statistics of a
previously most popular online coding contest, Google Code Jam!.
We can see that the participants have a clear preference for C++,
followed by Python and Java. We choose to focus on these three
languages for further analysis.

Language Nr. competitors | Advanced next round
C++ 20062 18322
Python 8550 7599
Java 2908 2522
PyPy (Python) 1155 1094
C 539 401
C# 316 283
JavaScript 284 246
Kotlin 191 173
Go 155 140
Rust 139 131

Table 1. Google Code Jam 2022 Qualification Round

!https://codingcompetitionsonair.withgoogle.com/
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To better understand which language features are most commonly
utilized and identify possible areas of improvement, we analyzed
submissions from recent online coding contests. Our observations
on how participants currently use certain language features will
guide our design of the proposed language. Specifically, we ana-
lyzed submissions made on the online coding contest platforms
Codeforces ? and AtCoder 3.

To process and identify trends, we collected a random sample of
20 recent submissions over recently posted contests and problems
from Codeforces and AtCoder respectively, focusing on solutions
written in C++, Java, and Python. We gathered submissions from
experienced participants (rating above 3000) as well as beginner/in-
termediate participants (rating below 2000). Each submission was
analyzed to extract patterns in code structure, use of language fea-
tures, and common coding practices. This involved both automated
work (using comm 4 to find common lines between submissions)
and manual inspection to ensure the accuracy and relevance of our
findings.

We discuss the identified trends in the following subsections.

2.1 Code Templates

The most common trend among C++ submissions is the use of
preprocessor macros, type definitions, and template functions to
create a code template. These templates help participants make their
code more concise and easier to write. Although templates vary from
person to person, the following are some of the most commonly
utilized shortcuts found in over 50% of the selected submissions:

#define all(x) (x).begin(),(x).end()
#define rep(i, s, e) \

for(int i = (s); 1 < (e); ++i)
#define rrep(i, s, e) \
for(int i = (s); i > (e); --i)

#define each(i, a) for(auto &i : (a))
using 11 = long long;

using pi = pair<int,int>;
using vi = vector<ll>;
template <class T>

using vc = vector<T>;

These macros and type definitions significantly reduce the ver-
bosity of code. For instance, the macro all(x) allows writing
sort(all(xs)) instead of sort(xs.begin(), xs.end()) tosorta
vector xs. Similarly, type definitions like using pi = pair<int,int>;
and using vc = vector<T>; simplify complex data structures,
reducing vector<map<pair<int, int>, bool>> to vc<map<pi,
bool>>.

2.2 Literals and Ranges

In contrast, Python submissions lack explicit code templates and
instead rely on native support for collection literals, ranges, and
slices. Python’s ability to express complex operations succinctly is a
significant advantage. Features such as list comprehensions, dictio-
nary comprehensions, and generator expressions allow participants

Zhttps://codeforces.com/
3https://atcoder.jp/
*https://man7.org/linux/man-pages/man1/comm.1.html
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to write powerful one-liners that would require more verbose code
in other languages.

Original verbose code

nums = input().split()

nums = [int(x) for x in nums]
nums.sort(reverse=True)

for num in nums: print(num)

Using literals, ranges, higher order functions

for num in sorted(map(int, input().split()))[::-11:
print (num)

3 PROPOSED LANGUAGE
3.1 Motivation

In the process of designing the language, we strive to achieve the
following set of goals:

o Concise and simple syntax for common language features
o Similarity to popular languages used for contests
e Simple management and handling of data for algorithms

The language needs to provide users with a simple interface for
working with basic data structures such as lists, sets, and maps/dic-
tionaries, as these are commonly used in coding contest solutions, as
discussed previously. More complex structures, such as binary trees,
graphs, and heaps, are less common and can be implemented using
the existing data structures. Therefore, native language support for
them is not a main priority.

The language is intended to be statically typed, meaning each
variable in the program is assigned a single type at compilation, such
as int, float, bool, char, and types cannot be changed during
the runtime of the program. This decision is motivated by the higher
bug proneness, decreased performance, and increased complexity
associated with dynamic typing [5]. To keep the code concise, the
language should allow programmers to omit type definitions for
most variables, relying instead on a type inference algorithm to
deduce them. This approach should also apply to collection types,
reducing the need for preprocessor macros in the language, as seen
in C++.

