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This research focuses on the limitations and execution performance of se-
mantic duplicate cleaning on real-world data of the probabilistic database
DuBio, which was developed at the University of Twente. This was done by
using the WDC Product Data Corpus, a large collection of data, to find the
overhead of running similar queries on two versions of the same database,
one probabilistic and one not. The goal is to find how increasing the size of
the database or the size of clusters within the database, affect the relative
difference in overhead between the two versions of the database, alongside
finding any additional aspects that may influence the overhead.
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1 INTRODUCTION
In recent years, there is a consistent increase in the desire for tools
to aid in data cleaning [2], as the large amount of data gained by
scaping the internet or other methods often results in large quanti-
ties of data with high uncertainties.

For this reason, the DuBio extension was developed at the Uni-
versity of Twente, to help generate probabilistic databases which
aid in improving data cleaning and data quality. However, while the
DuBio extension is functional, its limitations have yet to be tested
thoroughly, and the goal of this research is to find those limits.
This will be done by utilizing the WDC Data Corpus, a large scale
collection of data from across the internet, which grouped items
it believed to be the same into specific ID-clusters. These clusters
will be organized by their sizes and placed into database tables con-
taining a certain number of clusters, randomly selected from the
main set. By utilizing this data corpus and the methodology outlined
below, this research intends to find the overhead of using DuBio,
along with any bottlenecks that may exist within the extension.

2 BACKGROUND

2.1 Probabilistic Databases
Due to the nature of data, many databases possess uncertainty
within the data [1], and probabilistic databases exist to aid in solv-
ing this issue. Within probabilistic databases, entries are kept in
various different states. As an example, if a particular attribute had
a probability of either 1 or 0, it could be viewed as that entry having
two states, one where it exists in the database, and one where it
does not. Rather than selecting a single state, probabilistic databases
return a list of the various possibilities alongside their probabilities.
Probabilistic databases are an active field of research to which this
project hopes to contribute. DuBio is an extension that seeks to aid
in Probabilistic Data Integration (PDI) particularly through the stage
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of continuous improvement within the data integration process [6],
and this research will test how effective it is in accomplishing that
task. In DuBio, information on entries is stored within a "sentence"
such as "x=2 and y=1". To explain these "sentences" in more detail,
consider a situation where there exist two entries, then there exists
two possibilities: either the entries are different, or they are the
same. These two possibilities can be represented by a variable, with
"x=1" representing the two entries being different, and "x=2" repre-
senting the two entries being the same. If the two entries are the
same, then if they have two different prices, for example, then one
must consider the two possibilities of which of those two prices is
the correct one, which can be represented by another variable, like
"y". So the sentence "x=2 and y=1" implies that the two entries are
in fact the same, and that the price of the first entry is the correct
one. All of these variables can then be referenced in a dictionary
to determine what the values of those variables aught to be, and
by extension, what the probability of that entry appearing in the
results should be.

2.2 WDC Product Data Corpus
The WDC Product Data Corpus or as it will henceforth be called,
the WDC, is a truly massive dataset of over 26 million different
product offers from approximately 79 thousand websites. The WDC
was developed by A. Primpeli et al. [5] Utilizing their algorithm,
these products would be grouped together into an ID-Cluster if the
algorithm believed any group of products were in-fact the same
product. In total, there exist approximately 16 million ID-clusters.
Of these, only 4,400 have been manually verified as either matching
or not matching. The size of an ID-cluster can vary wildly, with
the smallest being of size 2, and the largest being above 80. For this
research, we will be utilizing the English subset of the WDC, which
only includes products from English related top-level domains, such
as .com, .net, .co.uk, .us, and .org. This reduces the size of the set to
approximately 16 million offers from 43 thousand websites sorted
into approximately 10 million clusters. Additionally, for simplicity’s
sake, the normalized dataset will be utilized, in which all values are
lowercased and all non alphanumeric characters have been removed.

