
BSc Thesis Applied Mathematics

The Block Structure of Linear
Programming Solutions to a
Single Machine Scheduling
Problem

M.H. Kruimer

Supervisor: Dr. M. Walter

July 6, 2024

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Preface

Integer programming is an effective mathematical tool used for optimizing a linear objec-
tive function, subject to linear equality and inequality constraints. The discipline is dis-
tinguished from linear programming by the requirement that all decision variables should
be integers. Integer programming has widespread applications across various fields includ-
ing engineering, transportation and manufacturing. Despite its well-established theoretical
foundation, efficient solving techniques and new applications of integer programming are
still being developed.

This paper delves into a very peculiar solving technique of integer programs, namely
using linear programming. Over the past few decades, the development of powerful algo-
rithms have significantly improved the efficiency and scalability of solving integer programs
using linear programming methods. This research aims to provide both theoretical and
practical insights that demonstrate the structure of these linear programming solutions to
the single machine scheduling problem.

I would like to extend my gratitude to Professor Matthias Walter for his continuous
support and encouragement.

This paper is structured as follows: Section 1 introduces the research goal and formu-
lates the main research question. Section 2 describes the formulation of the linear program
that is used to obtain the results. In Section 3 we derive results based on a weighted
starting time objective function, with the ultimate goal to prove an extended version of
Smith’s Rule. Section 4 dives deeper into the structure of linear programming solutions, as
we introduce the concept of minimal blocks, prove a property for schedules to be a vertex
solution and introduce a graph algorithm that will be used in the computational experi-
ments in Section 5. The experiments focus on 2 aspects, firstly the relevance of the block
structure and secondly the amount of positive decision variables in the obtained solutions.
We conclude in Section 6 with a discussion of the results that were found and potential
future research in this topic.

It is my hope that this work will contribute to the ongoing dialogue in the field of
integer programming and inspire further research and application of linear programming
techniques in this area.

The Block Structure of Linear Programming Solutions
to a Single Machine Scheduling Problem

M.H. Kruimer

July 6, 2024

Abstract

This paper investigates the structure of linear programming solutions to a single
machine scheduling problem. We prove an extension of Smith’s rule, a property of
schedules that are vertex solutions to the underlying feasible region and perform some
computational experiments. The presented results will show the relevance of the so-
called block structure in these linear programming solutions.

Keywords: linear programming, (minimal) block, schedule, Smith’s rule, vertex, solu-
tion structure

Contents

1 Introduction 2

2 Formulation of the problem 3

3 Weighted Starting Time 5
3.1 Job Swapping . 5
3.2 Smith’s Rule . 7
3.3 Job Splitting . 7
3.4 Exchanging Starting Values . 8
3.5 Optimality in Fractional and Non-Fractional Schedules 10

4 Block Structures 12
4.1 Minimal Blocks . 12
4.2 Vertex Schedules . 12
4.3 Graph of a Minimal Block Decomposition 14

5 Computational Experiments 16
5.1 Relevance of Block Structures . 16
5.2 Influence of the Size of the Time Horizon . 18

6 Conclusion 20

1

1 Introduction

Integer programming offers powerful techniques for solving complex decision-making prob-
lems, distinguished by its requirement that some or all decision variables should be integers.
This constraint, to which we refer as the ‘integer constraint’, is critical in accurately mod-
eling real-world problems where solutions must be whole numbers, such as in scheduling,
resource allocation, and network design. The complexity of integer programming makes it
a challenging but essential field of study within Operations Research and applied mathe-
matics.

An essential element of this research is the intersection of integer programming with
linear programming. While linear programming permits continuous variables and is effi-
ciently solvable with well-known algorithms like the Simplex method [2], integer program-
ming problems are NP-hard [4]. It turns out, however, that linear programming serves as
a part of the toolbox of techniques for tackling integer programs.

This paper exemplifies how linear programming can be leveraged to address an integer
programming challenge, namely the Single Machine Scheduling Problem. We allow for a
relaxation of the integer constraint when scheduling jobs on a machine. Using the model
of time discretization we derive results that hold for general objective functions, while we
also dive deeper into a special weighted starting time objective function.

Our goal is to provide a comprehensive understanding of how linear programming
solutions to this single machine scheduling problem are structured. The main question
that we answer in this paper is What is the structure of a linear programming solution
to the single machine scheduling problem? We derive a generalization for Smith’s rule,
prove a claim about whether a solution to the problem corresponds to a vertex in the
underlying feasible region and construct several computational experiments that improve
the understanding of these linear program solutions.

In Section 2 first the single machine scheduling problem will be properly defined. Also
some contraints are constructed, which together form a linear program that will be the base
of the research in the successive sections. Section 3 discusses a special objective function
for the linear program that was constructed in Section 2, namely the weighted starting time
objective function. We derive an extension of Smith’s rule, which states that an optimal
schedule is equivalent to the jobs in that schedule being sorted in non-decreasing order
of their ratios. Section 4, which is the last theoretical section, will includes discussion
about the structure in the solution to the linear program as defined in Section 2. We
define the notion of minimal blocks and show that minimal blocks preserve the property
that a solution is a vertex solution. In Section 5 we discuss results of some computational
experiments that were done based on the results derived in Section 3 and Section 4. The
goal of these experiments is firstly to gain more insight into the relevance of the block
structure that is discussed in Section 4, but also to investigate the amount of positive
decision variables in the solutions. The latter aims to interpret the relevance of so-called
column generating algorithms, which can be used to solve large linear programs. The
results of the computational experiments form the base of our conclusion.

