
Challenges and Pitfalls in Video Watermarking using Motion Vectors
BART WESTENENK, University of Twente, The Netherlands

As universities are moving to online learning with lecture videos, some
lecturers have concerns that their videos can be copied and claimed as the
property of someone else. To ensure their videos are protected, lecturers
can add watermarks. By watermarking videos, viewers cannot copy the
video and claim it as their own. Visible watermarks are watermarks that
viewers can see with the naked eye. Although effective, they also taint
the video and influence the viewer’s experience. Invisible watermarking
using motion vectors can provide the protection while not tainting the
original video. Literature on invisible watermarking in video using motion
vectors currently exists but gloss over the implementation details and the
influence the chosen codec has. Due to this oversight, implementation of
these algorithms may seem trivial, while it is not. Due to codec complexity
and lack of available tooling. In some cases, using the most modern codec
imposes challenges that do not appear when using older codecs. This paper
provides a novel overview of the most commonly used codecs and their
advancements through time which can be used in future research. It finds
challenges and pitfalls in implementation such as lack of tooling and complex
codec specifications. Which, in turn, makes the field less approachable. This
paper contributes to the approachability of the video watermarking research
field by providing novel insights into these challenges and pitfalls, provides
recommendations how these can be tackled in future research and which
currently available tooling can be used. There is probable use for future
research aiming to implement novel algorithms.

Additional Key Words and Phrases: Data Hiding, Video Watermarking,
Codec, Motion Vectors, Copyright protection

1 INTRODUCTION
In the last few years, lecturers at universities are publishing more
videos on their Learning Management Systems (LMS) as universi-
ties are moving more into hybrid learning due to the COVID-19
pandemic. Some lecturers may not want to publish videos because
they have concerns whether their videos can be copied and shared
outside the LMS. They have copyright on those videos [7] and they
have the right to protect that copyright. There are various ways of
protecting that copyright. One way is by watermarking the video.
Watermarks alter the original video to visibly show that the video
has been downloaded or copied from elsewhere. An example can be
seen in fig. 1, this could be limiting for the student, as some part of
the video is now unusable and the video is tainted.
To solve this problem, invisible watermarking can be used. In-

visible watermarking has the same goal as visible watermarking
namely, embedding a message visible for all viewers and is hard to
remove. Invisible watermarking hides the watermark by altering
properties of the video, this way there is a minimal disturbance to
the original video while the copyright is still protected. If students
know the videos are invisibly watermarked, they are discouraged
in sharing the video outside of the LMS.

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Fig. 1. Example of visible watermarking, showing who has downloaded the
image and who the original author is. Source: Adapted from [14]

In general, videos are constructed by using intra frames (I-frames),
predicted frames (P-frames) and bi-directional predicted frames (B-
frames) [17]. I-frames are frames that do not depend on other frames
and are standalone images. P- and B-frames depend on I-frames and
other P- and B-frames by describing the changes in the frame using
motion vectors. Motion vectors describe the movement of a block
of pixels called a macroblock. These motion vectors can be used to
watermarking videos by modifying them slightly.

1.1 Motivation and novelty
Invisible watermarking has many applications, including the afore-
mentioned copyright protection use, fingerprinting of videos and
content filtering [3]. A small review of existing literature was con-
ducted. In this, it appeared that existing literature gave minimal
insight in the way algorithms are implemented and why a certain
coding standard was chosen. This makes this field of research less
approachable for future researchers. This paper provides recommen-
dations and directions on how to make this field more approachable.
By also reviewing and analysing the available coding standards,

this paper makes the field more approachable. Previous reviews of
video watermarking [8, 15, 20] did not consider implementation
details nor the selection of a codec. This paper will provide a novel
overview on the differences between video coding standards with
respect to motion vectors. This paper will also provide a list of
requirements that video editing tools should implement to make it
useful in this field of research.

1.2 Scope
Although I-frames exist and they can also be used for invisible
watermarking, many research already exists on the topic. Motion
vector based watermarking has been investigated less in literature.
Due to time limitations this paper will not focus on I-frame based
watermarking. Instead, this research has been scoped to focus on
invisible watermarking based on motion vectors. In terms of the
challenges and pitfalls that can occur during implementation, the
focus has been given to the most commonly used codec H.264 [4].
An analysis is done to give insight in the video watermarking tools
available for this codec.