3 RESEARCH QUESTION
The main research question this research hopes to resolves is this:
What is the performance and limitations of the DuBio extension with
regards to scalability and execution performance? This is then split
into two sub-questions to aid in answering the main question.

• RQ1:What is the rate at which the runtime of DuBio increases
as the size of a given ID-cluster increases?

• RQ2: How does DuBio scale in runtime as the number of
ID-clusters of the same size are given to it?

• RQ3: How can probabilistic data be generated in DuBio for
a cluster of records that represents all possible merge out-
comes when the record matches in the cluster are assumed
uncertain?
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4 ALGORITHMIC DEVELOPMENT
In this section we will review the development and usage of the
algorithms developed for this research, specifically with the goal
of answering RQ3. All code referenced in this paper can be found
at the github link in the references [4], alongside a README to
explain it’s setup and usage in detail. The code primarily used the
Psycopg2 library for Python as it is the easiest way to interface with
the PostgreSQL database. First, a basic piece of code was written to
convert the large .json file which contained all the data of the WDC
into a database table. This was primarily based off of old code, and as
a result, took the smallest amount of time relative to the rest of the
code development. The primary changes necessary were due to the
fact that the old code had been written to handle an older version
of the WDC data. The new data simplified things significantly, as
in the old version, each product did not have its own unique ID, so
one had to be created using various attributes as the primary key,
coupled with a few other unique decisions by A. Primpeli et al. [5]
which made the original data more complex. The new version was
simplified and had each product having its own unique ID, allowing
for that to be used as the primary key.

The primary difficulty in development was handling the myriad
possibilities when attempting to merge a cluster ID. This can be
seen clearly by looking at the increasing complexity as cluster size
increases. At cluster size 2, there are only two possibilities, either
the records are the same, or they are different. At cluster size 3,
there are now five possibilities, increasing further to 15 different
possibilities at cluster size 4. A complete list of the possibilities for
each cluster size and how records are grouped can be found in ap-
pendix C. This becomes even more complex when the possibilities
of price being NULL is introduced. A price being NULL is considered
as being an unknown, so in the situations where two records are
considered the same, if one of the prices is NULL, then it is assumed
that the not NULL price is the correct one. The algorithm works by
getting all unique cluster IDs, and then getting the records for each
cluster ID. These records are then compared to see which prices are
NULL, which are not, and whether the prices that are not NULL are
the same or different. The correct possibility is then selected via
a long series of if and elif statements and then the correct results
would be output as they were calculated out in advance and then
hard coded into each statement. As a result, each block of code is
very similar, effectively the same lines copy and pasted with small
numbers changing depending on the situation. Because of this, the
technical difficulty of developing these algorithms was not partic-
ularly high, but it did require a high level of meticulousness and
attention to detail. Since everything in the algorithms is hard coded,
the methods only require the names of the base table from which to
get the records, the probabilistic table that it will fill out, and the
name of the dictionary that the user would like the variables to be
stored in.

To give an example of a complex cluster and the sentences that
would be generated from it, consider a cluster of size 4 with the

