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Abstract
Anomaly detection is a field of AI that has significant benefits
to many fields, from medical tests to industrial cases. How-
ever, anomaly detection models could become expensive to
train, due to it being very expensive and difficult to gather
enough data to train supervised models. Unsupervised mod-
els do not have this issue, since they can be trained on an
imbalanced dataset, which as the name of the issue implies,
is mostly the case in anomaly detection. Here we system-
atically compare Auto Encoder (AE) based approaches to
unsupervised anomaly detection. For this purpose, we use
an industrial dataset and find that Variational AEs perform
more consistently and with better results than Convolutional
AEs.
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1 Introduction
In this day and age Artificial Intelligence has greatly im-
proved in many different fields. One field of importance is
anomaly detection, even within this field, it finds extensive
use in a number of contexts, from fraud detection to health
care to military surveillance [3], or even industrial appli-
cations. For instance, detecting cracks in cement blocks or
classifying possibly broken products. Detecting such defects
is important since they are heavily linked with direct and
indirect costs [8]. A way to intercept these defects would be
to hire people to either do recurrent inspections or introduce
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someone into the production pipeline for product inspection.
This however costs a lot of money and is not sustainable, in
the sense that a person needs to constantly be present and
check. However, Computer Vision can be of help here. We
can classify images as damaged or not. There are different
methods to do so, however, I will focus on Anomaly Detec-
tion to do said job.

Anomaly detection can be done in a multitude of ways. There
are supervised and unsupervised learning methods. Super-
vised methods have led to significant improvements over
the years, nevertheless, a problem with supervised meth-
ods is that it is extremely expensive to label data [11] and
gather a balanced dataset. Unsupervised learning methods
do not require the same exhausting work, since they do not
require labelling of the data. For this reason, I will focus on
unsupervised learning methods. There are numerous differ-
ent unsupervised algorithms, however, I will focus on Auto
Encoders (AE) in particular. AEs are a great option if we
work with an imbalanced dataset. The reason is that they
are trained on normal (non-anomalous) data, meaning that
even if we have a dataset full of normal data, we can still
train the model.

Fig 1 depicts the basic structure of an AE. The model will
take the input and encode it multiple times, reducing the di-
mensions of the data to keep the most important features of
the input. After encoding and reducing the input, the model
will then learn to reconstruct the image by decoding the
encoded input. As [4] put it so nicely, we can think of it as
encoding 𝑧 = 𝑓 (𝑥) and decoding 𝑦 = 𝑔(𝑧). We would then
compare the input 𝑥 and output 𝑦 with some loss function
𝐿(𝑥,𝑦). I shall refer to this type of AE as the Convolutional
AE (CAE), where we use Convolutional layers to upsample,
downsample, and learn the structure of our normal data.
CAEs are especially well suited for image reconstruction. Be-
sides that, I shall also use Variational Auto-Encoders (VAE)
for the same purpose of anomaly detection. VAEs assume
that the input is based on some Probability distribution and
work by trying to learn the probability function of the input.
So instead of purely learning how to encode, compress, and
map the input onto the latent space, which is what CAEs do,
VAEs learn to represent the latent space as a feature land-
scape and map input to their attributing features, instead of
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just trying to embed the features on the latent space. This
helps us in generating pictures more clearly since the whole
latent space is utilised and the generated output will always
be at least a merge of features, which might not be the case
with CAEs (for reference look at [9][6]).

Figure 1. Basic Structure Of an Auto-Encoder

The purpose of this paper will be to compare AEs and VAEs
with similar network structures on a dataset of industrial
cases.

Within this research, I will focus on the following dataset [1].
This dataset contains pictures of castings of manufacturing
products.

2 Problem Statement
Different AEs have been developed and tested on different
applications, nevertheless, the industrial context is a stan-
dalone thing and the results in other areasmight not compare.
Thus this research will analyse different AEs with changes
in their architecture and their training data, by adding noise
to the original dataset, accenting some features more and
some less. Different measurements in the accuracy of the
individual models will reveal what combination of AE and
data preparation shall prove most successful in industrial
background.

2.1 Research Questions
The problem statement leads to the following research ques-
tions:

1. How do AEs and VAEs perform in terms of precision-
recall trade-off for different kinds of anomalies intro-
duced in real-world industrial dataset.
The different kinds of anomalies examined will be:
a. artificial additive noise (Gaussian, Salt & Pepper)

b. additive noise made up of added objects
c. real-world observable anomalies, found in the dataset

2. What performance improvements can AEs and VAEs
achieve when using transfer learning?

3. How do the AEs and VAEs compare against each other
in terms of precision-recall tradeoff when pre-trained
models are used?