1



2 • Bart Westenenk

Fig. 2. Video coding standards development timeline. Source: [18]

This paper is structured as follows. First, the available video
coding standards, also called codecs, which can be used to implement
motion vector based watermarking algorithms are discussed. By
analyzing the development of features in the codecs that relate to
motion vectors, an overview will be given of the coding standards.
Second, some of the existing algorithms that use motion vectors are
discussed in section 4.2 and give a conclusion to RQ1 and RQ2 in
section 4.3. Furthermore, recommendations are provided on how to
choose a codec for an algorithm. Third, in section 5, requirements for
tooling to use in video watermarking research will be constructed
and currently available tooling will be analysed based on those
requirements.

2 PROBLEM STATEMENT
In this section, the goal of the research and the research questions are
discussed. As mentioned earlier, the goal of this paper is to identify
potential challenges in the implementation phase of research. This
is done by answering the research questions below. These questions
will be used to reach the aforementioned goal.

Goal: Identifying hidden challenges and pitfalls in implementing
motion vector based watermarking algorithms in H.264.

• RQ1: To what extent can motion vectors in B-frames and
P-frames be used for watermarking in video?

• RQ2: To what extent does the choice of codec influence the
possible watermarking algorithms?

• RQ3: What challenges could be faced while implementing
watermarking algorithms in H.264 video?

3 METHOD
To answer RQ1, a small literature survey has been done in order to
gather resources on video steganography and specifically motion
vector-based video steganography. This literature survey includes
papers that are deemed most influential according to review papers
in existing literature [8, 15, 20] and propose algorithms that are
based on motion vectors. These papers are then analyzed in which

way they use motion vectors, and how it can be used to watermark
videos.

To answer RQ2, existing codecs are analyzed on their significant
improvements since their predecessors. This analysis also includes
an overview of how video codecs are generally structured to give
insight inwhat properties can be used in future research. Afterwards,
the previously analyzed papers from the literature survey will be
analyzed once more on which codec is used as well as the reasoning
behind it. If there is no codec or reasoning given, an analysis will
be done as to which codecs would be suitable to implement the
algorithm.
To answer RQ3, an analysis into the tooling available for modi-

fying video in the compressed domain of H.264 video is provided.
H.264 was chosen because it is the most commonly implemented
codec and is still widely used today [4]. The results from RQ3 aim to
provide insight in what requirements future tooling should fulfill to
be useful in terms of video watermarking, in particular with respect
to motion vectors.

4 RELATED WORKS
In this section, some of the currently available codecs, the general
idea of video codecs and the technological advances with regards to
motion vectors are discussed. After discussing the available codecs,
some existing data hiding algorithms that use motion vectors are
also discussed as well as their respectively used codecs. Thereafter,
a conclusion to RQ1 and RQ2 is drawn and a recommendation is
provided on choosing a video codec in section 4.3.

4.1 The general structure of digital video
Since the release of H.261 (in 1990) [11], the design of all major
video coding standards follow the so-called block-based hybrid
video coding approach. A frame is divided into blocks of 𝑥 × 𝑦

called macroblocks. Each macroblock of a frame picture is either
intra predicted (I-frame) without referencing other pictures in the
video, or is temporally predicted, where the signal is formed by

, Vol. 1, No. 1, Article . Publication date: July 2024.



Challenges and Pitfalls in Video Watermarking using Motion Vectors • 3

Coding standard Release Max. resolution ∗ Frame-independent coding ∗∗ GRF Merge mode Royalties
H.262 1996 1920 × 1080@30 No No No Expired
H.264 2003 8192 × 4320@120.9 Yes No No Yes
H.265 2013 8192 × 4320@120.9 Yes No Yes Yes
VP8 2010 16383 × 16383 ∗∗∗ No Yes No None
∗ This assumes the usage of the highest profiles, lower level profiles may support lower resolutions.
∗∗ This means that macroblocks can have different prediction modes, independent of the type of frame, introduced in H.264.
∗∗∗ VP8 does not place restrictions on framerate.

Table 1. Overview of codecs and important properties

moving a block of an already coded picture. Temporally predicted
pictures referencing previous pictures are called P-frames. When
also referencing future pictures, these are called B-frames. Some-
times research also mentions a unit called Group of Pictures (GOP)
to denote a set of frames consisting of at least 1 I-frame and some
temporally predicted frames. [17]
Figure 2 shows that since the release of H.261, a lot of newer

codecs have emerged. A selection of these codecs is discussed on
their origin, usage, reasoning for introduction and licensing. Some
differences that make the codecs more efficient are not considered
in this paper. For example, H.264 uses CABAC encoding and H.265
and VP8 optimized this. This compression technique can influence
the choice of codec, but does not provide any extra properties in
motion vectors that can be used to hide data in a video and are thus
out of scope for this research. Video codecs like H.262 [13], H.264
[10], H.265 [12] and VP8 [25] all stem from this original coding
approach. Although they all stem from the same general idea, there
are still many differences in implementations and some of these
codecs are specialized in certain areas. Due to time constraints put
on this research, only these codecs are discussed. These are the most
commonly implemented codecs [4] and were most influential in the
development of more modern codecs.