2

2 Formulation of the problem

We consider instances where we schedule a set J of jobs on a machine. Each job should be
executed once over a time horizon T = {0, 1, . . . , T}, the machine can handle at most one
complete job at a time and jobs cannot be interrupted. Each job j ∈ J has a processing
time pj , which is a positive integer, i.e. pj ∈ Z+. Lenstra, Rinnooy and Brucker (1977)
showed that, as soon as arbitrary objective functions are allowed, this variant of the single
machine scheduling problem is NP-hard [5].

When scheduling jobs, we compute a starting time for each job. These starting times
form a feasible schedule, i.e. a schedule that satisfies all requirements stated. A schedule
x ∈ RJ×T consists of variables, one for each (j, t) pair, for all j ∈ J and for all t ∈ T . The
variables xj,t, which are called starting values, are a way of encoding a schedule, and are
defined as follows:

xj,t =

{
1, if job j is started at time t

0, if job j is not started at time t
(1)

This definition, together with the capacity of the machine, which states that at most
one job at a time can be handled, implies that if xj,t = 1 for a job j ∈ J , then no other jobs
are started in the interval [t, t+ pj − 1]. In other words: xj∗,s = 0 for all j∗ ∈ J \ {j} and
for t ≤ s < t+ pj . We call some time t an idle time if none of the jobs is being processed
at t. In other words, t is an idle time if

∑
j∈J

∑
t−pj≤s≤t xj,s = 0.

In the context of this problem, solutions can only have integer values for their xj,t
variables i.e. xj,t ∈ Z. In this paper however, we will not limit ourselves to the context of
this problem and its constraint that all xj,t-values should be integers, towards our goal of
discussing linear programming solutions. We allow for a relaxation of this binary defined
xj,t, more specifically, we allow xj,t to have a non-integer value. Because the definition as
stated in (1) and the formulation of the problem do not allow 0 < xj,t < 1, the program
that we would be solving is an integer program. The reason for the relaxation of (1) is
that a linear program, a program that allows the decision variables to be non-integer, is
easier to solve in practice, as several algorithms like the Simplex method are designed to
compute solutions to these programs.

The relaxation of (1) as discussed is quite common in practice, as Schulz used a similar
technique in 1996 [1] and this was also done by Hall, Schulz, Shmoys and Wein in 1997 [8].
An immediate consequence of this relaxation is that if 0 < xj,t < 1 for some job j at some
time t, that xj,t-th part of j is started at time t. This implies that there exists at least one
more different t∗ ∈ T , such that t∗ ̸= t, that satisfy xj,t∗ > 0. Moreover, as job j should
be executed fully, we conclude that

∑
t∈T xj,t = 1.

Another consequence of the decision to relax the assumption of integer values for xj,t
is the appearance of fractional schedules. In a fractional schedule, there is at least one
(j, t) pair such that 0 < xj,t < 1. Conversely, in a non-fractional schedule, we have
that all xj,t ∈ {0, 1} for all j ∈ J and for all t ∈ T . It is worth pointing out that a
fractional schedule is not a feasible solution to the single machine scheduling problem that
we stated at the beginning of this section. Nevertheless, the aim of this paper is to improve
our understanding of the linear programming solutions to the single machine scheduling
problem, which demands us to discuss the intricacies of these fractional schedules.

Although we allow that a schedule may have multiple positive starting values at some
time t, we still cannot exceed the machine’s capacity that is set to 1 job at a time. In other
words, (2c) should hold for all t ∈ T . We combine these constraints into a linear program,

3

notice that changing (2d) into xj,t ∈ {0, 1} would result in an integer program that would
be a feasible solution to the single machine scheduling problem that we defined.

min [objective function] (2a)

s.t.
∑
t∈T

xj,t = 1 ∀j ∈ J (2b)∑
j∈J

∑
t−pj≤s≤t

xj,s ≤ 1 ∀t ∈ T (2c)

xj,t ∈ [0, 1] (2d)

In the subsequent sections we will derive several results using this LP-formulation,
which has been introduced in 1992 by Sousa and Wolsey [7]. In these sections we will,
amongst others, reason about the feasibility of fractional schedules. As was stated before,
a fractional schedule is not a feasible solution to the single machine scheduling problem.
However, when a fractional schedule x is called feasible, this means that both (2b) and
(2c) are satisfied for this schedule. This allows us to reason about fractional schedules and
their characteristics. We start by deriving an extension of Smith’s rule in the context of
the weighted starting time objective function substituted in (2a).

