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Existing studies in mediated social touch have primarily focused on the ef-
fects of touch on users, often neglecting the need for systems to understand
user-initiated touches. This research addressed this gap by developing a
machine learning model to determine the intention behind attention-seeking
touches, specifically differentiating between comforting and warning ges-
tures. Utilizing insights from prior studies, the proposed model enhanced the
understanding of social touch in human-machine interactions. The method-
ology included a literature review and an experiment with human partici-
pants. Participants performed attention-seeking touches on a mannequin
arm equipped with a Touch Sensitive Patch (TSP). Data on touch location,
intensity, and duration were collected and anonymized. A Random Forest
Classifier was primarily used to train the model, with an additional classifier
explored. This research demonstrated the potential of machine learning to
interpret reason-dependent attention-seeking touch signals, advancing the
understanding of social touch.

Additional Key Words and Phrases: Affective-Computing, Social Touch,
Attention-Seeking Touch, Mediated Touch

1 INTRODUCTION
In the field of mediated social touch, studies have primarily focused
on generating and assessing the effects of touch on users. However,
for interactive applications, systems must also possess the capability
to comprehend social touches initiated by users. Understanding the
intricacies of social touch is fundamental to developing machines
with emotional intelligence, particularly in interpreting the purpose
behind attention-seeking touch gestures. Existing research states
the challenge of accurately mapping touch to emotional states or
intentions [6]. To address this, the development of a machine learn-
ing model capable of distinguishing the underlying intention of
attention-seeking touch holds significant promise. Such a model
not only enables robots to respond authentically to touch gestures
but also has implications for enhancing mediated touch experiences
over distance. Current haptic devices are limited by sensor capabil-
ities, hindering their ability to transmit accurately specific touch
sensations. The intention of the attention-seeking touch could be de-
termined through this model and recreated for the person receiving
the touch by enabling their haptic actuators in a manner that could
potentially be more effective than one-to-one mediation [2, 14]. By
developing an AI model capable of distinguishing between com-
forting and warning attention-seeking touch, this research aims
to determine the feasibility of distinguishing the reason for an
attention-seeking touch using machine learning. Despite recent
advancements in machine learning models capable of discerning
various types of touches on robotic skins, a significant gap remains
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in understanding the specific intention behind each touch. A key in-
sight from existing research, such as Yohanan and MacLean’s work
on the Haptic Creature [16], emphasizes the substantial advantages
of interpreting touch data at a higher level of abstraction. While
current models may focus on identifying the type of touch (e.g., a
squeeze or a stroke), they fall short in discerning the underlying
emotional intent, which is critical for authentic human-robot inter-
actions. By categorizing touches based on intent rather than mere
physical characteristics, a robot can better understand and respond
to human intentions and messages. For instance, distinguishing
between a comforting touch meant to soothe and a warning touch
meant to alert can enable a robot to choose appropriate responses,
thus enhancing its role as an empathetic and responsive companion.
This level of understanding goes beyond simply recognizing touch
patterns; it involves interpreting the human’s emotional state and
intentions, making interactions more meaningful and effective. This
study aims to address this gap in knowledge by focusing on the
development of a machine learning model trained to distinguish
between comforting and warning attention-seeking touches. Partic-
ipants will be engaged in a series of interactions with a mannequin
arm equipped with a Touch Sensitive Patch (TSP) covering it, across
diverse scenarios. In some scenarios, participants will be instructed
to convey warning messages through touch, while in others, their
task will be to provide comfort. The readings from the TSP will be
analyzed to capture both the location and intensity of the touch,
forming the basis for training the machine learning model. Through
this research, the goal is to contribute to the understanding of so-
cial touch and explore the potential for creating more authentic
human-machine interactions. Ultimately, the research seeks to de-
termine whether attention-seeking touch carries distinct enough
cues, independent of context, to differentiate between comforting
and warning attention-seeking touches.