4.1.1 H.261. The original H.261 codec [11] as introduced in 1990
was introduced to make it possible to send video over telephone
lines, they foresaw that a number of audiovisual services would be
likely to appear if there was a standardized way of transmitting
video over telephone lines. Although H.261 is not in use anymore
due to the introduction of newer codecs, it can be seen as the basis
of all modern codecs.

4.1.2 H.262. The oldest codec still in use to date is H.262 [13],
officially launched in 1996. It was developed as a joint project of
ITU-T and ISO/IEC JTC 1 [17]. Its original purpose was to respond to
the growing need for a coding method for various applications such
as digital storage media and television broadcasting. It served as a
useful standard to store video digitally and in transferring video over
digital networks. Compared to H.261, there are not many differences.
H.262 for example supports HDTV and interlacing, a technique used
in older analog television systems, where H.261 does not support
this. In terms of performance H.262 should, depending on the codec
implementation, perform better than H.261. Although originally
H.262 was not royalty-free, due to its age the royalty rights have
expired.

4.1.3 H.264. H.264 is the most used codec according to Bitmovin’s
2020 video developer report [4]. It is used in 86% of production envi-
ronments and supported by all major browsers like Google Chrome,
Firefox and Microsoft Explorer [5]. In contrast to H.262, its purpose
was also to target videoconferencing and internet streaming. It also
allows for even an even higher resolution of 8192 × 4320@120.9,
although not all decoders support it, and is more efficient than its
predecessors.

An obvious difference from older standards is its increased flexi-
bility in intercoding. For the purpose of motion-compensated predic-
tion, a macroblock can now be partitioned in square and rectangular
block shapes with sizes ranging from 4× 4 and 16× 16. H.264 coded
video contains slices instead of pictures. Pictures can contain mul-
tiple slices, those slices are not required to be of the same type.
A picture can be used as a reference frame independently of the
type of the slices contained in that picture. To be allowed to use
H.264 in either software or hardware, a licensing fee must be paid
to Via LA licensing [23]. Cisco influenced the popularity positively
by releasing a free H.264 codec called OpenH264 [6], Cisco pays the
license costs for their provided binaries, making H.264 essentially
a free coded. In response, Firefox was able to implement H.264 in
their browser.

4.1.4 H.265. The codec that the joint project ITU-T and ISO/IEC
MPEG developed after H.264 is H.265, this codec again increases the
resolution. H.265 also supports resolutions up to 8192×4320@120.9,
but due to the advances in H.265 more decoders can actually decode
at that speed. Compared to former codecs, it has improved the
motion vectors by a lot. It supports a so-called merge mode, where
no motion vectors are coded. Instead, they are derived from the
corresponding prediction unit (PU), which consists of the chroma
and luma prediction blocks. Each PU contains one or two motion
vectors used for unipredictive or bipredictive coding. No research
was found that uses the merge mode in H.265 to embed data. To
use H.265, a company needs a license agreement similarly to H.264.
This had implications on the adaption of H.265 as a successor to
H.264, making it still not as widely used as H.264 [4].

4.1.5 VP8 and VP9. Google released the VP8 codec [25] as an open
source codec aimed to provide a way to transfer video in low band-
width environments. It was focused onweb-based video applications
and thus, due to the nature of the web, it must be possible to imple-
ment the codec on a wide range of devices. Compared to the existing
codecs like H.262 and H.264, Google mainly focused on optimizing
the use of I-frames. VP8 stores a reference frame in a buffer from

, Vol. 1, No. 1, Article . Publication date: July 2024.



4 • Bart Westenenk

arbitrary points in the past of the video. They call these reference
frames Golden Reference Frames (GRF). Golden Reference Frames
are useful when objects or backgrounds disappear for a moment and
come back. This greatly helps compression efficiency. This is, for
example, applicable in a TV show switching between 2 camera an-
gles. VP9 succeeded this standard which is a more efficient version
of VP8. VP8 and VP9 are provided for royalty-free.

4.2 Existing data hiding algorithms in P- and B-frames
The selection of the candidate motion vectors (CMV) is the key
difference in existing data hiding algorithms. The selection method
influences the method of embedding greatly as embedding may
not influence the selection criteria as this may lead to the motion
vector not being selected during extraction. In general, all of these
algorithms either operate on the complete video, or operate on a
per GOP basis. This means that each GOP will hide its own message
and can be independently decoded.