4

3 Weighted Starting Time

In this section we will derive a useful result for a specific variant of the single machine
scheduling problem, namely the weighted starting time formulation. To define the objective
function of the corresponding linear program, we define the weight of a job j, denoted as
wj , to be a non-negative number for all j ∈ J . The weighted starting time problem is the
problem of finding a schedule in which each wj is multiplied with the t for which xj,t > 0
holds. The cost of a schedule C(x) is a function that has as argument the schedule x, as
defined in Section 2. The cost is determined as follows:

C(x) =
∑
j∈J

∑
t∈T

xj,t · t · wj (3)

The goal of this scheduling problem is to find an optimal schedule, i.e. a schedule
with minimal cost. This means that (3) will be substituted in (2a). An optimal schedule
x∗ that schedules J jobs has cost C(x∗) such that C(x∗) ≤ C(x) for all schedules x that
schedule the J jobs, in other words, all x such that

∑
t∈T xj,t = 1 for all j ∈ J , also see

(2b). As can be concluded from (1) and (3), starting (part of) a job contributes to the
total cost. Moreover, because the cost depends on t, we would like to schedule the jobs
as soon as possible, while of course not exceeding the machine capacity as stated in (2c).
The following observation follows immediately.

Observation 3.1. An optimal non-fractional schedule only has idle times after all jobs
have been scheduled.

We define the ratio of a job as rj =
pj
wj

for j ∈ J . We say that jobs are sorted in
non-decreasing order of their ratios when the jobs with a lower ratio are scheduled before
jobs with a higher ratio. This implies that for all jobs j, j∗ ∈ J in a schedule x such that
rj > rj∗ we have that, if xj,t > 0 and xj∗,t∗ > 0 both hold, then t > t∗ for t, t∗ ∈ T .
Similarly, when jobs are sorted in non-increasing order of their ratios, we schedule the jobs
with a high ratio before the jobs with a low ratio. In the mathematical formulation above
we would have that t < t∗ holds. Note that jobs in a fractional schedule can also be sorted
in non-decreasing or non-increasing order of their ratios.

3.1 Job Swapping

We are interested in the cost of an optimal schedule, but first we provide a condition
that will later prove to be sufficient for a schedule being optimal. This condition relies
on the notion of swapping two jobs in a non-fractional schedule. Suppose a non-fractional
schedule that only has idle times after all jobs have been scheduled, schedules jobs ji for all
i ∈ {1, . . . , n} such that job j1 is scheduled first, job j2 is started whenever job j1 ended,
and so forth. Now we can represent the schedule by the sequence:

j1, j2, . . . , jn−1, jn.

Now swapping jobs jp and jq, where 1 ≤ p < q ≤ n, results in the sequence:

j1, . . . , jp−1, jq, jp+1, . . . , jq−1, jp, jq+1, . . . , jn−1, jn.

In other words, after job jp−1 has ended, we start job jq and job jp+1 is started after job jq
has been executed. We now derive the difference of the cost of a schedule when swapping

5

two jobs that are adjacent in the schedule. We call two jobs adjacent when one of these
jobs is started immediately when some part of the other job has been finished. In other
words, if jp and jq are adjacent in a schedule x, then there is a t ∈ T such that xjp,t > 0
and xjq ,t+pjp > 0.

Lemma 3.2. In a non-fractional schedule, swapping two adjacent jobs with the same ratio
will not change the cost, swapping adjacent jobs that are sorted in increasing order of their
ratios, increases the cost and swapping adjacent jobs that are sorted in decreasing order of
their ratios, decreases the cost.

Proof. Consider a non-fractional schedule x that only has idle times after all jobs j1, . . . , jn
have been scheduled. Denote with ti the starting time of job ji, for i ∈ {1, . . . , n}. Without
loss of generality assume that t1 < t2 < · · · < tn. We now show the difference in cost after
any swap of adjacent jobs.

Suppose that any two adjacent jobs jp and jp+1 in x are swapped to obtain schedule
x∗, where 1 ≤ p ≤ n− 1. For all jobs except jp and jp+1 we know that x and x∗ have the
same values. For the jobs jp and jp+1 we know that x ̸= x∗ only for t = tp, t = tp + pjp+1

or t = tp+1. In other words:

xj,t = x∗j,t ∀j ∈ J \ {jp, jp+1}, ∀t ∈ T
xj,t = x∗j,t for j ∈ {jp, jp+1},∀t ∈ T \ {tp, tp+1, tp + pjp+1}

Because of the swap of jp and jp+1 we know that x and x∗ have these values for these
jobs at the times t ∈ {tp, tp+1, tp + pjp+1}:

xjp,tp = 1 and x∗jp,tp = 0

xjp,tp+1 = 0 and x∗jp,tp+1
= 0

xjp,tp+pjp+1
= 0 and x∗jp,tp+pjp+1

= 1

xjp+1,tp = 0 and x∗jp+1,tp = 1

xjp+1,tp+1 = 1 and x∗jp+1,tp+1
= 0

xjp+1,tp+pjp+1
= 0 and x∗jp+1,tp+pjp+1

= 0

We can calculate the cost difference between x and x∗ using these values:

C(x∗)− C(x) =
∑
j∈J

∑
t∈T

x∗j,t · t · wj − xj,t · t · wj

= x∗jp+1,tp · tp · wjp+1 + x∗jp,tp+pjp+1
· (tp + pjp+1) · wjp

− xjp,tp · tp · wjp − xjp+1,tp+1 · tp+1 · wjp+1

= tp · wjp+1 + (tp + pjp+1) · wjp − tp · wjp − tp+1 · wjp+1

= wjp · (tp + pjp+1 − tp) + wjp+1(tp − tp+1)

= pjp+1 · wjp − pjp · wjp+1 .