The language should provide common control flow constructs,
similar to those in other languages, but also allow for flexibility in
their usage to maintain conciseness and readability.

3.2 General Description

The following section will provide a description of the language
named Slash, designed to meet the set list of goals and answer RQ1.

The most simple statement of the language is variable declaration.
Variables are required to be initialized at declaration.

Variables

<name > <type> = <value>
<name> := <value>
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Functions follow a similar syntax for declaration, except with the
additional syntax for specifying the arguments preceded by a back-
slash. The syntax for calling functions is similar to most imperative
languages, with a set of parenthesis and a comma separated list of
values passed in as arguments.

Functions
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println(a@e, a@l, a@2, a@3) // 1 2 3 1

Control flow constructs such as if, while, and for are used
similarly to other languages but also allow for expressive and flexible
usage to maintain conciseness and readability.

Control Flow

// function definition
<fname> \ <argl> <arg2>
// function call

<fname>(<argl>, <arg2>)

<type> = <result>

Structure types have the same definition as functions, except
instead of returning a certain expression, their result is a scope. The
members of the structure are the variables and functions declared
directly inside the body of the scope, as well as the arguments passed
to the function. Therefore, the function defining a structure type
serves both as a declaration and a constructor for that type.

Structures

// function definition

f \ x := { return (x + 1) }
f(1) == 2

// structure definition

g\ x :={ h\y:=x+y}
g(1).h(2) == 3

// structure definition
Pair \ x y := {3}

Pair(1, 2).y == 2

In the example above, the function f returns the increment of the
argument, while the function g returns a structure containing h as
a member function and Pair returns a structure with two member
variables x and y.

Compound types such as lists, maps and sets can be defined using
literals:

Literals for compound types

numbers list[int] = [1, 2, 3]
fruits set[str] = #["Apple", "Pear", "Plum"]
capitals map[str, str]l = #{
"France" "Paris",
"UK" : "London"
}

Such compound type variables will be accessed by reference and
stored in heap memory of the program, as opposed to the primitive
types which will be passed by value and stored in stack memory,
similarly to how C++ handles compound types such as std::vector,
std::set, std::map.

Working with collections

a := [1, 2, 3]
println(a.size) // 3
a.add (1)

println(a.size) // 4

while (a < 10): a = a + 1
if a % 2 == 0 then println("Even")
else println("0dd")

for i in 1..10: println(i)

Control flow constructs like if and while can be used as expres-
sions. An if expression evaluates to the value in its then branch if
the condition is true, or the value in its else branch if the condition
is false.

A while expression normally evaluates to the value in its else
branch when the loop finishes. However, if a break statement with
a value is used inside the loop, the expression evaluates to that value
instead and the else branch is skipped.

"Expressive’ control flow

// finds the index of x in the list 1s
// otherwise is -1

i =0
index := while i < ls.size: {
if 1s@i == x then break(i)
else { i =1 + 1}
} else -1

For-loops can be used to iterate over collections. In the case of
lists and sets, the identifier value goes over the values stored in the
collection. In the case of a map, the identifier value goes over the
set of keys used to access the value in the map.

Collection iteration

for i in [1, 2, 31: print(i)
// 123

for k in #{"One"
print (k)

1,"Two" 2,"Three" : 33}:

// OneTwoThree

3.3 Further features

In this section we will describe additional features of the language
that would be useful in the context of contest problem solving, but
are not a crucial part of the language implementation.

3.3.1 Test case parsing. Because most competitive coding problems
require the programmer to parse in the input of the test case for the
problem before applying the algorithm, an important feature of the
language should be providing a simple way for the programmer to
define parsing complex inputs. To achieve this the following syntax
was defined for parsing input:
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Parsing input

name, age, height := input \ string int float
n := input \ int
xs := input \ list(n, int)

In this case, input represents the standard input of the program,
while the identifiers after the symbol \ represent the parsers that will
sequentially run on the input to produce the values of the respective
types. This can be later extended to allow the programmer to define
the implementation of their own parsers as a function taking in the
input and producing a value of the resulting type.