4.2.1 Magnitude. Zhang et al. [26] proposed an algorithm that
selects the CMV based on themagnitude. This algorithm is meant for
steganography instead of watermarking. It uses a key to determine
the required threshold. The secret bits are embedded in the CMV
by modifying the 𝑥 and 𝑦 component based on the current angle of
the motion vector. Zhang et al. did not specify for which specific
codec they implemented the algorithm. At their point in time, only
H.261 and H.262 were available, thus they probably used H.261 as
they didn’t use any features of H.262 in their algorithm. [26]

4.2.2 Phase angle. Hao-bin et al. [9] proposed an algorithm based
on the algorithm by Zhang et al. They also based the candidate
selection algorithm on the magnitude of the CMV. However, they
also considered the angle in which the motion vector points. They
claim that if a vector is vertical and the horizontal distance is zero,
then a slight change in the horizontal component has greater influ-
ence than a change in the vertical component. Both Hao-bin et al.
and Zhang et al. determine the CMV by a predefined threshold, but
Hao-bin et al. lets the phase angle determine in which component
the data will be embedded. They have used the JM17.2 reference
encoder to implement their algorithm in H.264 video. [9]

4.2.3 Prediction error. Aly et al. [2] proposed an algorithm that
selects the motion vectors based on their so called prediction error.
According to them, algorithms selecting CMV on magnitude choose
to do so because the chance that those motion vectors accurately
represent the motion is smaller and changes are less notable. Aly et
al. claimed that this is not always correct, and that selecting based
on their associated prediction error is more accurate, resulting in
less disturbance to the video quality. Aly et al. implemented their
algorithm into the H.262 reference encoder and decoder. [2]

4.2.4 Low and high texture areas. Liu et al. [16] introduced a way
of improving the embedding performance by increasing the amount
of embedded bits based on the texture of the macro block that is
affected by the motion vector. The texture of a macroblock is the
amount of different pixels in a macroblock. For example, a mac-
roblock containing the sky is a low texture area and macroblock
containing a face is a high texture area. In low texture areas, the

embedded bits can be increased compared to high texture areas as
the effect of the change is less visible for low texture areas. They
did not specify the codec they used nor the way of implementation.
[16]

4.3 Recommendations and conclusions
In this section, some of the codecs available and the technical dif-
ferences in terms of motion vectors are discussed. Table 1 shows a
list of the discussed codecs and their properties. Future researchers
that are interested in using motion vectors for video watermarking,
are recommended to choose a codec that implements the proper-
ties that they require. All previously mentioned algorithms can be
implemented in H.262 as well as modern codecs. Future research
should take the complexity of the codec that it uses into account
as modifying a H.262 video is easier compared to modifying H.264
videos and VP8 videos. These recommendations are given with the
aim to limit the time spend on implementations, and increase the
time spend constructing algorithms.
In conclusion, based on the literature discussed earlier, motion

vectors can be used extensively for data hiding in P- and B-frames.
Furthermore, although the codec does influence the complexity of
modifications, it does not have a great influence on the possible
watermarking algorithms. Moreover, it depends on which properties
of the motion vectors will be modified and whether those properties
exist in the targeted codec. For example, if the research will go
into using motion vectors based on the golden reference frames
of VP8, then only VP8 may be considered as target codecs for the
implementation. This has implications on the availability of tools
and libraries, as will be discussed in the following section.

5 CHALLENGES AND PITFALLS
One challenge of working with video codecs is understanding how
the actual bitstreams of videos are structured. Although an overview
of how the most common video codecs work is provided in section 4,
it does not cover how one can read or modify the bitstream of a
video. It must be noted that modifying the bitstream of any codec
is not a trivial task and that may be a pitfall for researchers new to
this field of research. This section will go over some of the tools that
have been used by other researchers to implement watermarking
algorithms and others that one may find when lookin for tools
and libraries to use for a watermarking algorithm. Most of these
tools and libraries can be found online, but unfortunately, most
algorithms considered in section 4.2 did not provide any source
code or an overview of how their implementation works.

5.1 Modification tool requirements
To determine whether a tool is useful for video watermarking re-
search, it must fulfill some requirements. After considering existing
tools and analyzing existing watermarking algorithms, the following
list of requirements has been constructed:

(1) Must produce a syntactically correct bitstream. The imple-
mentation must block the user from writing syntactically
incorrect bitstreams.
Reason: If a bitstream is not syntactically correct, standard
conforming decoders will not load the video.