1.1 ResearchQuestions
This research tries to answer the following main question:

• Can an AI model be trained that is capable of distinguishing
between an attention-seeking touch on the arm with the
purpose of warning and comforting?

The main research question is answered by providing answers to
the following sub-questions:

(1) What is the current state of the art in ML models for distin-
guishing between different reasons for touch, particularly
social touch?

(2) How can an experiment be designed to effectively collect
relevant data from study participants for training the ML
model?

(3) Which ML model is suitable for training with data from
the Touch Sensitive Patch (TSP) to differentiate between
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attention-seeking touches intended for warning and com-
forting purposes?

1.2 Article Structure
The rest of the research paper is organized as follows:

Section 2 provides a comprehensive review of the current state
of the art in machine learning models for distinguishing between
different types of social touch, highlighting the existing challenges
and limitations.
Section 3 describes the experimental design for data collection,

including the setup with the Touch Sensitive Patch (TSP), software
tools, participant selection, and the specific choice of scenarios used
to elicit comforting and warning touches.
Section 4 explains the methodology for data analysis and model

training, detailing the selection of the machine learning algorithm,
feature extraction, and evaluation metrics used to assess model
performance.

Section 5 presents the results of the study, analyzing the model’s
accuracy and ability to differentiate between comforting and warn-
ing touches, along with any notable findings from the experiment.
Section 6 discusses the implications of the results, potential ap-

plications, and limitations of the study, offering insights into future
research directions.
Finally, Section 7 concludes the paper by summarizing the key

findings and contributions, and suggesting practical implementa-
tions for enhancing mediated touch experiences in human-machine
interactions.

2 STATE OF THE ART
To gather related literature, Google Scholar and Research Rabbit
has been utilized. Using the search terms “social touch”, “human-
computer interaction”, and “models to classify social touch”, several
research papers have been found that were relevant to the topic
of machine learning models capable of distinguishing between rea-
sons for touch. Existing research in the field of mediated social
touch has primarily focused on understanding the physiological and
psychological effects of touch [10], as well as developing models
to recognize and interpret social touch signals. Van Erp and Toet
(2015) emphasize the importance of mediated affective touch in
modulating physiological responses, fostering trust and affection,
and enabling pro-social behavior [14]. However, while significant
progress has been made in developing models to classify different
types of touch, such as discriminative touch [5, 6, 15], fewer studies
have focused on distinguishing the intention or reason behind the
touch. Notably, studies using the CoST dataset [7] have achieved
high accuracy in touch type detection, but they do not address the
distinction between the intent of the touch, such as warning or
comforting.
Jones and Yarbrough’s framework categorizes touch intent into

five main categories: protective, comforting, restful, affectionate,
and playful. Specific touch gestures and physical properties such
as duration, intensity, and pressure characterize each category [16].
For example, comforting touches often involve sustained gestures
like hugging or repetitive actions like stroking, which are distinct
in their pressure and duration compared to other intents. Since

Fig. 1. Touch Sensitive Patch inside casing

different emotions can manifest through similar physical gestures,
interpreting the intention behind a touch could potentially be more
practical than decoding specific emotions.
Silvera-Tawil et al. (2014) have demonstrated the feasibility of

classifying social touch messages using classifiers, providing valu-
able insights into the potential of AI models in this domain [11].
However, the study relied on instructed touch gestures rather than
naturally occurring interactions, which according to Saarinen et al.
(2021c) is not ideal since it relies heavily on participants’ ability to
spontaneously generate social touches. In contrast, this study seeks
to address these gaps by using various scenarios to generate natural
attention-seeking touches with the specific intention of warning or
comforting.

3 DESIGN OF DATA COLLECTION EXPERIMENT
This section describes the design and implementation of the ex-
periment for collecting attention-seeking touch data. Initially, the
tools developed and utilized for the experiment are described. Subse-
quently, the detailed procedures followed to conduct the experiment
in an unbiased manner are presented.