four records A, B, C, and D. Then assume a situation where the
prices of A and C are the same, B is NULL, and D is not NULL,
but different from A or C. The system defaults to allow the earliest
record be the dominant one if possible, as a result, in all of the
possibilities where A and C were assumed to be the same, it would
be stated that A would exist instead of C. Thus, the record A will
exist in all possibilities where AC were considered the same, and
all possibilities where AB were considered the same due to B being
NULL, and the one situation where ABC were considered the same,
leading to a sentence of length 10. A would have a sentence that
clarifies it exists in the 10 possibilities of: 1, 2, 5, 6, 7, 8, 9, 10, 11,
and 14. Similarly, since B is NULL, records C and D will also gain
an additional two possibilities where they always exist, and B will
only exist in the base five possibilities where B is considered wholly
separate from the others. This then leads to the more complicated
aspect, that is, what happens when two different prices have to be
merged, like AD or CD. In the situations where only two different
prices are merged, an additional two records are generated for that
situation acting as the x value in the sentence. A y variable is then
generated and added to the sentence, one for each price possibility.
They are assumed to have an equal chance of being the correct price,
so each y value has a probability of 0.5. Then we come to the final
problem of the situations like ACD or ABCD. These are handled the
same way, as in the latter situation, B is disregarded due to the price
being NULL. Like before, two new records are generated for the new
possibilities, but the variable being generated is z instead of y to
keep them separate from each other. Since there are two instances
of price A, and only one of price D, the probabilities are instead
set to 0.67 and 0.33 respectively for the z values. As can be seen,
the various possibilities have become very complex an convoluted
already by the time cluster size 4 is reached.

The use of hard coding these possibilities made the implemen-
tation of the code itself quite simple, but had the side of effect of
as the size of the cluster got larger, the more complex the code be-
came, resulting in more time needing to be dedicated to making sure
everything is perfect. Therefore, using this method to work with
larger cluster sizes is not viable in our opinion. We only reached
up to cluster size 4, and while sizes 5 and 6 might still be able to be
done, it would be extremely strenuous and is not recommended. If
further research is to be done with regards to higher cluster sizes, a
new coding method must be used.

5 METHODOLOGY

5.1 Setup
In order to properly perform the queries on the various database
tables to gather data, the database must first be prepared appro-
priately. First, the main database table must be added to the table
using a piece of code that reads the base dataset from the json file
provided by A. Primpeli et al. [5] and inputs it into a main table. This
is a slow process, taking on average 5-6 hours. Next, the database
is organized by utilizing a series of prompts, the complete versions
of which can be found in Appendix A. First a table including all
cluster IDs and their sizes needs to be created and filled out (A.1).
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Then a list of all cluster IDs of a specific size needs to be created
and ordered in a random fashion (A.2). Finally, the base table needs
to be filled out with a certain number of clusters of a given size
(A.3). Then, using the appropriate code, a probabilistic table will be
filled in, alongside a dictionary being filled out in the appropriate
dictionary table. An SQL statement to generate a template for the
base and probabilistic tables can be found in Appendix A.4 and A.5
respectively.

In theWDC, each product has a large number of attributes, which
complicates things with regards to converting a table into a proba-
bilistic one. As a result, the only attributes that are maintained to
the probabilistic tables are cluster ID, category, and price. Cluster
ID is there for self-explanatory reasons, while category and price
were deemed to be interesting attributes worth examining for this
research. Category was a universal attribute, in that it did not have
any NULL values, though it did have a "not found" value which
fulfilled the same situation. Additionally, the category attribute was
uniform, with all products of a cluster always possessing the exact
same category value. Price, meanwhile, is significantly more ran-
dom, and therefore acts as the primary driver for whether or not a
product has multiple different possible entries.

5.2 Gathering Data
Now that both versions of a table with a specific cluster size and
number exist, they can be queried and the overhead of the two can
be determined. Examples of the four different queries used can be
found in Appendix B, with the table being queried being one where
the cluster size is 2, and the number of clusters is 100. You may
notice in the appendix that the queries appear different, but that’s
not the case. They are the same queries, it’s simply that the imple-
mentation differs between the base and probabilistic. The first query
(B.1) seeks entries where the price attribute contains the string ’usd’.
The second query (B.2) seeks entries where the price attribute is not
NULL. The third query (B.3) seeks entries where the category is ’not
found’ which is effectively the version of NULL for the category
attribute. The fourth query (B.4) seeks entries where the length
of the string in the category attribute is longer than 10 characters
long. The reason for this, is that this selects all entries where the
category contains more than one word in the category attribute.
The base table is then queried 10 times for each query, the time
taken is recorded and then averaged for each query. The same is
then done for the probabilistic table. Then the relative difference be-
tween the two times is calculated and recorded. There was a change
in methodology partway through the research due to the discovery
of a limitation in DuBio.