, Vol. 1, No. 1, Article . Publication date: July 2024.



Challenges and Pitfalls in Video Watermarking using Motion Vectors • 5

(2) Must produce a semantically correct bitstream. The imple-
mentation must block the user from writing semantically
incorrect bitstreams.
Reason: If a bitstream is not semantically correct, standard
conforming decoders will either determine the video as cor-
rupted or show undocumented behaviour. This removes the
mental overhead to think about the side effects on the bit-
stream when modifying a value.

(3) Must be able to modify P- and B-frames (motion vectors)
without re-encoding, in a determinant manner.
Reason: To implement motion vector based algorithms, it is
required to be able to modify specific, predetermined motion
vectors.

(4) Should be able to modify I-frames without re-encoding.
Reason: To implement algorithms that also use I-frames, it
would be useful to also be able to modify I-frame properties
without re-encoding.

(5) Should be capable of modifying videos coded using different
codecs.
Reason:Tomake sure the tool stays relevant after new codecs
are released, it needs to be able to adapt to new codecs.

These requirements are written with the following goal in mind:
Ease the implementation of watermarking algorithms and improve
the approachability of the video watermarking field. Although this
papermainly aimed to provide useful insights with respect tomotion
vectors, I-frame based watermarking should not be forgotten.

5.2 Previous research on altering video bitstreams
In the past, other researchers have also tried to find and develop
methods to modify the video bitstream in a consistent and reliable
manner. Unfortunately, the amount of research carried out in this
field is limited. The research that has been carried out is not fitted
for watermarking applications on a higher level.

5.2.1 H26Forge. H26Forge [22] is a project specifically tailored to
making the H.264 bitstream editable on a low level by Vasquez et
al. The goal of this project was generating syntactically correct
bitstreams that are not necessarily semantically correct. Because
motion vectors are not directly encoded into the bitstream, it would
need extensive knowledge of the semantics of the H.264 codec to
edit a specific motion vector. Due to the time limit of this research,
it is not possible to have such in depth knowledge about the codec.
The authors of H26Forge took multiple years to develop H26Forge.
H26Forge also supports H.265 in some way, but does not have full
support. Future research can go into using the basis H26Forge laid
to provide a more standardized way to modify specific properties
that are not directly encoded in the bitstream.

5.2.2 Compressed domain processing. Wee et al. [24] wrote a book
chapter analyzing and describing various algorithms on efficiently
processing video in the compressed domain. It contains a compre-
hensive amount of knowledge on how a bitstream is formatted and
how it could be altered on a high level. Unfortunately, they have
only described their algorithms in a theoretical sense and did not
provide any implementation or, recommendations for an implemen-
tation. For future works it would be useful if the theories they have

laid out in their book, could be implemented into a framework that
can be used for future research.

5.3 Custom encoders
Most of the papers found modified existing encoders to implement
their algorithms. This includes the reference encoder for H.264 called
the JM software encoder [21], currently at version 18.0. Hao-bin et
al. [9] used version 17.2 to implement their algorithm. Besides the
reference implementation, also Cisco’s OpenH264 implementation
[6] is an option to use for implementing an algorithm. Unfortunately,
due to the way the bitstream is structured, motion vectors are not
directly encoded into the bitstream. This makes it difficult to find
where and when the motion vectors are calculated and where the
modification of themotion vectors should happen. It is a difficult task
to modify an existing encoder to fulfill the needs for a watermarking
algorithm.

5.4 PyAV
This project implements Python bindings for most of FFmpeg’s low
level libraries like libav, libavcodec and others. Due to the way
this project is setup, it is not possible to alter the motion vectors
or make alterations on a macro block level. This is due to python
not being able to directly access the c++ buffer that is used by the
underlying c libraries. This meant, in practice that altering a frame
using PyAV, required full decoding of the frame and reencoding after
the modifications. Meaning that the motion vectors are recalculated
and the motion vectors cannot be reliably modified, making it not
suitable for motion vector based watermarking algorithms.

5.5 FFmpeg
FFmpeg [1] is a tool meant for converting, editing and transcoding
various video files and codecs. It is meant to work with various
different codecs and is thus built with many abstraction techniques.
The possible types of FFmpeg filters are: audio/video filters (AV-
Filters) and bitstreamfilters (BSFilters). Unfortunately, due to the
aim of FFmpeg to be compatible with as many codecs as possible,
it is not possible to write an AVFilter or BSFilter which edits the
low level properties of a specific codec. It suffers from a different
problem than PyAV, as it is possible using a BSFilter to alter the
direct buffer. Unfortunately, it is still non-trivial to alter a specific
property like the motion vectors as it requires an implementation
to first decode the motion vectors in a frame, and then modify them
and re-encode them correctly into an existing bitstream. However,
the bitstream consists of more properties than only motion vectors,
so other properties that depend on the encoding used in the motion
vectors may be affected, resulting in a possibly invalid bitstream.