3 Related Work
In this section, I will go over some of the related work done
in Anomaly Detection with Auto Encoders.

O.K. Oyabade and D. Aouada [10] explored how CAEs, De-
noising AEs(DAE), Contractive AEs, and VAEs compare to
each other in Anomaly Detection using 5 different medical
datasets, specifically, they wanted to see how the different
attributes of these AEs’ latent space impact performance in
unsupervised anomaly detection. They found that the prob-
abilistic approach of VAEs does not always turn out better
results than the other AEs. The most consistent was the CAE,
while VAE even completely failed on one dataset.

An J. and Cho S. [2] used VAE in anomaly detection with
Reconstruction Probability instead of Reconstruction Error
as their evaluation metric. They found that their VAE out-
performed classical AEs and Principal Component based
methods. They concluded that the generative capabilities of
VAEs allowed for the reconstruction to be utilised in deriving
the causes of the anomalies.

Guo J. et all [5] created a contrastive AE for medical anom-
aly detection, where they used classical auto encoders for
the baseline of their research. Interestingly the baseline AE
did quite well, at times outperforming other more complex
models.

4 Methodology
This section will describe how I plan to answer the research
questions.

4.1 RQ1
To answer RQ1 I implemented a CAE and CVAE. Both of
these models were trained using Google Colab and their
NVIDIA T4 GPUs; they were trained on non-anomalous
training data from the castings dataset.

The dataset includes 300x300 and 512x512 pictures of metal
castings of products. Within these sets of pictures, there
exists one training set and one testing set. Both of these
sets include non-anomalous and anomalous pictures. In my
experiment, I used the 300x300 sized pictures, which were
further reduced to 256x256 to reduce the training times of
the models. In addition to that, I normalize the pixel values
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to be in the range [0; 1] instead of [0; 255]. Otherwise, the
pictures were not altered in any other way, however, they
were used to create further datasets, with artificial anomalies,
this is described later. In the 300x300 set, there were 2875
non-anomalous pictures. These were then split into a 80:20
ratios. 80% used for training (2300 pictures) and 20% used as
validation data for testing. This validation set was used in
one of the callbacks of the models which I will talk about
later.
For the CAE I created an architecture consisting of con-

volutional layers followed by pooling layers, reducing the
dimensions of the input from the shape (256, 256, 3), to a
shape of (64, 64, 64), this includes having 3 convolution layers
and 2 max-pooling layers - the output of the last convolu-
tion layer being the ’bottleneck’. The last 64 in the latent
space shape represents 64 convolution kernels. The decoder
architecture was the same except backwards. Thus the in-
put shape being (64, 64, 64), and output - (256, 256, 3), with
transposed convolution layers used for up-sampling. The
loss function used was root mean squared error. No extra
’tricks’ were used.

For the CVAE the architecture used was very similar to
the CAE, except for 2 differences. The first is that there is
one more pooling layer, meaning that the last convolution
layer is also being pooled. The other difference is - that after
the encoder’s last pooling layer, I introduce a flattening layer,
followed by dense layers to reduce the input to a latent space
of shape (32) twice. One of these outputs is the mean of the
learned distribution and the other - the logarithm of the
variance. I use these to perform the reparameterisation trick
[7] and make a sample for the latent space, which then gets
decoded reshaped and up-sampled to generate a reconstruc-
tion of the input. The loss function used was𝑀𝑆𝐸 − 0.5𝐾𝐿𝐷
where 𝐾𝐿𝐷 is Kullback-Leibler Divergence.

Both of these models used these hyper-parameters for
training:

• Epochs - 50
• Batch Size - 16
• Base learning rate - 0.003
• Optimizer - Adam
• Seed - 42

As well as these callbacks:
• Reduce Learning Rate on Plateau - if the validation
data loss does not improve (decrease in value) for 2
epochs, we reduce the learning rate.

• Model saving callback, which would save the model
weights every epoch, if the validation data loss has
decreased.

• Early stopping - this callback stops training if, for 7
consecutive epochs, the validation data loss does not
decrease.

To test these models I generate 3 types of anomalies, Gauss-
ian noise, Salt & Pepper and additive pictures on top of the

original images, as well as, the real-world anomalies. For
Gaussian, I generated noise from a normal distribution with
𝜇 = 0.005, and 𝜎 = 0.5 and added it to the original non-
anomalous pictures. For S&P I randomly pick pixels to colour
them white and pick pixels to colour them black and change
them in the non-anomalous pictures. Lastly, for the added
pictures I use the the Pillow library to add random objects
on top of the original non-anomalous images Fig.(2 portrays
an example). I created 3 datasets to test the different types
of additive anomalies. One dataset for each different type.
These test sets are comprised of 50% non-anomalous pictures
and 50% of anomalous. These sets contain 524 pictures each.
The only exception is the test set containing the real-world
anomalies since this set is provided with the initial dataset.
This test set contains 715 pictures in total, 453 of them being
anomalous and 262 being normal.
For each type of anomaly, I test the models on 4 differ-

ent metrics - precision, recall, f1-score and precision-recall
AUC of the models to see how they perform. Below are the
formulas for each metric.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒/(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒/(𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
PRC-AUC is calculated by calculating the area under the

precision-recall curve. I use these metrics to evaluate these
models because they tell us the precision vs recall trade-off
meaning that they measure how well the model identifies
true anomalies while minimizing the amount of false posi-
tives/false negatives.