3.3.2  Test case generation. A common practice for debugging so-
lutions to such coding problems is to generate arbitrary test cases
and verify properties of the solution. This is done manually by the
programmer, usually by writing a separate program to generate the
test case inputs. Since in our language the parsed types are clearly
stated by the parsers ran on the input, this provides the opportunity
to define a test case generator which would replace the normal
standard input, and instead provide randomly generated values of
the respective types. This feature could be further extended to allow
the addition of constrains on the input which would verify if the
generated test case is valid.

Test case generation

n := input \ int
#constraint ( n <= 100 )
xs := input \ list(n, int)

for x in xs: {
#constraint (0 <= x && x <= 1leb)
}

#assert brute_force(xs) == greedy(xs)

4 COMPILER PROTOTYPE

In this section we discuss how a compiler for the defined language
can be designed, as well as describe the prototype implemented
along with this research. This serves as our answer to RQ2.

In order to validate the efficacy of the language in coding compe-
titions we set the goal to design and develop a minimal compiler
that could be used to solve most types of competition problems. The
compiler will generate C++ code and rely on the GNU GCC compiler
to produce executable files according to the C++20 standard. The
generated C++ source file can then be used as a submission to online
contest judges, which using the predefined test cases verify that the
solution implemented fits the time and memory restrictions. This
also allows for the comparison between solutions written in other
languages using the same environment and test cases.

4.1 Parsing

The parser for the language was implemented using Tree-sitter — a
parser generator and incremental parsing library. It allows to easily
specify the grammar rules of the language in the form of a DSL. It
then generates either LR(1) or GLR parsers and compiles them to a
Shared Object file which can be imported into our compiler to handle
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parsing input files. The parser generates an Abstract Syntax Tree
object, which is then used for type inference and code generation.

A reduced version of the grammar of the language is available in
appendix A.

4.2 Type inference algorithm

I order to provide an easy and fast development experience for the
user, specifying most types in the language is not required. The
compiler will deduce the type of symbols and expressions based on
their utilization in the program. To do so, the compiler implements
a type inference algorithm inspired by the Hindley-Milner type
system (HM) [2] [4] It utilizes Robinson’s Unification Algorithm
[6] to sequentially unify and deduce the types of the symbols in
the program. The HM type system functions by defining a context
or environment I' consisting of a list of typings of the forme : 7
(meaning expression e is of type 7), and a set of inference rules
which combine typings to deduce new typings. For example the
following is the rule for function application:

F'rf:it' -7 Trx:7
Trf(x):t

The HM system distinguishes between monotypes — types that
designate an exact type, and polytypes or type-schemes — types
that contain at least one ’for-all’ quantifier (meaning their type is
flexible to function as various monotypes, but the general structure
of their type is fixed). An expression like [1, 2, 3] would have
the monotype 1ist[int], while the expression [] would have the
polytype Ya.list[a] because it can be used to initialize lists of any
type.

The type inference algorithm [3] starts by initializing the type of
all expressions in the Abstract Syntax Tree (AST) to a free variable.
Then a bottom up pass is performed through the AST during which
certain types are unified based on their relation. For example, upon
reaching the node x + 1 in the AST, the compiler will try to unify
the types of x and 1. In the case that the underlying types cannot be
unified, the result type will be an Error type, which will be relied
to the user through an error message.