3.1 Apparatus/Materials
3.1.1 Touch Sensitive Patch. The sensor utilized for recording touch
events is the Touch Sensitive Patch (TSP), developed by Gwenn
Englebienne, Henk Waayer, Richard Bults, and Alfred de Vries from
the Human-Machine Interaction (HMI) department at the University
of Twente (Figure 1). The TSP comprises a 27x19 matrix of sensors
embedded within a silicon patch, operating at a refresh rate of 10
Hz. Each sensor in the array provides a touch pressure reading
ranging from 0 to 255. The TSP is designed to emulate the elasticity,
flexibility, and color of human skin, with a lighter shade for visual
representation.

3.1.2 TSP-equippedMannequin Arm. To provide amore natural and
intuitive touch environment, the TSP was mounted on a mannequin
arm (Fig. 2). The TSP, made of silicone, was easily wrapped around
the forearm region where the attention-seeking touch would occur.
Given its thin profile (less than 1 cm in thickness), the final thickness
of the forearm remained realistic. To make the TSP less noticeable,
the arm was covered with a cotton sleeve, which, after testing, was
found to still provide accurate readings.
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Fig. 2. TSP-equipped mannequin arm without (left) and with a sleeve (right)

Fig. 3. Frame capturing a grab gesture

3.1.3 Touch Recording Program. To store the touch data recorded by
the touch-sensitive patch (TSP), a Python program was developed. It
works by saving the pressure values for each sensor on the vertical
and horizontal array at the current point in time. The resulting data
structure is called a frame and is illustrated in Fig. 3. The program
processes each frame by assigning the corresponding timestamp
and then compiles the data into a JSON file along with relevant
metadata. This metadata is subsequently utilized for labeling during
the model training phase. During recording, each frame is shown in
real-time on the screen for the researcher to validate the quality of
the frames. To ensure a higher consistency in the recording start
time, the recording is initiated when at least one sensor detects a
threshold value of 30 or more (out of 255). The threshold value of
30 was determined through empirical testing, as it proved to be
the most reliable for distinguishing actual touches from random
noise. Additionally, a buffer of 2 seconds of pre-threshold recording
is maintained to ensure that no touch information prior to the
threshold detection is lost.

3.1.4 Scenarios. To generate the attention-seeking touches neces-
sary for training the model to distinguish between warning and
comforting touches, four different scenarios were created. Two com-
forting scenarios involved a person who had either sustained a
minor injury after falling off a bike outdoors or was in distress

Fig. 4. Experiment setup

and crying after a phone call inside a university hall. At the end
of these scenarios, participants were invited to give a comforting
touch to the subject of the scenario to provide support. The first
warning scenario involved a person in imminent danger of being hit
by a vehicle while walking on the street, where participants were
asked to touch them on the forearm to warn them of the danger.
The second warning scenario depicted a person blocking a narrow
passage in a bar, with participants asked to touch them to warn the
subject to move so that others could pass. The pairs of scenarios
were written to be different enough from each other while having a
similar reason for performing the attention-seeking touch, either
comforting or warning.

3.1.5 Web Application and Database. To automate the process of
survey data collection and the presentation of warning and com-
forting scenarios to participants, a web application was developed.
The website asks the participant to complete a short survey, after
which the sequence of scenarios is generated and stored in a data-
base. The sequences are generated to ensure equal representation of
scenarios across all participants. Subsequently, the touch recording
program automatically assigns the correct metadata for each partic-
ipant’s touch by fetching the corresponding sequence of scenarios
from the database. The web application was rendered on a tablet
because, compared to a laptop or desktop computer, it occupied less
space on the desk where the TSP-equipped arm was placed, thereby
minimizing distractions.

3.2 Experiment Procedure
All experiments were performed in a private room where a re-
searcher was present to instruct the participant and ensure the
recordings went smoothly. The TSP-equipped mannequin arm was
positioned with the hand toward the seated participant to allow
them to reach it more easily (Fig. 4).