If we now assume that rjp > rjp+1 =⇒ pjp
wjp

>
pjp+1

wjp+1
=⇒ pjp+1 · wjp − pjp · wjp+1 < 0,

i.e. C(x∗) < C(x). We conclude that if jp and jp+1 were sorted in decreasing order of
their ratios that swapping them will decrease the cost. It also follows that rjp < rjp+1 =⇒

6

pjp+1 · wjp − pjp · wjp+1 > 0, i.e. C(x∗) > C(x). We conclude that jobs if jp and jp+1 were
sorted in increasing order of their ratios, swapping them will increase the cost. Lastly, if we
suppose that rjp = rjp+1 , we conclude that pjp ·wjp+1 −wjp · pjp+1 = 0, i.e. C(x∗) = C(x),
hence swapping adjacent jobs with the same ratio will not change the cost.

3.2 Smith’s Rule

We can now make an interesting claim about optimality in non-fractional schedules. We
state the following Lemma, which is also known as Smith’s rule [9].

Lemma 3.3. A non-fractional schedule is optimal among all non-fractional schedules if
and only if the jobs in a non-fractional schedule are sorted in non-decreasing order of their
ratios.

Proof. We first prove the “only if”-direction.
Suppose for contradiction that schedule x is optimal but that the jobs in x are not

sorted in non-decreasing order of their ratios. In x, there must be at least one pair of
adjacent jobs that are sorted according to decreasing order of their ratios. By Lemma 3.2
we conclude that the cost of x can be decreased by swapping these adjacent jobs, this
contradicts that x is optimal.

We now prove the “if”-direction.
Consider a schedule x where jobs are sorted in non-decreasing order of their ratios.

Now suppose that x∗ is a non-fractional schedule that is optimal among all non-fractional
schedules. By the “only if”-direction we know that the jobs in x∗ must be sorted in non-
decreasing order of their ratios. This implies that schedule x∗ can be obtained by a series
of swaps between adjacent jobs with the same ratio executed in x. By Lemma 3.2, we
know that these swaps do not change the cost of x, which implies that C(x) = C(x∗), we
conclude that x is optimal.

At the end of this section we aim to derive a more general result, more specifically, the
goal is to show that Lemma 3.3 can also be applied to fractional schedules.

3.3 Job Splitting

In order to ultimately arrive at this conclusion, we now introduce the notion of splitting
a job, which means that we replace a job j in an instance with pj-many jobs ji such that
pji = 1 and wji =

wj

pj
, for i ∈ {1, . . . , pj}. If some schedule contained j with pj > 1 that was

fully or partly executed at time t ∈ T , i.e. xj,t = q for q ∈ (0, 1], splitting j results in a new
schedule x∗. The new schedule does not contain job j, i.e. the variable x∗j,t does not exist,
but instead contains jobs ji, such that x∗ji,ti = q, where ti = t + i − 1, for i ∈ {1, . . . , pj}
and for all t ∈ T such that xj,t > 0. In turns out that the property that jobs are sorted in
non-decreasing order of their ratios is preserved after splitting a job. This is stated in the
following proposition:

Proposition 3.4. The jobs in a fractional or non-fractional schedule are sorted in non-
decreasing order of their ratios after splitting a job in a schedule in which the jobs are
sorted in non-decreasing order of their ratios.

Proof. Consider that schedule x∗ is obtained by splitting job j in schedule x, where x is a
schedule in which J jobs are sorted in non-decreasing order of their ratios. This means that
in x∗ jobs ji are scheduled with pji = 1 and wji =

wj

pj
for i ∈ {1, . . . , pj}. It immediately

follows that rji =
pji
wji

=
pj
wj

= rj .

7

It is known that x∗ji,ti = xj,t for time ti = t − 1 + i, for i ∈ {1, . . . , pj} for all t ∈ T
such that xj,t > 0. This implies, using the fact that rji = rj and that xj′,t = x∗j′,t for all
j ∈ J \ {j} for all t ∈ T , that if the jobs in x are sorted in non-decreasing order of their
ratios, that the jobs in x∗ are sorted in non-decreasing order of their ratios.

Using Lemma 3.3, the next observation immediately follows:

Observation 3.5. Splitting a job in an optimal non-fractional schedule results in an op-
timal non-fractional schedule.

We now know that optimality is preserved after a job has been split in a non-fractional
schedule. This does not necessarily imply that the cost of a schedule after splitting a job
has in- or decreased with regards to the original instance. It turns out that this increase
in cost can be derived for both fractional and non-fractional schedules.

Lemma 3.6. Splitting a job j in a fractional or non-fractional schedule increases the cost

by
pj−1∑
i=0

i · wj

pj
.

Proof. Consider a fractional or non-fractional schedule x and denote with x∗ the schedule
after job j has been split. This means that j is replaced by jobs ji in x∗, such that x∗ji,ti = q,
where ti = t+ i− 1, for i ∈ {1, . . . , pj}, for all t ∈ T such that xj,t = q.