Initially, the cluster counts that would be tested were 100, 250,
500, 1000, 2500, 5000, 6000, 7000, 8000, 9000, and 10000. However,
due to an unexpected limitation of DuBio, which will be discussed
further on, difficulties were discovered at cluster size 4, after cluster
sizes 2 and 3 had been completed. As a result, the cluster counts
used were changed to 100, 250, 500, 750, 1000, 1500, 2000, 2500, 3000,

3500, and 4000, as 4000 was the highest round cluster count that
was usable for size four clusters. The experiment was then redone
for sizes two and three for the counts that we didn’t have data for.
All data gathered, including those from the initial methodology for
sizes two and three can be found int he google sheets page in the
references [3].

5.3 Metrics
In this research, two primary metrics were measured. The first was
"Relative Difference" which represented the relative difference in
time between the average performance time of the base database
query, and the average performance time of the probabilistic data-
base query. The formula used to calculate this metric is:

𝑦 = 𝑡2/𝑡1 (1)

In which 𝑡1 represents the time of the base query, and 𝑡2 rep-
resents the time of the probabilistic query. This metric is used in
Figures 1, 2 and 3 in the results section.

The second metric that was measured was the "Rate of Change"
metric, which represented the rate of increase in performance time
between two different cluster sizes. The formula used to calculate
this metric is:

𝑧 = 𝑦 (𝑛+1)/𝑦𝑛 (2)

In which 𝑦𝑛 represents the smaller cluster size, and 𝑦𝑛+1 repre-
sents the larger cluster size, as we are only comparing differences in
cluster size of 1. This metric is used in Figures 4 and 5 in the results
section.

6 RESULTS
The first set of results that we will look at is the relative difference
in overhead on tables with cluster size 2, which is shown in Figure
1. To explain what exactly is meant by relative difference and the
y value in all following graphs, if y=50, then that would mean it
took the probabilistic table 50 times as long on average to process
its query than it took the base table to process.

From Figure 1, two things can immediately be seen. First, as the
number of clusters in a table increases, the relative difference in
time also increases, at what appears to be a linear rate, though there
are aberrations in the data, most likely due to the sample sizes of
10 not being enough to create a perfect curve, but enough to verify
the trend, which shows a strong linear correlation between cluster
count and relative overhead. The second thing that can be clearly
seen is that the query itself has a drastic impact on the relative
difference, with Query 3 having a much lower relative difference
than the other queries, particularly 2 and 4. The reason for this
is not currently known, though a theory will be examined in the
discussion section.
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Fig. 1. Relative Difference of Cluster Size 2.

Fig. 2. Relative Difference of Cluster Size 3.

Now to see if the this holds for other sizes, observe Figure 2.
which shows the trends for tables made up of clusters of size 3.

Again, the two initial conclusions from Figure 1. hold, in that as
the number of clusters increases, so does the relative difference in
time, at a seemingly linear rate, and different queries have a different
impact on that relative difference, however a few new things of note
makes themselves known. First, the trend appears even more erratic
than at size 2, particularly for query 2, but overall, the trend still
remains. Second, which queries have the highest relative difference
does not remain consistent, with Query 4, which previously was
very similar to Query 2 in its relative difference, is now significantly
less than Query 2, and is now very similar to Query 1 instead. It
should be noted that it may appear that this data starts at a cluster
number of 0. It does not, it starts at a cluster number of 100, it’s
simply that due to the large final scale of the x-axis, it appears to
start at 0 even though it does not.

Fig. 3. Relative Difference of Cluster Size 4.

Next, let us look at Figure 3. which is the same as the previous
two graphs but for cluster size 4.