Figure 2. Example of additive noise of object like anomalies

4.2 RQ2
For RQ 2 I implemented a CAE and Convolutional VAE but
this time using a pre-trained model with transfer learning,
replacing the encoding layers, thus this time training the
decoder layers. I used the same training data, and testing
data and evaluated these models with the same metrics as
the previous RQ.
For the transfer learning CAE, I used the VGG16 pre-

trained model with frozen weights for the encoding. The
latent space is gathered from the ’block_pool_ 2’ layer, to
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RECALL PRECISION F1-SCORE PRC-AUC
CAE 0.996 1 0.998 1
CVAE 0.996 1 0.998 1
TCAE 0.996 1 0.998 1
TCVAE 0.996 1 0.998 1

Table 1. Metrics Results of Basic Models on Additive Artifi-
cial Noise

keep consistent with the number of pooling layers in the
basic CAE. The decoder architecture has transposed convo-
lution layers upsampling from a shape of (64, 64, 128) back
to the original shape of (256, 256, 3).
For the transfer learning CVAE, I used the VGG16 pre-

trained model, exactly like for the CAE, again using
’block_pool_ 2’ to stay consistent with the basic version of
the model. Where I use a flatten layer, followed by a dense
layer to go from shape (516096) to (32) twice, exactly like in
the basic CVAE implementation, to perform the reparame-
terisation trick and get a sample from the learnt distribution.
Where this sample is then densed back to 516096, reshaped
and upsampled to get the input back.

Bothmodels used the same hyperparameters as themodels
in RQ1.

I perform the same tests as for RQ1.

4.3 RQ3
For RQ3 I evaluate the performances of the models overall,
picking which one performs best and comparing the models
between themselves - for what types of anomalies which
models do best - by looking at what scores are most appro-
priate for anomaly detection tasks.

5 Results
In this section, I will talk about the results gathered from
performing the experiments presented in the methodology
section. One thing to mention is that every result in every
table is rounded to the 3rd decimal.

5.1 RQ1
The results of RQ1 can be split into 3 parts. The models’
performances on artificial additive noise, additive noise made
up of added objects and anomalies observable in the real-
world.

First of all, table1 sums up the models’ performance on
the mentioned dataset. The models were perfectly accurate
with both of them having 1 False Negative.

Secondly, the performances of the models, on the set of
artificial added noise made up of objects, are summarized in
Fig2. We can see the Precision-Recall curves plotted in Fig3.
We can see that the CAE performs better in this regard. Only
the recall is a better result for the VAE.

RECALL PRECISION F1-SCORE PRC-AUC
CAE 0.855 0.941 0.896 0.966
CVAE 0.8625 0.918 0.89 0.955
TCAE 0.859 0.945 0.9 0.9705
TCVAE 0.84 0.905 0.871 0.953

Table 2. Metrics Results of Basic Models on Additive Artifi-
cial Noise Made Up of Objects

Figure 3. Precision-Recall Curves of the Basic Models’ Per-
formances on Additive Noise Objects

Thirdly, the results for the real-world anomalies are sum-
marized in Table3 and the PRC plot in Fig.4. Most interest-
ingly the CAEs results have diminished quite heavily. Going
from high F1-score and PRC-AUC to much lower numbers.
With the greatest decrease in precision. Meaning that the
model quite frequently identifies normal samples as defects.
Besides that, the recall score is improved. On the other hand,
the results of the VAE have increased from great to nearly
perfect scores with AUC being 0.998 and f1-score being 0.992
and both recall and precision being almost perfect.

Overall, both these models are perfect at identifying addi-
tive artificial noise. Which could, however, lead these models
to fail at some points. Salt & Pepper noise could look similar
to dust on the camera lens, meaning that if these models
were used in the industry, an unkept camera, could start
interfering and make the model predict anomalies. In terms
of precision-recall trade-off, the VAE functions much better
when tested on real-world anomalies, which is the type of
anomaly which is encountered most in practice, for this rea-
son, I would say that the VAE is the more appropriate choice.
The VAE’s performance slightly decreases when tested on
the set of artificial added noise made up of objects, while,
interestingly, the CAE’s performance increases greatly. This
could be due to convolution layers being great at deriving
features from images, leading to the resulting features of the
anomalous added pictures greatly diverging from the normal
(learnt) ones.
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RECALL PRECISION F1-SCORE PRC-AUC
CAE 0.993 0.653 0.788 0.837
CVAE 0.9955 0.989 0.992 0.998
TCAE 0.987 0.665 0.795 0.83
TCVAE 0.9955 0.989 0.992 0.997