We now calculate the difference in cost between these schedules, C(x∗)−C(x). Because
all other jobs j′ ∈ J \ {j} have not been changed or rescheduled when splitting job j, we
conclude that

C(x∗)− C(x) =
∑
j∈J

∑
t∈T

x∗j,t · t · wj −
∑
j∈J

∑
t∈T

xj,t · t · wj

=

pj∑
i=1

∑
t∈T

x∗ji,ti · ti · wji −
∑
t∈T

xj,t · t · wj =
∑
t∈T

(

pj∑
i=1

x∗ji,ti · ti · wji − xj,t · t · wj)

=
∑
t∈T

(

pj∑
i=1

ti · wji − t · wj) =
∑
t∈T

(

pj∑
i=1

((t+ i− 1) · wj

pj
)− t · wj)

=
∑
t∈T

(t · wj +

pj−1∑
i=0

(i · wj

pj
)− t · wj) =

pj−1∑
i=0

i · wj

pj

3.4 Exchanging Starting Values

We now consider a special case of the set of jobs J , namely that pj = 1,∀j ∈ J . In other
words, we consider schedules where all job have the same unit processing time. Before we
can start proving some necessary condition for a fractional schedule to be optimal, we first
state a sufficient condition, similar to Lemma 3.2, but generalized to fractional schedules
as well. To ultimately end up at this goal we introduce the notion of exchanging starting
values between two jobs over some time period by some value. When exchanging starting
values of jobs jp and jq over the time period tp, tq with the value M in a schedule x, this
creates a new schedule x∗ where the starting value of job jp at time tp is decreased by
M , but at time tq is increased by M , in other words we have x∗jp,tp = xjp,tp − M and
x∗jp,tq = xjp,tq + M . The opposite happens for job jq, its starting value decreases at tq
and increases at tp by M , this implies that x∗jq ,tp = xjq ,tp +M and x∗jq ,tq = xjq ,tq −M . A

8

necessary condition for this exchange of starting values is of course that xjp,tp > M and
xjq ,tq > M both hold.

We now introduce the vector operator Ψ : QJ×T → R such that Ψx = M holds for the
biggest M such that for all xj,t ∈ X = {xj,t|xj,t > 0}, we have that xj,t = k ·M for some
k ∈ Z. The existence of such an M is proven in the next proposition and would make sure
that in finitely many steps we can exchange starting values to obtain any schedule x∗ that
satisfies for all x∗j,t ∈ X∗ = {x∗j,t|x∗j,t > 0}, we have that x∗j,t = k∗ ·M for some k∗ ∈ Z. In
other words with such an M , we would have that xj,t ∈ 1

MZ and x∗j,t ∈ 1
MZ if xj,t ∈ X and

x∗j,t ∈ X∗.
It turns out that if we assume that x ∈ QJ×T , that the following proposition guarantees

the existence of such an M .

Proposition 3.7. For each finite set of rationals x ∈ Q there exists an M such that each
element in the set is in 1

MZ.

Proof. Consider a set X ∈ Q such that X = {x1, x2, . . . , xn}. We can write each xi as ai
bi

for i ∈ {1, . . . , n} and for ai, bi ∈ Z. We now set M = lcm{bi|1 ≤ i ≤ n}, which implies
that xi =

ai
bi

= ai·ki
bi·ki = ai·ki

M , where ki is an integer for i ∈ {1, . . . , n}. ai · ki ∈ Z which
implies that xi ∈ 1

MZ.

An immediate consequence of Proposition 3.7 is that we now know that for all sets of
schedules X = {xj,t|j ∈ J, t ∈ T} such an M exists. This will help us proving the following
result:

Lemma 3.8. Exchanging starting values between two adjacent jobs in a fractional or non-
fractional schedule where all jobs have unit processing times will not change the cost if the
jobs have the same ratios, increases the cost if the jobs are sorted in increasing order of
their ratios and decreases the cost if the jobs are sorted in decreasing order of their ratios.

Proof. Consider a schedule x where n jobs j1, . . . , jn with pji = 1 for all i ∈ {1, . . . , n}
are scheduled. Suppose schedule x∗ is obtained by exchanging starting values of any two
adjacent jobs jp and jq, over some time period tp, tp+1 = tp, tp + 1 by M , where M = Ψx,
for some 1 ≤ p ≤ n and 1 ≤ q ≤ n. Note that for the choice of p and q we require that
xjp,tp > 0 and xjq ,tp+1 > 0, such that these jobs are really adjacent. By the choice of M
we know that both xjp,tp ≥ M and xjq ,tp+1 ≥ M .

It is known that x and x∗ are similar for jobs j ∈ J \{jp, jq} and for t ∈ T \{tp, tp+1},
in other words:

xj,t = x∗j,t for j ∈ J \ {jp, jq}, for t ∈ T
xj,t = x∗j,t for j ∈ {jp, jq}, for t ∈ T \ {tp, tp + 1}

For the jobs jp and jq we have the following starting values at t ∈ {tp, tp + 1}:

xjp,tp ≥ M and x∗jp,tp = xjp,tp −M ≥ 0

xjp,tp+1 ≥ 0 and x∗jp,tp+1 = xjp,tp+1 +M > 0

xjq ,tp ≥ 0 and x∗jq ,tp = xjq ,tp +M > 0

xjq ,tp+1 ≥ M and x∗jq ,tp+1 = xjq ,tp+1 −M ≥ 0

It is worth to note that if x is feasible, which would imply that xjp,tp ≤ 1 and xjq ,tp+1 ≤ 1,
we know that x∗ is feasible as well, as this follows from xjp,tp+1 ≤ 1−M and xjq ,tp ≤ 1−M .