This graph shows a very clear and clean linear correlation, the
cleanest of all the graphs thus far. This may imply that the erratic
behaviour in the previous two graphs is due to the fact that half of
the data in those graphs was taken at different points in time due to
the change in methodology, however due to time constraints, it was
not feasible to go back and redo the entire experiment, though this
should be done in future to verify results. Second, we see the trend
of which queries increase in relative difference, with Query 2 now
becoming extremely dominant, and Query 4 dropping below Query
1 and now being much closer to Query 3, even though previously
they were on opposite sides of the graph. The exact reasoning for
why the queries act the way they do is beyond the scope of this
research, however, a theory does exist for why, which will be dis-
cussed in the discussion section.

Now, let us look at Figure 4. which graphs the rate of change
between cluster sizes 2 and 3.

This graph shows two trends of significance. First, that at low
numbers of clusters, the relative difference between the two sizes
is significantly more erratic, shown primarily by queries 2 and 4,
but as the number of clusters increases, the relative difference ap-
pears to stabilize to some degree. Second, the query likewise has
an impact on how significant the increase in cluster size has on the
relative difference in overhead, with Query 4 seeming to increase
the relative difference by a factor of approximately 1.4, while Query
3 increase the relative difference by a factor of approximately 2.5, a
rather significant gap.
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Fig. 4. Relative Difference Between Cluster Sizes 2 and 3.

Fig. 5. Relative Difference Between Cluster Sizes 3 and 4.

Finally, let us now observe Figure 5. which is the same as Figure
4. but for cluster sizes 3 and 4.

This graph displays similar results to the previous, with a few new
things of note. Similar to the previous, the results are significantly
more erratic at lower cluster counts, but seem to stabilize some-
what at higher values. However, where they stabilize has changed.
Queries 3 and 4 appear to stabilize at a y value of around 2, implying
a doubling of relative difference, but Queries 1 and two seem to sta-
bilize somewhere between 4 and 5, a much higher relative difference.
Something worth noting is that Queries 1 and 2 are focused on the
attribute of price while Queries 3 and 4 are focused on the attribute
of category. This fact is a significant part of the theory as to why
the queries act the way that they do which will be elaborated upon
in the discussion section.

With this data, we can now attempt to answer the research ques-
tions posed at the start of this research. First, as the size of a cluster
IDs increases, the overhead will increase to some degree, however
it is not consistent as to how much the overhead will increase by.
Additionally, the queries have a significant impact on how much
the overhead increases by. By comparing Figures 4 and 5, we can
conclude that Queries 3 and 4 seem to increase at about a factor
of two each time, implying that for these two queries, increasing
cluster size by a value of n will likely result in a relative increase of
2𝑛 . However, there is a significant change for Queries 1 and 2, and
therefore a trend cannot be determined at this time, beyond that as
cluster size increases, overhead does as well.

Second, as the number of clusters in a table increases, the over-
head will increase at a linear rate, though what the scalar multiple
of that linear rate is exactly is not consistent. Third, it has been dis-
covered that the queries used on the tables has as much an impact
on overhead as cluster size or number if not more so, with cluster
size having a different increase depending on the query, and the
scalar value for the linear increase of overhead in the case of cluster
number appears to be closely tied to the query, which leads to the
next section.

Noted here is the reason that the methodology with regards to
cluster count had to change partway through the research. When at-
tempting cluster size 4, cluster count 5000, an error occurred within
the dictionary table. The reason for this, is that within DuBio, there
is a dictionary that is stored within a "_dict" table, from which the
various probabilities need to be drawn in order to calculate probabil-
ities. Unbeknownst to us at the start of the research, this dictionary
can only hold 16 bits worth of variables, or 65,536 variables within
it. Due to the increasing complexity of the clusters, this limit was
reached at cluster size 4, meaning the full methodology could not
be carried out and had to be changed in order to properly compare
the different cluster sizes.