5.5.1 FFglitch. A project by Polla based on FFmpeg called FFglitch
[19] was made with the aim to modify the motion vectors of a H.262
video. This tool may be useful to implement algorithms that only
use motion vectors in its implementation. It currently only supports
H.262 video and H.264 video support is on its roadmap. Future
research could extend this project to also allow other codecs to be
modified and other properties of video like, for example, properties
of I-frames to allow for combining the two properties.

, Vol. 1, No. 1, Article . Publication date: July 2024.



6 • Bart Westenenk

Name (1) (2) (3) (4) (5)
H26Forge Yes No No No No
PyAV Yes Yes No No Yes
FFMpeg Yes Yes No No Yes
FFGlitch Yes Yes Yes No Yes

Table 2. Fulfillment of the aforementioned requirements by the available
tools discussed in this section.

5.6 Recommendations and conclusions
The goal of this research is to recommend requirements a tool should
fulfill and investigate which tools already fulfill these requirements.
Table 2 shows an overview of these requirements. In conclusion,
based on the performed analysis, there is still a lack of proper tooling
to consistently implement video watermarking algorithms based
on motion vectors. To propose an algorithm at this moment, the
researcher must spend more time on the implementation, than on
the design of the algorithm. In the opinion of the authors, the work
spent on the implementation can be reduced by providingmore tools.
The authors recommend future researchers aiming to implement
watermarking algorithms using motion vectors in H.262, to use
FFglitch. Future research into new tooling or building a framework
for video watermarking research, are recommended to take the
aforementioned requirements into account. FFglitch and H26Forge
are recommended as a basis and/or inspiration for future works.

In conclusion, some recommendations for future works that can
be undertaken by future researchers are provided. Most notably,
in this field of research, there is a lack of proper tooling to change
specific properties of the video. This greatly influences the time
needed to implement an algorithm and the deep understanding of
the specific codec that is used for the implementation. This may
result in a limited interest by future researchers that are new to this
field. All in all, the biggest pitfall and challenge for newer researchers
are the complexity of the coding standards and the absence of proper
tooling.

6 CONCLUSION AND FUTURE SCOPE
In this research, we have explored the various codecs available, the
viability of using motion vectors for video watermarking and the
hidden challenges and pitfalls researchers may be confronted with
during implementation. We have shown that although resources
on video watermarking using motion vectors exist, that there is a
lack of adequate tooling to implement these algorithms. Currently,
implementing these algorithms require a deep understanding of very
complex codecs, making it difficult to implement trivial algorithms.
Making video watermarking a field that is not easy to step into.
This research has mainly focused on implementation challenges
and pitfalls for the H.264 codec. Furthermore, this research has
mainly focused on motion vectors and did not take into account
other properties in these codecs. Future research can be done in
a similar direction, but aimed at implementation challenges in I-
frame based watermarking, or watermarking in H.265 and VP8.
As the coding used in I-frames is largely based on regular image
coding, research in invisible image watermarking can be translated
to invisible video watermarking as has already been done in the past.

However, this field will also have various challenges and pitfalls that
can be investigated. Future research can also focus on providing
more tooling or to develop a framework that tooling should adhere to
altering compressed videos in a reliable way. Researchers that want
to undertake developing a novel algorithm using motion vectors, are
advised to choose their codec wisely as the complexity of the codec
can greatly increase the time needed to properly implement the
algorithm for acquiring experimental results. The merge mode in
H.265 and Golden Reference Frames in VP8 can also be considered
as potential targets to implement novel algorithms.

REFERENCES
[1] 2024. FFmpeg/FFmpeg. https://github.com/FFmpeg/FFmpeg original-date:

2011-04-14T14:12:38Z.
[2] Hussein A. Aly. 2011. Data Hiding in Motion Vectors of Compressed Video Based

on Their Associated Prediction Error. IEEE Transactions on Information Forensics
and Security 6, 1 (March 2011), 14–18. https://doi.org/10.1109/TIFS.2010.2090520
Conference Name: IEEE Transactions on Information Forensics and Security.

[3] Md. Asikuzzaman and Mark R. Pickering. 2018. An Overview of Digital Video
Watermarking. IEEE Transactions on Circuits and Systems for Video Technology 28, 9
(Sept. 2018), 2131–2153. https://doi.org/10.1109/TCSVT.2017.2712162 Conference
Name: IEEE Transactions on Circuits and Systems for Video Technology.