For the purposes of our language, user defined constructs in the
language need to have a monotype after the type pass is performed,
meaning their type signature should be fixed. This means their type
should be either a type constant such as: int, bool, char;ora
parametric type, such as: list[int], map[char, int]. The code
generation step of the compiler will fail in case it encounters a user
defined symbol with a polytype (for example a function which allows
any type of input as parameter) 3, Language constructs such as
operators on the other hand are defined as polytypes, meaning that
their type depends on the type of their arguments. For example the
plus operator + has the polytype Va.a — a — «, while the equality
operator == has the polytype Ya.a« — a — bool. This allows the
compiler to reuse operators for different types, while ensuring that
the type pass will result in a correct deduction of monotypes for
expressions. Upon reaching a member access operation in the AST,
for example pair.first, the type inference algorithm requires the

5This restriction is imposed to simplify both the type inference and code generation
steps of the compiler because of limited time and resources available for the project
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left operand’s type to be either parametric constructor (suchas list,
map) or define a structure. This ensures that the type inference able
to deduce the type of the resulting expression from the name of the
member accessed. In case the type of the left operand does not fit the
requirements, the type inference algorithm may not continue and
throws an error suggesting the user to specify the type of the left
operand manually. Special functions of the programming language,
such as: print, input, return, break , may not even have
an exact polytype, since they can allow for a varied number of
arguments, therefore need to be handled separately in the type pass.

An additional step to be taken when unifying the types of two
expressions is an occurrence check. For example in the code snippet
below 1, when the type inference reaches the expression a.add(a)
it tries to unify the types Va.list[a] and «, which leads to the
substitution {&¢ — list[al} being applied recursively which in
turn does not terminate. As a result, when unifying two expressions,
we must also make sure that the free variable being substituted does
not occur in the type it is substituted with. In the case it does, the
unification algorithm fails with an Error type notifying the user
where the substitution failed.

Recursive list

a := [1]
a.add(a)

4.3 Code generation

The code generation step is done using a top-down approach. Each
syntactical scope of the source language is represented through a
code generation node which is responsible for processing the vari-
able definitions, function definitions, and expressions inside. Each
node manages declaration, definition and execution code separately,
only combining them in the last step of the generation process. The
AST generated at this step including the type information could be
utilized as a high-level Intermediate Representation and transformed
into more low level representations such as LLVM IR (similarly to
how Python AST with type information can be translated [1]), but
for the scope of our prototype compiler this step only includes
generation of C++ code.

Most expressions can be easily translated to their C++ counter-
parts recursively. The following describes the generated C++ code
from the respective code in the source language, where T is the
recursive translation function.

Source code Generated C++ code

a op b T(a) op T(b)

if ¢ then a else b T(c) ? T(a) : T(b)

{ s} o TCs); B

f(a, b) T(f) (T(a), T(b))
input(a, b) cin>>T(a)>>T(b);
println(a, b) cout<<T(a)<<T(b)<<endl;
while(c): b while(T(c)) { T(b); }

for i in c: b for(auto& i:T(c)) {T(b)}

In the case the while loop has a non-unit result type, the while
loop needs to be broken down into multiple statements in C++.
Therefore the following code is generated instead:
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’Expressive’ while-loop

// Source code
r : R = while (c): a else b

// C++ code

Rr = ({
R _res = {0};
while(true) {

if (IT(c)) {
_res = T(b);
break;
}
T(a);
3
res;

s

This makes use of the GNU GCC compiler "Statement Expression”
6 which allows including statement blocks inside of expression,
without the need to extract the block into a separate function. A
similar result could be achieved using an inline lambda function,
which would be called immediately, but would lead to more cluttered
code.

4.3.1 Memory model of generated code. The defined language lacks
the required tools to allow the user to manage the memory of the
program, therefore it is the responsibility of the compiler to ensure
that the generated code accesses and manages memory correctly.
This imposes restrictions on what the user can express in code such
that the compiler is able to translate it into valid C++ code. For
example, in the original language description the user is allowed to
nest structure definitions in each other, while the prototype com-
piler will warn the user that this is disallowed in the current version.
Additionally, as a consequence of not having native language con-
structs for memory management, defining structures which possibly
contain members of their own type (such as nodes of a binary tree)
is not as trivial as in other languages. A possible workaround is
having a global list of values of the recursive type, and instead of
using references or pointers between such objects, instances of the
type could reference each other by index in the global list.