Upon entering the room where the study took place, participants
were welcomed and asked to read and sign a consent form. Follow-
ing this, each participant received instructions on the experimental
procedure. They were informed about the four scenarios they would
need to read and decide whether to touch the mannequin arm ac-
cordingly. Participants were instructed to focus on making the touch
as authentic as possible, without concern for the quality, intensity, or
duration of the touch, and without considering the research purpose
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of the sensor. Participants were asked to imagine that themannequin
arm represented the arm of the person described in the scenario.
They were also given the option to abstain from touching the arm if
they felt uncomfortable doing so for any scenario. Each participant
was then assigned a participant ID, which was used to generate the
sequence of scenarios. After each scenario, participants placed the
tablet on the desk and performed the touch. The recording started
automatically when the participant began touching the arm, and
the researcher manually stopped it once the participant removed
their hand. The entire procedure took approximately 10 minutes
per participant. After the study, participants were thanked for their
participation.

This study was approved by the ethics committee of the Faculty
of Electrical Engineering, Mathematics, and Computer Science of
the University of Twente.

4 DATA ANALYSIS AND MODEL TRAINING
This section describes the steps taken to convert the raw data ob-
tained during experimentation into a suitable format for touch clas-
sification. Additionally, the classification algorithm is introduced.

4.1 Data Filtering
Data filtering is essential to ensure the suitability of the data for
training a model. The first step in filtering was applied during the
recording process. The touch-recording program initiated the record-
ing two seconds before touch detection, ensuring no unnecessary
frames were recorded, which could negatively impact the classifier’s
accuracy. After data was collected, using a Python-based visualiza-
tion tool, each recording was examined visually. With the help of
a filtering tool, any extraneous data at the end of the recordings
was removed, ensuring that the last recorded frame was within two
seconds after the touch had ended.

4.2 Data Format
Each touch recording consisted of an ordered list of frames labeled
with the corresponding touch reason. Each frame had a resolution
of 27x19, thus 513 values per frame (Fig. 3), each being an integer
value between 0 and 255. Each second of recording resulted in 10
frames.

4.3 Model Selection
Several models were considered for classifying the reason for an
attention-seeking touch. However, a Random Forest model (RF)
has been selected due to its solid performance in classifying touch
gestures by training on the HAART, CoST, and original datasets
by previous researchers [1, 4, 12]. While the goal of the model
trained in this research is different since it focuses on the reason
for touch instead of specific gestures, the nature of the data and
the distinct features of touch are similar. Also, the aforementioned
papers provide guidance in the process of optimizing the model’s
performance.

The core concept of this algorithm is to create a forest by training
and integrating various types of decision trees, with the final clas-
sification result determined by a majority vote among these trees.

This method incorporates the ’bagging’ technique along with the
random selection of features [13].
The Random Forest classifier has been implemented using the

Scikit-learn library [9]

4.4 Machine Learning Approach
The sliding window technique was implemented to analyze touch
recordings by dividing the entire set of frames into overlapping
windows and independently extracting features from each window.
This technique helps preserve the relationship between adjacent
frames. A window size of 30 frames was selected for the final model
as it showed the best balance between accuracy on the test dataset
and cross-validation accuracy on the training dataset.
An important factor in improving the performance of the Ran-

dom Forest model is identifying the optimal set of hyperparameters
for the specific use case. Since the best parameters are not known
in advance, it is necessary to try all possible values and test their
performance against each other. For this purpose, the GridSearchCV
function from the Scikit-learn library was utilized. A dictionary
(or grid) of sensible hyperparameter values was defined (Table 1).
GridSearchCV exhaustively evaluates all possible combinations of
hyperparameters provided in the dictionary and assesses each com-
bination using the best average accuracy score after performing
3-fold cross-validation on the training dataset. The best-calculated
and final hyperparameters for the model are presented in Table 2.
The Random Forest model consists of 100 trees. Each tree has no
limit on its maximum depth, requires at least 10 samples to split an
internal node, and requires at least 2 samples at each leaf node.