[4] Bitmovin. 2023. The 7th Annual Bitmovin Video Developer Report. Technical
Report. https://bitmovin.com/downloads/assets/bitmovin-7th-video-developer-
report-2023-2024.pdf

[5] BrowserStack. 2024. MPEG-4/H.264 video format | Can I use... Support tables for
HTML5, CSS3, etc. https://caniuse.com/mpeg4

[6] Cisco. [n. d.]. OpenH264. https://github.com/cisco/openh264/releases
[7] Council of European Union. [n. d.]. DIRECTIVE (EU) 2019/790 OF THE EURO-

PEAN PARLIAMENT AND OF THE COUNCIL. https://eur-lex.europa.eu/eli/dir/
2019/790/oj Doc ID: 32019L0790 Doc Sector: 3 Doc Title: Directive (EU) 2019/790
of the European Parliament and of the Council of 17 April 2019 on copyright and
related rights in the Digital Single Market and amending Directives 96/9/EC and
2001/29/EC (Text with EEA relevance.) Doc Type: L Usr_lan: en.

[8] Mukesh Dalal and Mamta Juneja. 2021. A survey on information hiding using
video steganography. Artificial Intelligence Review 54, 8 (Dec. 2021), 5831–5895.
https://doi.org/10.1007/s10462-021-09968-0

[9] Hao-Bin, Zhao Li-Yi, and Zhong Wei-Dong. 2011. A novel steganography al-
gorithm based on motion vector and matrix encoding. In 2011 IEEE 3rd Inter-
national Conference on Communication Software and Networks. 406–409. https:
//doi.org/10.1109/ICCSN.2011.6013622

[10] ISO. [n. d.]. Information technology - Coding of audio-visual objects - Part 10:
Advanced video coding. https://www.iso.org/standard/83529.html

[11] ITU-T. 1993. H.261 : Video codec for audiovisual services at p x 64 kbit/s. https:
//www.itu.int/rec/T-REC-H.261-199303-I/en

[12] ITU-T. 2023. H.265 : High efficiency video coding. https://www.itu.int/rec/T-
REC-H.261-199303-I/en

[13] ITU-T and ISO/IEC. [n. d.]. H.262 : Information technology - Generic coding of
moving pictures and associated audio information: Video.

[14] Banse Lily. 2024. Cooked dish on gray bowl. https://unsplash.com/photos/cooked-
dish-on-gray-bowl--YHSwy6uqvk

[15] Yunxia Liu, Shuyang Liu, Yonghao Wang, Hongguo Zhao, and Si Liu. 2019. Video
steganography: A review. Neurocomputing 335 (March 2019), 238–250. https:
//doi.org/10.1016/j.neucom.2018.09.091

[16] Zina Liu, Huaqing Liang, Xinxin Niu, and YixianYang. 2004. A robust video
watermarking in motion vectors. In Proceedings 7th International Conference on
Signal Processing, 2004. Proceedings. ICSP ’04. 2004., Vol. 3. 2358–2361 vol.3. https:
//doi.org/10.1109/ICOSP.2004.1442254

[17] Jens-Rainer Ohm, Gary J. Sullivan, Heiko Schwarz, Thiow Keng Tan, and Thomas
Wiegand. 2012. Comparison of the Coding Efficiency of Video Coding Stan-
dards—Including High Efficiency Video Coding (HEVC). IEEE Transactions
on Circuits and Systems for Video Technology 22, 12 (Dec. 2012), 1669–1684.
https://doi.org/10.1109/TCSVT.2012.2221192

[18] Andreas S. Panayides, Marios S. Pattichis, Marios Pantziaris, Anthony G. Con-
stantinides, and Constantinos S. Pattichis. 2020. The Battle of the Video Codecs
in the Healthcare Domain - A Comparative Performance Evaluation Study Lever-
aging VVC and AV1. IEEE Access 8 (2020), 11469–11481. https://doi.org/10.1109/
ACCESS.2020.2965325 Conference Name: IEEE Access.

[19] Ramiro Polla. 2024. ramiropolla/ffglitch-core. https://github.com/ramiropolla/
ffglitch-core original-date: 2014-11-04T13:28:59Z.