. Binary Tree
C++ Binary Tree
BN alue :=
struct BN { \lv._uq ¢
int value; T
r := -1

struct BNx 1;
struct BN* r;

ig all_nodes:list[BN]=[]

5 EVALUATION

In this section we will evaluate the resulting language and compiler,
both in terms of conciseness and efficiency. To evaluate the language
and the prototype compiler example solutions were developed for a
set of online coding problems. For this purpose we used Project Euler

Chttps://gec.gnu.org/onlinedocs/gee-4.1.2/gec/Statement- Exprs.html
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Archive 7 problems and a set of problems from Codeforces contestsS.
As part of testing a total of 10 Project Euler Challenges were solved,
as well as a set of 5 Codeforces problems. In this section we will
provide some examples which showcase the difference between
solutions written in our language and example solutions in python.

Solution for Project Euler Problem 5 Slash

nums := 1..20
ro:=1
gecd \ x y := {
if x == @ then return(y)

if y == @ then return(x)
return (gcd(y%x, x))
}
lem \ x y := (x * y) / gcd(x, y)
for x in nums: r = lcm(r, x)
println(r)

Solution Project Euler Problem 5 Python

nums = range(1, 21)
r=1
def gcd(x, y):
if x == return y
if y == return x

return gcd(y%x, x)
def lcm(x, y): return (x * y // gcd(x, y))
for x in nums: r = lcm(r, x)
print(r)

The previous two code snippets contain solutions in our defined
language and in Python. Both solutions have a similar amount of
tokens and lines of code. For the given problem execution time of
both programs is virtually the same since the size of the list nums is
negligible.

Codeforces Round 952 Problem G Solution Python

M = int(1e9+7)
t = int(input())
for _ in range(t):
1, r, k = map(int, input().split())
print ((pow(9//k+1,r ,M)-pow(9//k+1,1,M)+M)%M)

Codeforces Round 952 Problem G Solution Slash

M := 1000000007
t =0
input (t)
pow \ b n := {
if n == @ then return(1)
if n % 2 == 1 then return((pow(b,n-1)*b)%M)
else {
c := pow(b, n/ 2) %M
return ((c * c)%M)
}
}
for ts in 1..t:{
1 :=

4
r := 0
"https://projecteuler.net/archives
8https://codeforces.com/contests
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k := @
input(l,r,k)
println((pow(9/k+1,r)-pow(9/k+1,1)+M)%M)

The first solution in Python was developed by the problem author
9 as the official example solution. The second solution was developed
as an adaptation of the intended Python solution into our language.
The major difference between the provided solutions is the presence
of a binary exponentiation function in the standard Python library,
meaning we do not have to implement it in the Python version. Both
solutions have a runtime complexity of O(T * log(R)), and constant
memory usage. Problem constraints specify that test cases have the
following restrictions: 1 < t < 10%,0 < I < r < 10°. Because of
the relatively small constraint on ¢, the execution time difference
between the Python solution and our solution is not as considerable,
but we can still conclude that our solution has a better performance.

Performance tests were done using Intel(R) Core(TM) i3-8100 CPU
@ 3.60GHz on Codeforces Polygon Judge System. Each submission was
ran once on the set of tests for each problem, taking a max aggregate
over all test for execution time and memory usage (rounded to nearest
100 KB). Because of the isolated remote environment of each test the
affects of noise on the results are expected to be minimal. Results can
be seen in tables: 2, 3, 4.

Max. Time | Max. Memory | Nr. Lines
Slash (compiled to C++) 109 ms 100 KB 18
Python 3 180 ms <100 KB 5
PyPy 3-64 180 ms 5000 KB 5

Table 2. Codeforces Round 952 Problem G Sumbissions

A similar test was done for Problem A from Round 200 1° and
Problem G1 from Round 849 1. (Solutions for both available in the
appendix B.2)

Max. Time | Max. Memory | Nr. Lines
Slash (compiled to C++) 280 ms <100 KB 13
Python 3 342 ms 8200 KB 7
PyPy 3-64 436 ms 7000 KB 7

Table 3. Codeforces Round 200 Problem A Submissions

Max. Time | Max. Memory | Nr. Lines
Slash (compiled to C++) 360 ms 600 KB 22
C++ (official solution) 100 ms 7800 KB 44
Python 3 203 ms 26800 KB 14
PyPy 3-64 171 ms 26400 KB 14