Table 1. Grid of Hyperparameter Values for Hyperparameter Optimization

Hyperparameter Values
n_estimators 50, 100, 200
max_depth None, 10, 20, 30
min_samples_split 2, 5, 10
min_samples_leaf 1, 2, 4

Table 2. GridSearchCV-computed Hyperparameters

Hyperparameter Value
n_estimators 100
max_depth None
min_samples_split 10
min_samples_leaf 2

The training and testing frames were separated based on the
recording to which they belonged, ensuring that no frames from
the same recording appeared in both the training and test datasets,
thereby preventing biased performance results.
K-fold cross-validation was used to validate the performance of

the system on unforeseen data. With this method, the data set is
partitioned into k subsets. One subset is stored for testing and the
remaining k-1 subsets are used for training the model. The splitting
of data is performed k times such that each subset is tested on. A

4



Development of an AI Model Capable of Distinguishing the Reason for an Attention-Seeking Touch TScIT 41, July 5, 2024, Enschede, The Netherlands

relatively low k value of 5 was selected to ensure that each train/test
group of data samples is sufficiently large to statistically represent
the entire data set.

4.4.1 Features set. In machine learning algorithms, recognition
relies on the integration of measurable properties of the dataset,
known as “features,” to distinguish between different data categories.
The performance of classification heavily depends on strong fea-
tures that can differentiate between the reason for touch. The set
of features used to train the touch reason classifier was mainly
based on the research performed by Viet-Cuong Ta et al. (2015),
where a list of features was selected based on previous works that
proved effective for extracting distinct features from touch gestures.
The extraction of the following three groups of features has been
implemented:
Global features represent the general statistics of all the frames

from a window of frames:
• Average pressure on 513 channels over all frames
• Maximum value of pressure of all channels over all frames
• Mean pressure over all frames of each column
• Mean pressure over all frames of each row

Channel-based features compute various statistics for each channel,
representing a sensor or pixel location on the TSP over all frames of
a window. These features provide the spatial relationship between
each channel:

• Average pressure of each channel over all frames. The abso-
lute difference between each pair of consecutive frames is
computed. Then, the mean of all the absolute differences for
each channel over the window length is extracted.

• Percentage of time when a channel has pressure more than
a threshold T. T is calculated by taking the 90th percentile
of all pressures of all frames of a window. The percentage is
taken by dividing the number of frames in which the channel
had a threshold-exceeding pressure by the window size. The
result is the portion of time each channel has detected strong
pressure.

Sequence features have been extracted using two algorithms that are
commonly used for extracting features in time series data. For the
classifier, these algorithms will extract the changes of all channels
over time:

• Fast Fourier Transform-based features are calculated by ap-
plying the Fast Fourier Transform [3] to the average pressures
for each frame in a window. The operator takes the highest
15 values.

• Discrete Cosine Transform-based features are calculated by
applying the Discrete Cosine transform [8] to the average
pressures for each frame in a window.

The relevance of the set of features was later evaluated by mea-
suring their impact on the classifier’s performance, which will be
discussed in the "Results" section.

5 RESULTS

5.1 Experiment Results
A total of 31 participants took part in the experiment: 24 males and
7 females aged between 18 and 34 years old. Volunteers originated

Fig. 5. Classifier’s confusion matrix

from various countries: The Netherlands (12), Moldova (5), Thailand
(2), China (3), Romania (1), France (1), India (1), Saudi Arabia (1),
Italy (1), Uzbekistan (1), Poland (1), Taiwan (1), South Korea (1). Each
participant read 4 scenarios and was asked to perform an attention-
seeking touch corresponding to the scenario: 2 for warning purposes
and 2 for comforting purposes. Out of the 124 potential touches,
108 were performed. Participants chose to abstain from attention-
seeking touches for 16 scenarios. The majority of touches lasted
less than 15 seconds. However, there were some outliers, as three
participants performed the touch for longer than 15 seconds for 10
recordings in total. The mean pressure value of all sensors during
the recordings is 28.05, the median pressure is 4.5, and the standard
deviation of touch pressure is 47.65.