9

Having established that x∗ still is a feasible fractional or non-fractional schedule, we
can now calculate the difference in cost between x and x∗:

C(x∗)− C(x) =
∑
j∈J

∑
t∈T

(
x∗j,t · t · wj − xj,t · t · wj

)
= x∗jp,tp · tp · wjp + x∗jp,tp+1 · (tp + 1) · wjp + x∗jq ,tp · tp · wjq

+ x∗jq ,tp+1 · (tp + 1) · wjq − xjp,tp · tp · wjp − xjp,tp+1 · (tp + 1) · wjp

− xjq ,tp · tp · wjq − xjq ,tp+1 · (tp + 1) · wjq

= (x∗jp,tp − xjp,tp) · tp · wjp + (x∗jp,tp+1 − xjp,tp+1) · (tp + 1) · wjp

+ (x∗jq ,tp − xjq ,tp) · tp · wjq + (x∗jq ,tp+1 − xjq ,tp+1) · (tp + 1) · wjq

= −M · tp · wjp +M · (tp + 1) · wjp +M · tp · wjq −M · (tp + 1) · wjq

= M(wjp − wjq).

Since pj = 1, we have that rj = 1
wj

for all j ∈ J . Now suppose that the jobs jp and
jq had equal ratio, we conclude that C(x∗) − C(x) = 0, hence the cost has not changed.
If jobs jp and jq were sorted in increasing order of their ratios however, we would have
that 1

wjq
> 1

wjp
=⇒ wjp − wjq > 0, which implies that C(x∗) − C(x) > 0, the cost of x∗

is bigger, hence the cost of x has increased. Similarly we conclude that if jp and jq were
sorted in decreasing order of their ratios, that the cost of the schedule x∗ has decreased.

It turns out that optimality of a fractional or non-fractional schedule where all jobs
have unit processing time follows in a similar manner as Lemma 3.3. We state and prove
this in the following Lemma:

Lemma 3.9. A fractional or non-fractional schedule where all jobs have unit processing
times is optimal if and only if the jobs are sorted in non-decreasing order of their ratios.

Proof. We first prove the “only if”-direction.
Suppose for contradiction that schedule x is optimal but that the jobs in x are not

sorted in non-decreasing order of their ratios. In x, there must be at least one pair of
adjacent jobs that are sorted according to decreasing order of their ratios. By Lemma 3.8
we conclude that the cost of x can be decreased by exchanging the starting values of these
adjacent jobs with M = Ψx, this contradicts that x is optimal.

We now prove the “if”-direction.
Consider a schedule x where jobs are sorted in non-decreasing order of their ratios.

Now suppose that x∗ is a schedule that is optimal among all fractional and non-fractional
schedules. By the “only if”-direction we know that the jobs in x∗ must be sorted in non-
decreasing order of their ratios. This implies that schedule x∗ can be obtained from x by a

series of exchanges of starting values of adjacent jobs with the same ratio by M∗ = Γ

[
Ψx
Ψx∗

]
,

where Γ : R2 → R returns the lowest M∗ such that M∗ = Ψx · k and M∗ = Ψx∗ · k∗ for
some integers k, k∗ ∈ Z in x. By Lemma 3.2, we know that these exchanges do not change
the cost of x, which implies that C(x) = C(x∗), we conclude that x is optimal.

3.5 Optimality in Fractional and Non-Fractional Schedules

We now may extend the statements as in Lemma 3.3 and in Lemma 3.9 to a more general,
combined version. It is noteworthy that Theorem 3.10 has been proven before by Van den

10

Akker in 1994 [6], the existence of this proof came to my attention only after the proof
presented here was established. Nevertheless, the proof in this paper provides an intuitive
approach to the problem, using the notions of splitting jobs and exchanging starting values.
The proof provided by Van den Akker considers dual programs of the LP provided in (2a)-
(2d).

Theorem 3.10. A fractional or non-fractional schedule is optimal if and only if the jobs
in that schedule are sorted in non-decreasing order of their ratios.

Proof. We first prove the “if”-direction.
Consider a schedule x that schedules J jobs. Let n be the number of jobs in x that

have a processing time of at least 2. In other words: n = |{j ∈ J |pj > 1}|. Suppose that
the jobs in x are sorted in non-decreasing order of their ratios. We now prove that x is
optimal, by induction on n. For the base case we suppose n = 0. By Lemma 3.9 we can
immediately conclude that x is optimal. We now assume that for n = k the statement
does hold, i.e. x is optimal. As an induction step we now set n = k + 1. We denote
with x′ an optimal schedule that schedules the same jobs as x, note that both x and x′

schedule k + 1 jobs that have a processing time of at least 2. x′ being optimal implies
that C(x′) ≤ C(x). We now split one of the jobs j′ in both schedules, for which it holds
that pj′ > 1. Let xnew be the schedule after splitting j′ in x and x′new be the schedule
after splitting j′ in x′. Note that both xnew and x′new now contain k jobs with a processing
time of at least 2. By Proposition 3.4 the jobs in xnew are sorted in non-decreasing order
of their ratios if the jobs in x are sorted in non-decreasing order of their ratios. By the
induction hypothesis we conclude that xnew must be optimal. By Lemma 3.6 we know
that C(x′new) = C(x′)+

∑pj′−1

i=0 i · wj′
pj′

≤ C(x)+
∑pj′−1

i=0 i · wj′
pj′

= C(xnew). Because C(xnew)

is optimal we conclude that C(xnew) = C(x′new) =⇒ C(x′) = C(x). We conclude by
optimality of x′ that x is optimal. This completes the induction step and the proof, as
we have shown that a fractional or non-fractional schedule where the jobs are ordered in
non-decreasing order of their ratios is optimal.