Table 3. Metrics Results of Basic Models on Real-World
Anomalies

Figure 4. Precision-Recall Curves of the Basic Models’ Per-
formances on Real-World Anomalies

5.2 RQ2
The results of RQ2 can be split into 4 parts. The models’
performances on the test sets, and how they compare to
their respective basic models.
Firstly, The performance of the transfer CVAE on the set

of artificial additive noise is summarized in Table 1 where
we see that the performance on this set is identical to the
the basic model. Its performance on the artificial additive
noise made up of objects is summarized in Table 2, where the
performance is similar to the basic VAE. Its performance on
real-world anomalies is summed up in Table 3 where we can
see nearly perfect results, essentially identical to the basic
VAE, the only difference being the AUC, being very slightly
worse. The difference in the AUC here tells us that the ba-
sic model performs just barely better over many thresholds.
In general, the performance follows a very similar trend to
how the basic VAE performed. Interestingly enough the ba-
sic VAE overall performed slightly better. This is especially
clear when we look at their performances on the set of ar-
tificially added objects. Reflecting upon the posed question,
the VAE model did not gain any performance improvements,
the performance has even slightly decreased which is most
apparent in Table 2.

Secondly, The performance of the transfer CAE is summa-
rized in the same 3 tables as the previous models. Following
the trend, the performance on the set of artificial additive
noise is near perfect, with one false negative prediction on
both S&P and Gaussian. The performance on the set of arti-
ficially added noise made up of objects is again very similar
to the basic CAE model, with the transfer learning version

gaining small performance increases in all metrics chosen.
Similarly to the basic version, the performance also falls
quite heavily when tested on the set of real-world anomalies.
With the PRC-AUC falling from 0.97 to 0.83, again, having
an increase in recall and a large decrease in precision.

Comparing the basic and transfer learning models scores
we see that the transfer learning model performs slightly
better in all measured metrics, regarding the performance on
the set of added noise made up of objects, however, the inter-
esting part is its performance in the set of real-world anom-
alies. The recall of the transfer learning model is slightly
decreased, but the precision is slightly higher. This means
that the transfer learning model will produce fewer false
positives. In terms of this dataset and expenses in the in-
dustry, this implies fewer non-defect items will be classified
as defects, thus reducing costs. On the other hand, the re-
call is slightly worse meaning more broken products are
let through. However, the f1-score tells us that overall the
precision-recall trade-off is slightly better for the transfer
learning model. You could argue that the PRC AUC score
is slightly better for the basic model but the f1-score, in
my opinion, is more practical, since you have to choose a
threshold for it. All in all, I would say that for the CAE, the
transfer learning model gains performance increases as a
whole on artificial anomalies; and in particular on precision
and f1-score on the real-world anomalies.

5.3 RQ3
The results of RQ3 come from looking at the transfer learning
models and comparing their performances with each other.
Looking at the results of RQ2, it is no surprise that these
models compare essentially the same as their basic versions
compare to themselves. The CAE outperforms the VAE in
terms of artificial added noise, nevertheless, the VAE is much
more consistent across all datasets and greatly outperforms
the CAE when it comes to real-world anomalies. Beating it
in all of the chosen metrics. Essentially the same conclusions
are drawn here as for RQ1 - VAE functions much better
when tested on real-world anomalies, which are of most
importance to us.

5.4 Discussion
Concluding the results of all tests we can see that the basic
VAE is the model that performs best. The transfer learn-
ing version, even if being just slightly worse than the basic
version, still overall outperforms the CAE models. Trans-
fer learning managed to improve the performance of the
CAE model just slightly. The fact that the respective transfer
learning and basic models compare so closely to each other
leads to show that for the task of anomaly detection in a
specific field transfer learning will not provide an advantage,
in some cases might even perform worse.
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6 Future Work
Future work on this related topics should include (i) compar-
isons with other AE types, like Sparse AEs or Contractive
AEs, and other Generative models like Generative Adver-
sarial Networks (GANs). (ii) There can also be similar tests
done on more various industrial datasets.
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During the course of this research I used the help of Chat-
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debug and understand why my implementation of the CAE
models would not learn anything, with the loss functions
returning NaN values. It helped me find that the encoding of
the logarithmic variance would return NaN values as well.
With its help I managed to clip the values of the logarithmic
variance between -10;10. Which then helped fix my models.
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through docs for a method and how to use it, I would ask
chatGPT if there are methods for x thing in y library. It would
tell me and if there would be, it would give me an example
of how to use those methods. There was no other use of
Generative AI.
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