7 DISCUSSION AND FUTURE WORK
The data gathered over the course of this research showed a trend
that was not initially considered at the start of this research, namely
the significant impact that a query has on the overhead of the usage
of DuBio. Why exactly this occurs is not known precisely, as it is
outside the scope of this research, however, due to data collected in
the course of the research, a hypothesis has presented itself which
can be a starting point for future research.

The initial hypothesis was simply that the amount of results a
query returns is directly related to the relative difference, however
this turned out to be incorrect, though it did have significance. At
lower cluster sizes (2 and 3), Query 4 always had the longest runtime
for the probabilistic table, but not necessarily the highest relative
difference, even though it did the highest number of results. Cluster
size 4 is what helped develop this hypothesis, as it showed Query 2
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completely overtaking Query 4, not just in absolute time but also in
how many results it would return. Thus, the current hypothesis is
that the influence a query has on the relative difference is directly re-
lated to the relative difference between the number of results in the
base query versus the number of results in the probabilistic query.
To use an example, at cluster size 4, count 4000, Query 2 would
return 2815 results for the base query, but 15472 for the probabilistic
one, a factor of approximately 5.5. Compare this to Query 4, with
an initial result of 9516 and a final result of 11747, merely a factor
of approximately 1.25. Since Query 2 has such a massive increase in
the number of results, it obtains a much greater relative difference
than Query 4 does.

As to why this occurs, it is most likely due to the fact that Query
4 is focused on the "category" attribute while Query 2 is focused on
the "price" attribute. Since category is unchanging within a cluster,
the initial results are far more frequent than in Query 2, as price is
NULL approximately 80% of the time. But when price is not NULL,
there is a much higher chance that there will be additional entries,
and since Query 2 is specifically looking for prices that are not
NULL, it finds far more entries in the probabilistic table, and this ra-
tio only increases as cluster size increases, as if there are 4 different
prices, then that means there will be 44 entries in the probabilistic
table as opposed to merely 4 in the initial. This is also seen in how
Query 1, which also focuses on price, similarly has a much higher
relative difference as cluster size increases, while Query 3, which
also focuses on category, has a very low relative difference increase,
as it also has the lowest relative difference between initial and final
of all queries. If this hypothesis is true, then Query 3 actually has a
great deal of value, as it is the query that is closest to showing the
"raw" overhead of calculating probability. We do not have enough
data to definitely prove this hypothesis, but are confident enough
in our current data that even if it is not wholly correct, it is likely to
be at least a partial answer.

Now it is worth looking at what directions future research can
go in. The first is clear, extending the current research with larger
cluster counts and sizes. With regards to counts, we don’t believe
that it is a particularly useful field, in that it will only really be useful
to confirm our current results. In that case, we would recommend
focusing on repeat trials as much as possible to attempt to minimize
the erratic data and trends we see in our data. As for cluster sizes,
this is a more interesting field in our opinion, though as we stated
at the end of section 4, the current method is not viable for larger
cluster sizes due to the ever increasing complexity, so a new method
would have to be developed to truly see the trends of increasing
cluster size. Additionally, more cluster sizes would also allow for
other kinds of research, such as selecting a set of 100 clusters, each
of which can be randomly size 2 or 3, and seeing how that influences
things. What happens when the clusters can be sizes 2, 3 or 4? This
is an interesting field of research, in our opinion, though it would
require the ability to convert larger cluster sizes as well. The current
implementation could be extended to be used for cluster size 5 as
well, and at that stage such research could produce good preliminary

results. However, what we believe is the most interesting field of
research to continue in, would be trying to find the significance that
a query has on the overhead in more express, quantifiable terms, in
the attempt to prove or disprove the hypothesis above.