We now prove the “only if”-direction.
Again, let n be the number of jobs in a schedule x that have a processing time of at

least 2. In other words: n = |{j ∈ J : pj > 1}|. Suppose that x is optimal. We now
prove that the jobs in x are sorted in non-decreasing order of their ratios, by induction
on n. For the base case we suppose n = 0. By Lemma 3.9 we can immediately conclude
that the jobs in x are sorted in non-decreasing order of their ratios. We now assume
that for n = k the statement does hold, i.e. the jobs in x are sorted in non-decreasing
order of their ratios. As an induction step we now set n = k + 1. We denote with x′

a schedule that schedules the same jobs as x such that the jobs in x′ are sorted in non-
decreasing order of their ratios. Note that both x and x′ schedule k + 1 jobs that have
a processing time of at least 2. By the “if”-direction, we know that x′ is optimal, which
implies that C(x′) = C(x). We now split one of the jobs j′ in both schedules, for which
it holds that pj′ > 1. Let xnew be the schedule after splitting j′ in x and x′new be the
schedule after splitting j′ in x′. Note that both xnew and x′new now contain k jobs with
a processing time of at least 2. By Proposition 3.4 the jobs in x′new are sorted in non-
decreasing order of their ratios if the jobs in x′ are sorted in non-decreasing order of their
ratios. By the “if”-direction we conclude that x′new is optimal. By Lemma 3.6 we know
that C(x′new) = C(x′) +

∑pj′−1

i=0 i · wj′
pj′

= C(x) +
∑pj′−1

i=0 i · wj′
pj′

= C(xnew). We conclude
that C(xnew) must be optimal as well. By the induction hypothesis we conclude that the
jobs in xnew are sorted in non-decreasing order of their ratios, which implies that the jobs
in x are sorted in non-decreasing order of their ratios as well.

11

4 Block Structures

In this section we start by defining what we mean with the block structure of a solution to
the single machine scheduling problem. After proving a few useful results we are ready to
establish the relevance of this block structure by doing some computational experiments.

4.1 Minimal Blocks

Because we are interested in the solution structure of the problem as stated in Section 2,
we start by defining a block. A block in a schedule x is a subset B ⊆ T where B is an
interval over the integers, such that each job is either fully started and completed in B or
not started in B. This means that if xj,t > 0 for some job j and t ∈ B, then xj,t∗ = 0 if
either t∗ /∈ B or t∗ + pj − 1 /∈ B. As B is an interval we have that if a ∈ B and c ∈ B and
we have a < b < c, then b ∈ T =⇒ b ∈ B. Consequently, we have that

∑
t∈B xj,t = 0 or∑

t∈B xj,t = 1 for all jobs j.

Observation 4.1. Every feasible schedule contains at least one block.

Consider a schedule x scheduling J jobs that contains a block B, then in this block a
subset J∗ ⊆ J jobs are scheduled. Scheduling jobs J∗ over the interval B ⊆ T is a single
machine scheduling problem of itself. Such a schedule, which schedules the jobs in a block
on the time horizon of that block, is called a subschedule of a block. By the definition
of a block, we know that for each subschedule constraints (2b) and (2c) are satisfied. As
Observation 4.1 implies, a schedule itself is a block. Before we can make some general
statements about blocks, we would like to extend the definition of a block, to separate
blocks that do strictly contain other blocks and blocks that do not, in other words blocks
that are as “small" as possible. A block is a minimal block if it does not strictly contain
any block, i.e. none of the strict subsets of the block are blocks. This brings us to the
following observation.

Observation 4.2. The time horizon of every block can be partitioned into minimal blocks
and a set of times at which the machine is idle.

In Proposition 4.6 we discuss an algorithm that computes this partitioning efficiently.
We call such a partition, consisting of minimal blocks and idle times, a minimal block
decomposition. Also related to Observation 4.1, we can conclude that because each feasible
schedule is a block, that Observation 4.2 also applies to schedules, i.e. each schedule has a
minimal block composition, something that will be useful in a later proof.

4.2 Vertex Schedules

A schedule x is called a vertex schedule if it is a unique minimizer over some linear function
of the underlying polyhedron of the linear program. This name comes from the fact that
such a schedule corresponds to a vertex of the feasible region of the underlying single ma-
chine scheduling problem. The next observation immediately follows from this definition,
which can be applied to fractional and non-fractional schedules.

Observation 4.3. A schedule is a vertex schedule if and only if it cannot be written as a
convex combination of two different schedules.

Something that follows from this definition and Observation 4.3 is that each non-
fractional schedule is a vertex schedule. As we are interested in the solution structure of
the solution to the single machine scheduling problem, we aim to provide a condition for

12

a schedule to be a vertex schedule. We can show that vertex schedules are built out of
blocks that are vertex schedules.