Table 4. Codeforces Round 849 Problem G1 Submissions

“https://codeforces.com/blog/entry/129620

Ohttps://codeforces.com/contest/344/problem/A
Uhttps://codeforces.com/contest/1791
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In this case we can see a similar performance difference compared
to the previous problem. Problem A from Round 200 relies on parsing
a large amount of lines (n < 1e5 lines of input) and a simple O(N)
traversal of the input to generate the result. For problem G1 on the
other hand the Python solutions takes the upper hand in execution
time. Comparing our solution to the native solution written in C++
the most notable difference is memory management. The native
solutions utilizes the same global array of values for all testcases,
only requiring one allocation per test, while our solution allocates
and populates a new array of values for each new testcase which
can lead to up to 1000 allocations per test.

5.1 User Experience

As a combined evaluation of both the language design and the pro-
totype compiler, a coding contest participant on the online platform
Codeforces utilized our developed language during Round 954 12.
They were introduced to the language shortly prior to the round.
During the round they managed to solve the first proposed problem
(problem A) in the first 13 minutes of the contest, and the second
problem (problem B) in the proceeding 20 minutes.

During the testing phase of the prototype a set of issues regarding
the design and implementation of the prototype became apparent.
Parsing input requires more steps when compared to languages like
Python in which parsing a line of input usually takes one line of
code. Using control flow constructs as expressions can lead to unex-
pected parse trees, which commonly require the addition of extra
parenthesis or braces to ensure the program is parsed correctly. Ad-
ditionally, in the case the compilation step from our source language
to C++ succeeds, while compilation of the generated C++ code fails,
tracing the exact cause of the compilation error is not trivial, as it
requires the user to understand both the generated C++ code, and
have an understanding of how the compiler functions. As such, the
prototype should guarantee the correctness of the generated code,
or produce a useful error for the user.

5.2 Limitations

The prototype compiler and language is limited in the following
ways:

o The compiler does not check for memory safety, meaning that
the user can easily create memory leaks or access memory
out of bounds.

e The compiler does not verify left value expressions, meaning
that the user can easily assign to a non-assignable expression.

o The compiler does not very the correctness of the generated
code, meaning that the user can easily write code that does
not compile.

e The compiler does not provide a way to debug the generated
code, meaning that the user has to rely on the error messages
provided by the GNU GCC compiler.

e The compiler does not provide useful error messages when
parsing, type inference or compilation fails.

o The language does not coerce types, meaning that the user
has to manually cast types when needed.

2https://codeforces.com/contest/1986
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The language does not provide a way to define operators or

hashing functions for custom types (which are required for

set and map collections).

The language does not provide some additional control flow

features, such as continue and switch statements.

o The language does not provide a way to define custom parsers
for input.

o The language does not allow for collection unpacking.

o The language does not have an extensive standard library,

meaning that the user has to implement most of the common

utilities themselves.

These limitations are a result of the limited time and resources
available for the project, and were left to be addressed in future
iterations of the language and compiler as they were not crucial for
the initial evaluation and research of the language.

6 CONCLUSION

In this paper, we discussed the domain of coding contests and ana-
lyzed the strengths and weaknesses of currently popular languages.
We identified possible areas of improvement, and proposed a lan-
guage designed to solve some of the short-comings. We designed its
syntax to be simple and understandable to participants already fa-
miliar with other imperative programming languages. We designed
and developed a prototype compiler for the proposed language,
which showcases the important features of the language and serves
as a proof-of-concept. Additionally, we highlighted potential areas
of improvement, either in terms of further language features or
extensions to the prototype. Finally, we evaluated both the syntax of
the language, as well as the produced code from the compiler, using
actual coding competition problems and similar coding challenges.
The layer of abstraction created by our compiler provides a concise
way to write solutions to coding problems, but this comes at a slight
cost in performance when compared to native C++ solutions, and
a more complicated debugging process for the user. Exploring the
idea of designing a programming language which is specifically
intended to be used in coding competitions proved to result in a
viable language that achieved the goals set forward at the beginning.