Finally, we would like to make two recommendations to the
developers of DuBio, should they wish for further research like
this one. First, alter the limitations on the variable dictionary so
that it is no longer limited to a 16 bit integer. Otherwise, larger sizes
and cluster counts will simply not be able to be tested, and DuBio
will remain an extension that can only be used for smaller scale
probabilistic databases. There isn’t anything wrong with that, but
in that case, there is no real need for further research of this variety.
Second, when the question of why the queries acted the way that
they did first came up, we attempted to understand by using the
EXPLAIN ANALYZE command within PostgreSQL. This did have
a use for our research, as it showed a nested loop, which only ran
once, but took up the overwhelming majority of the time of the
query. From this, we were able to conclude that this nested loop
is where the probability calculations are handled, and that these
probability calculations are indeed the most significant aspect of
the query compared to the sorting or filtering, proving the validity
of our data. An example of this plan can be found in Appendix D.
However, what is actually going on within that nested loop remains
a black box. We have no idea what part of the calculations is taking
the most time and such. We therefore recommend the developers to
see if a method to allow PostgreSQL to see and measure the time it
takes various parts of the extension to run, so that further data can
be collected with the goal of improving DuBio.

8 CONCLUSION
The data collected over the course of the research has yet to per-
fectly answer all research questions set out at the beginning of this
research, but it has provided significant evidence to display the
limitations of the DuBio extension alongside showing viable new
avenues for research. We have shown that the relative overhead
increases at a linear rate relative to the number of clusters in a table,
and that overhead increases at a seemingly steady rate as cluster
size increases, though that rate appears dependant on the query
being posed to the database. Finally, we have shown that queries
have a significant impact on overhead, and are of the opinion that
further research into the queries should be the next stage of finding
the limitations of the DuBio extension.
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A SETUP SQL QUERIES

A.1 Appendix A.1
INSERT INTO wdc_eng_cluster_size SELECT cluster_id, COUNT(*)
AS count FROM wdc_eng_offers GROUP BY cluster_id;

This statement inserts all unique cluster IDs alongside its sizes
into a table "wdc_eng_cluster_size".

A.2 Appendix A.2
INSERT INTO wdc_eng_clusters_x (cluster_id) SELECT cluster_id
FROM wdc_eng_cluster_size WHERE number=x ORDER BY RAN-
DOM();

This statement selects all clusters of a specific size, and randomly
sorts them into a new table "wdc_eng_clusters_x" where x is the
cluster size.

A.3 Appendix A.3
CREATE TEMP TABLE wdc_eng_n2_temp( cluster_id BIGINT NOT
NULL, PRIMARY KEY(cluster_id) );
INSERT INTO wdc_eng_n2_temp SELECT * FROM wdc_eng_clus-
ters_2 LIMIT 100;
INSERT INTOwdc_eng_ex_s2n100_base SELECTwdc_eng_offers.category,
wdc_eng_offers.cluster_id, wdc_eng_offers.id, wdc_eng_offers.price
FROM wdc_eng_offers, wdc_eng_n2_temp WHERE wdc_eng_of-
fers.cluster_id=wdc_eng_n2_temp.cluster_id;

This set of statements first creates a temporary table, and fills it
with a limited number of cluster IDs of a specific size, in this case
100 cluster IDs of size 2. This is then used to fill the base table with
the entries of products belonging to those 100 cluster IDs.

A.4 Appendix A.4
CREATE TABLE base_template ( category TEXT, cluster_id BIGINT
NOT NULL, id TEXT NOT NULL, price TEXT, PRIMARY KEY(id) );

This statement is a basic setup statement to create a base table
including the category, cluster_id, id, and price attributes.

A.5 Appendix A.5
CREATE TABLE prob_template ( index BIGINT NOT NULL, nid
BIGNIT NOT NULL, cluster_id BIGINT NOT NULL, category TEXT,
price TEXT, _sentence BDD, PRIMARY KEY(index) );

This statement is a basic setup statement to create a probabilistic
table including the category, cluster_id, and price attributes from
the previous tables, and an index, nid, and _sentence attribute as
the new ones needed for the probabilistic table.