After visually inspecting each recording, distinct patterns in touch
gestures were observed. While the majority of participants per-
formed a single touch with the entire surface of their palm, 4 partici-
pants used a stroking gesture for comforting touches, 3 participants
used a poking gesture for warning touches, and 2 participants used
the back of their fingers for warning touches.

5.2 Model Training Results
The performance metrics of the Random Forest classifier can be
found in Table 3. The confusion matrix representing the prediction
summary is depicted in Fig. 5. The accuracy of the model on the
testing dataset is 75.23%. The mean cross-vector accuracy on the
training dataset is 68.61%. The 95% confidence interval for the cross-
validated accuracy is 68.61% ± 9.63%. The comparison of the model’s
performance with different subsets of the feature set is shown in
Table 4. The results confirm that extracting all of the features de-
scribed in Section 4.4.1 results in the best performance of the model.
The performance difference between "Global" features and "Global +
Channel-based" features is negligible. However, there is a 7.42% in-
crease in accuracy when extracting the entire feature set compared
to the "Global" set of features alone.

5.3 Model Comparison
A CNN Long Short-Term Memory Network model has also been
trained on the dataset for comparison purposes. The CNN-LSTM
model processes sequences of recording frames by first applying
a series of convolutional filters to each frame to extract spatial
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Table 3. Performance metrics of the model

Metric Score
Accuracy 0.7523
Precision 0.7624
Recall 0.6061
F1 Score 0.6754
ROC AUC 0.8357
Mean CV Accuracy 0.6861

Table 4. Incremental feature set model performance.

Features Acc. on Train Acc. on Test
Global 65.79% 67.81%
Global + Channel-based 64.94% 66.90%
Global + Channel-based + Sequence 68.61% 75.23%

Table 5. Comparison of performance metrics between the Random Forest
model and the CNN-LSTM model.

Metrics Random Forest Model CNN-LSTM Model
Accuracy 73.47% 61.90%
Precision 69.53% 56.00%
Recall 66.91% 62.00%
F1 Score 68.19% 57.00%

features. Each frame is convolved with 32 filters of size 3x3, resulting
in a feature map. These maps are then down-sampled using max
pooling. The flattened feature maps from each frame are then passed
through an LSTM layer with 64 memory units to capture temporal
dependencies across the sequence of frames. Finally, a dense layer
with a sigmoid activation function outputs a single probability value,
indicating whether the input sequence belongs to the "Warning" or
"Comforting" class.
The relative results are in Table 5. The model’s accuracy on the

training data is 61.9%, which is 11.57% lower than the RF model’s
performance.

6 DISCUSSION
We attempted to train an AI model to differentiate between com-
forting and warning attention-seeking touches on the arm. The
performance results of the final model suggest that it is feasible to
distinguish the reasons for attention-seeking touches. With an ac-
curacy of 75.23%, the Random Forest classifier outperforms random
guessing in correctly classifying the reason. However, the model’s
accuracy is still not high for a binary classifier, indicating that it
is not yet suitable for real-world application. Notably, achieving
an accuracy higher than 50% demonstrates that attention-seeking
touches for different reasons have sufficiently distinct features to
be classifiable by the model.
After analyzing the touch recordings, it has been noted that dif-

ferent individuals employ different types of gestures for attention-
seeking touches with the same reason. For instance, while most
participants chose to grab the subject’s arm as a warning gesture

Fig. 6. Frames capturing a poking gesture (left image) and a push with the
back of the fingers (right image)