[20] Mennatallah M. Sadek, Amal S. Khalifa, and Mostafa G. M. Mostafa. 2015. Video
steganography: a comprehensive review. Multimedia Tools and Applications 74,

, Vol. 1, No. 1, Article . Publication date: July 2024.

https://github.com/FFmpeg/FFmpeg
https://doi.org/10.1109/TIFS.2010.2090520
https://doi.org/10.1109/TCSVT.2017.2712162
https://bitmovin.com/downloads/assets/bitmovin-7th-video-developer-report-2023-2024.pdf
https://bitmovin.com/downloads/assets/bitmovin-7th-video-developer-report-2023-2024.pdf
https://caniuse.com/mpeg4
https://github.com/cisco/openh264/releases
https://eur-lex.europa.eu/eli/dir/2019/790/oj
https://eur-lex.europa.eu/eli/dir/2019/790/oj
https://doi.org/10.1007/s10462-021-09968-0
https://doi.org/10.1109/ICCSN.2011.6013622
https://doi.org/10.1109/ICCSN.2011.6013622
https://www.iso.org/standard/83529.html
https://www.itu.int/rec/T-REC-H.261-199303-I/en
https://www.itu.int/rec/T-REC-H.261-199303-I/en
https://www.itu.int/rec/T-REC-H.261-199303-I/en
https://www.itu.int/rec/T-REC-H.261-199303-I/en
https://unsplash.com/photos/cooked-dish-on-gray-bowl--YHSwy6uqvk
https://unsplash.com/photos/cooked-dish-on-gray-bowl--YHSwy6uqvk
https://doi.org/10.1016/j.neucom.2018.09.091
https://doi.org/10.1016/j.neucom.2018.09.091
https://doi.org/10.1109/ICOSP.2004.1442254
https://doi.org/10.1109/ICOSP.2004.1442254
https://doi.org/10.1109/TCSVT.2012.2221192
https://doi.org/10.1109/ACCESS.2020.2965325
https://doi.org/10.1109/ACCESS.2020.2965325
https://github.com/ramiropolla/ffglitch-core
https://github.com/ramiropolla/ffglitch-core


Challenges and Pitfalls in Video Watermarking using Motion Vectors • 7

17 (Sept. 2015), 7063–7094. https://doi.org/10.1007/s11042-014-1952-z
[21] Alexandros Tourapis. [n. d.]. H.264/14496-10 AVC Reference Software. . General

Information ([n. d.]).
[22] Willy R Vasquez, Stephen Checkoway, and Hovav Shacham. [n. d.]. The Most

Dangerous Codec in the World: Finding and Exploiting Vulnerabilities in H.264
Decoders. ([n. d.]).

[23] ViaLa. 2024. AVC/H.264 License Fees. https://www.via-la.com/licensing-2/avc-
h-264/avc-h-264-license-fees/

[24] Susie Wee, Bo Shen, and John Apostolopoulos. [n. d.]. Compressed-Domain Video
Processing. ([n. d.]).

[25] Paul Wilkins, Yaowu Xu, Lou Quillio, James Bankoski, Janne Salonen, and John
Koleszar. 2011. VP8 Data Format and Decoding Guide. Request for Comments RFC
6386. Internet Engineering Task Force. https://doi.org/10.17487/RFC6386 Num
Pages: 304.

[26] Jun Zhang, Jiegu Li, and Ling Zhang. 2001. Video watermark technique in motion
vector. In Proceedings XIV Brazilian Symposium on Computer Graphics and Image
Processing. 179–182. https://doi.org/10.1109/SIBGRAPI.2001.963053

ACKNOWLEDGMENTS
During the preparation of this work the author(s) used ChatGPT in
order to: provide boilerplate for implementation, aid in understand-
ing the various coding standards and improve grammar. After using
this tool/service, the author(s) reviewed and edited the content as
needed and take(s) full responsibility for the content of the work.

, Vol. 1, No. 1, Article . Publication date: July 2024.

https://doi.org/10.1007/s11042-014-1952-z
https://www.via-la.com/licensing-2/avc-h-264/avc-h-264-license-fees/
https://www.via-la.com/licensing-2/avc-h-264/avc-h-264-license-fees/
https://doi.org/10.17487/RFC6386
https://doi.org/10.1109/SIBGRAPI.2001.963053

	Abstract
	1 Introduction
	1.1 Motivation and novelty
	1.2 Scope

	2 Problem statement
	3 Method
	4 Related works
	4.1 The general structure of digital video
	4.2 Existing data hiding algorithms in P- and B-frames
	4.3 Recommendations and conclusions

	5 Challenges and pitfalls
	5.1 Modification tool requirements
	5.2 Previous research on altering video bitstreams
	5.3 Custom encoders
	5.4 PyAV
	5.5 FFmpeg
	5.6 Recommendations and conclusions

	6 Conclusion and Future Scope
	References