B DATA GATHERING SQL QUERIES

B.1 Query 1
This query selects all entries where the price contains "usd" in it.

B.1.1 Base Query. SELECT t1.id, t1.cluster_id, t1.category, t1.price
FROM wdc_eng_ex_s2n100_base t1 WHERE t1.price LIKE ’%usd%’
ORDER BY t1.cluster_id;

B.1.2 ProbabilisticQuery. SELECT t1.nid, t1.cluster_id, t1.category,
t1.price, t1._sentence, prob(d.dict, t1._sentence) AS probability FROM
wdc_eng_ex_s2n100_prob t1, _dict d WHERE d.name = ’s2n100’
AND t1.price LIKE ’%usd%’ ORDER BY t1.index;

B.2 Query 2
This query selects all entries where the price is not NULL.

B.2.1 Base Query. SELECT t1.id, t1.cluster_id, t1.category, t1.price
FROM wdc_eng_ex_s2n100_base t1 WHERE t1.price IS NOT NULL
ORDER BY t1.cluster_id;

B.2.2 ProbabilisticQuery. SELECT t1.nid, t1.cluster_id, t1.category,
t1.price, t1._sentence, prob(d.dict, t1._sentence) AS probability FROM
wdc_eng_ex_s2n100_prob t1, _dict d WHERE d.name = ’s2n100’
AND t1.price IS NOT NULL ORDER BY t1.index;

B.3 Query 3
This query selects all entries where the category is "not found".

B.3.1 Base Query. SELECT t1.id, t1.cluster_id, t1.category, t1.price
FROM wdc_eng_ex_s2n100_base t1 WHERE t1.category LIKE ’not
found’ ORDER BY t1.cluster_id;

B.3.2 ProbabilisticQuery. SELECT t1.nid, t1.cluster_id, t1.category,
t1.price, t1._sentence, prob(d.dict, t1._sentence) AS probability FROM
wdc_eng_ex_s2n100_prob t1, _dict d WHERE d.name = ’s2n100’
AND t1.category LIKE ’not found’ ORDER BY t1.index;

B.4 Query 4
This query selects all entries where the length of the string in the
category attribute is longer than 10 characters.
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B.4.1 Base Query. SELECT t1.id, t1.cluster_id, t1.category, t1.price
FROM wdc_eng_ex_s2n100_base t1 WHERE length(t1.category)>10
ORDER BY t1.cluster_id;

B.4.2 ProbabilisticQuery. SELECT t1.nid, t1.cluster_id, t1.category,
t1.price, t1._sentence, prob(d.dict, t1._sentence) AS probability FROM
wdc_eng_ex_s2n100_prob t1, _dict d WHERE d.name = ’s2n100’
AND length(t1.category)>10 ORDER BY t1.index;

C RECORD GROUPING POSSIBILITIES WHEN
MERGING

In this appendix is shown how records were grouped in the various
possibilities depending on cluster size. If two letters are separated
by a gap, then they are considered as different records in that cir-
cumstance, but if they are directly next to each other, then they are
considered the same record.

C.1 Cluster Size 2
• 1: A B
• 2: AB

C.2 Cluster Size 3
• 1: A B C
• 2: A BC
• 3: AC B
• 4: AB C
• 5: ABC

C.3 Cluster Size 4
• 1: A B C D
• 2: A BCD
• 3: ACD B
• 4: ABD C
• 5: ABC D
• 6: AB C D
• 7: AB CD
• 8: A B CD
• 9: AC B D
• 10: AC BD
• 11: A C BD
• 12: AD B C
• 13: AD BC
• 14: A D BC
• 15: ABCD

D EXPLAIN ANALYZE QUERY RESULT

The ".." within the plan represents start versus end time. So in the
nested loop it says "2.083..14516.723" meaing it started the nested
loop at 2 milliseconds, and ended it at 14.5 seconds.
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