7 FURTHER RESEARCH

Because of the limited time spent of evaluating the compiler of
the language we cannot draw concrete conclusions about its per-
formance compared to other language. Further extensive testing
and analysis of performance would provide more exact findings
and could be used as a stronger base for comparison. Currently,
the proposed language is in a very early stage of development and
design. Further iteration on the syntax of the language could be
done by testing it using various types of contest domain problems
(for example dynamic programming, graph theory, geometry) and
extending the lacking parts of the syntax. Such extensions could
include allowing the user to define generic functions and types,
which allow for easier handling of collections.

As mentioned in the description of the compiler, the produced
AST structure could be compiled to other low-level representations.
The addition of a compilation target to LLVM IR would allow for
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further testing of the performance of the language, irrespective of
the chosen back-end.

Exploring additional language extensions, such as native memory
management, garbage collection, or multi threading could open up
further pathways for research and improvement of the language.
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A SIMPLIFIED LANGUAGE GRAMMAR

program :: = (statement)=x

statement :: = (
variable_definition
| function_definition
| expression

> "\n'

variable_definition :: =

identifier ':' type? '=' expression
function_definition :: =

identifier '\' argumentx '=' expression
argument :: =

identifier | '(' identifier ':' type ')'

expression :: =
expression op expression
| uop expression
| '"if' expression 'then' expression
('else' expression)?
| 'while' expression ':'
('else' expression)?
| 'for' identifier 'in' expression
':' expression
| '{' statementx '}'
| identifier '(' expressionx ')'
| identifier
|
|

expression

expression identifier

literal
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literal :: =
Number
| String
| Char
| Boolean
| Float
-- List
| '[' expressionx ']’
-- Set
| '"#[' expression ']’
-- Map
| '#{' (expression
-- Tuple
| '#(' expressionx ')'

expression) *x '}’

B SAMPLE SOLUTIONS
B.1 Project Euler

Problem 1
r := 0
for i in 1..999:
if i % 3 ==0 or i %5 ==20 then r =r + i
println(r)
Problem 2
L := 4000000
solve \ a b := if b > L then 0

else b + solve(a+2*b, 2*xa+3xb)
print(solve(1, 2))

Problem 3
number := 600851475143
is_prime \ x := {
i =2
return( while i *» i < x: {
if x % i == 0 then break(false)
i=1i+1
} else true)
3
r := 0
t =2
while txt < number: {
if (number % t == @) then {

if is_prime(number/t) and r < number/t then {
r = number / t

3

if is_prime(t) and r < t then { r = t }

o
il

*

+

-

3
println(r)



https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/1863597.1863608
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1145/321250.321253
https://codeforces.com/profile/KRKevin

A Programming Language for Coding Competitions

B.2 Codeforces

Codeforces Round 200 Problem A Solution Python

n int(input())
s = [input() for _ in range(n)]
c =1
for i in range(1,n):
if sfi] != s[i-1]:
c += 1
print(c)

Codeforces Round 200 Problem A Solution Slash

n := 0

input(n)

s := []

k := 0

for i in 1..n: {
input (k)
s.add (k)

}

c :=1

for i in 1..n-1: {

if not (s@i == s@(i-1)) then c = c + 1

println(c)

tp := [1]

for j in 1..n: {
a := 0
input(a)
tp.add(a + j)

3

tp.sort()

it := 0

ans := 0

while it < tp.siz
ans = ans + 1
c = c - tpeit
it = it + 1

3

println(ans)
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e and tp@it <= c: {

Codeforces Round 849 Problem G1 Solution Python

t = int(input())

for _ in range(t):
n, ¢ = map(int, input().split())
tp = list(map(int, input().split()))

for i in range(n):
tpli]l += i + 1

tp.sort()

i=20

ans = 0

while i < len(tp) and tp[i] <= c:
ans += 1
c -= tp[i]
i +=1

print(ans)

Codeforces Round 849 Problem G1 Solution Slash

t := 0
input (t)

for i in 1..t: {
n := 0
c := 0
input(n, c¢)
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