(Fig. 3), some opted to poke it or push it with the back of their fingers
(Fig. 6). This variation is not problematic for a model distinguishing
between warning and comforting touches, as no participant used
poking for comforting touches. However, it could pose a challenge
for discerning touches meant for rejection, which might also involve
a poking gesture. Nonetheless, distinguishing features such as the
duration and applied pressure of a poking gesture might vary de-
pending on the reason. Future researchers could expand the classes
of reasons for touch to further investigate this aspect.
Given the promising performance of the Random Forest algo-

rithm, most efforts were focused on optimizing its performance. In
contrast, the CNN Long Short-Term Memory Network (CNN-LSTM)
model showed poorer performance in our tests, with accuracy scores
only slightly better than random guessing (Table 5). However, it is
not excluded that with careful model tuning, the CNN-LSTM model
could reach or even exceed the scores of the Random Forest.
The increase in performance from including global, channel-

based, and sequence-based features from the touch recordings demon-
strates that factors such as location, contact size, pressure, and
temporal variations all contribute to identifying the reason for an
attention-seeking touch. This set of features can be further validated
and extended with new features that aid in distinguishing touch
patterns specific to each reason.
Another notable observation is that the mean cross-validation

accuracy of the Random Forest model is 68.61%, compared to 75.23%
accuracy on the test data set. The 6.62% difference suggests that
the current model is not as robust on unseen data, indicating slight
overfitting on the training data set.

7 CONCLUSION
This research aimed to develop an AI model capable of distinguish-
ing between comforting and warning attention-seeking touches on
the arm. The Random Forest classifier demonstrated promising per-
formance with an accuracy of 75.23%, indicating that it is feasible to
differentiate the reasons behind attention-seeking touches based on
features such as location, contact size, pressure, and temporal varia-
tions. Although the model is not yet suitable for real-world applica-
tions due to its current accuracy level, it lays the groundwork for
further exploration and refinement in the field of human-machine
interaction.
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Existing machine learning models have primarily focused on
classifying touch types rather than the intention behind touches.
Studies using the CoST dataset have achieved high accuracy in touch
type detection but do not address the distinction between touch
intents such as warning or comforting. This research contributes to
the state of the art by demonstrating that attention-seeking touches
for different reasons carry distinct enough features to be classifiable
by a model.

The experiment was designed to collect touch data using a Touch
Sensitive Patch (TSP) mounted on a mannequin arm. Participants
were presented with four scenarios—two for warning and two for
comforting—and were instructed to perform the corresponding
touches. The data, including touch location, intensity, and dura-
tion, were recorded and used to train the model. The experiment
ensured that each touch was as authentic as possible by instructing
participants to focus on the intent rather than the quality, intensity,
or duration of the touch.

The Random Forest model was chosen for its robust performance
in classifying touch gestures in previous research. Our implementa-
tion of the Random Forest model yielded a solid accuracy of 75.23%
on the test set. This suggests that the model can effectively utilize
the extracted features to distinguish between warning and com-
forting touches. Despite its promising results, there is still room
for improvement. Future research should focus on refining the fea-
ture set and exploring additional features that may further improve
classification accuracy.
Future work should also investigate the application of more ad-

vanced models, such as deep learning techniques, to enhance per-
formance. Moreover, expanding the classes of reasons for touch
and incorporating more diverse scenarios could provide a more
comprehensive understanding of social touch.
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A APPENDIX A
During the preparation of this work, the author used OpenAI’s
ChatGPT 3.51 in order to generate the four scenarios for the user
study of this research and Grammarly2 to improve the readability
of the work. This helped to formulate nuanced and clear scenarios.
After using these tools/services, the author reviewed and edited the
content as needed and takes full responsibility for the content of
the work. The author edited the last lines of the retrieved scenarios
to clearly state the goal of the touch.

1https://chatgpt.com/
2http://grammarly.com/
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