Theorem 4.4. A schedule is a vertex schedule if and only if the subschedule of every
minimal block that is contained in the schedule is a vertex schedule within its minimal
block.

Proof. We first prove the “only if" direction. By Observation 4.2 vertex schedule x over
T can be divided into k minimal blocks Bi with corresponding subschedules x(i), for
i ∈ {1, . . . , k} such that T = (

⋃k
i=1Bi) ∪ T ∗, where T ∗ is the set of times at which

the machine is idle. Suppose now for contradiction that there is a block Bj that is not
a vertex schedule. This implies by Observation 4.3 that for t ∈ Bj , subschedule x(j) is
a convex combination of two different schedules x(j,1) and x(j,2) that schedule the jobs in
Bj over the time interval Bj . In other words, there exists a λ such that 0 < λ < 1 and
x(j) = λx(j,1) + (1− λ)x(j,2). We conclude that

x =

x(1)

...
x(j)

...
x(k)

 =

x(1)

...
λx(j,1) + (1− λ)x(j,2)

...
x(k)

 = λ

x(1)

...
x(j,1)

...
x(k)

+ (1− λ)

x(1)

...
x(j,2)

...
x(k)

for some λ such that 0 < λ < 1. Hence x is a convex combination of two schedules and
not a vertex schedule, we have reached a contradiction.

We now prove the “if" direction. Again, schedule x over T can be divided into k
minimal blocks Bi and a set of times at which the machine is idle. Denote the corresponding
subschedules of the blocks as x(i) for i ∈ {1, . . . , k}. Because B1, ..., Bk are vertex schedules,
we know that for each block Bi there exists a ci such that x(i) is the unique ci-minimizer
for i ∈ {1, . . . , k}. We now prove that x is the unique c∗-minimizer for some c∗ that we
construct. For this, we use the b(j)-function, which takes a job j as parameter and returns
i, when j is scheduled in block Bi, for i ∈ {1, . . . , k}. We now introduce

M =

{
1, if {x(i)j,t |x

(i)
j,t > 0} = ∅

minj∈J,t∈T ,i∈{1,...,k}{x
(i)
j,t |x

(i)
j,t > 0}, else

Because there is a finite number of positive x
(i)
j,t , we know that the minimum value of

all these variables must be finite, which implies that M > 0. Let

c∗(x) =
∑

j∈J,t∈T
c⊺j,txj,t + ε

k∑
i=1

c⊺i x
(i),

where

cj,t =

{
0, if t ∈ Bb(j)

2T 2 · |J | · 1
M , else

ε = [2k · max
1≤i≤k

c⊺i x
(i)]−1 (4)

13

We now consider some other schedule x′ ̸= x that schedules the same jobs J as x. We
consider two cases, firstly that x′ does not have the same block structure as x and secondly
that the block structures of x′ and x correspond.

Suppose that x′ that does not have the same block structure as x, in other words there
is a t′ ∈ T and a job j such that x′j,t′ ≥ M > 0 and [t′, t′ + pj − 1] /∈ Bb(j). Then

∑
j∈J,t∈T

cj,t · x′j,t = cj,t′ · x′j,t′ = 2T 2 · |J | · 1

M
· x′j,t′

≥ 2T 2 · |J | · 1

M
·M = 2T 2 · |J |.

Recall that using (4) we can conclude that:

c∗(x′) =
∑

j∈J,t∈T
cj,t · x′j,t + ε

k∑
i=1

cix
′(i) ≥ 2T 2 · |J | ≥ 1.

Because cj,t = 0 for all t ∈ Bb(j), we know that by construction of ε in (4), we have
that:

c∗(x) =
∑

j∈J,t∈T
cj,txj,t + ε

k∑
i=1

cix
(i) = ε

k∑
i=1

cix
(i)

= [2k · max
1≤i≤k

c⊺i x
(i)]−1

k∑
i=1

cix
(i)

≤ [2k · max
1≤i≤k

c⊺i x
(i)]−1

k∑
i=1

max
1≤i≤k

c⊺i x
(i)

= [2k · max
1≤i≤k

c⊺i x
(i)]−1 · k · max

1≤i≤k
c⊺i x

(i) =
1

2

This implies that c∗(x′) > c∗(x). We conclude that each c∗-minimizer must schedule
job j in block B(j), i.e. it should have the same block structure as x.

Now suppose that x′ with subschedules x′(i) for i ∈ {1, . . . , k} such that
∑

j∈J,t∈T c⊺j,tx
′
j,t =∑

j∈J,t∈T c⊺j,txj,t = 0. In other words, in x′ each block is scheduled in b(j).
Because x′ ̸= x, we know that there exists an p ∈ {1, . . . , k} such that x′(p) ̸= x(p).

This implies that c⊺px(p) < c⊺px′(p), as x(p) is the unique cp-minimizer. As x(i) is the
unique ci-minizimer for all i ∈ {1, . . . , k}, we can conclude that c⊺i x

(i) ≤ c⊺i x
′(i) for all

i ∈ {1, . . . , k}, which implies that
∑k

i=1 c
⊺
i x

(i) <
∑k

i=1 c
⊺
i x

′(i), which means that x is the
unique c∗-minimizer and hence must be a vertex schedule.

4.3 Graph of a Minimal Block Decomposition

To be able to measure the relevance of the so-far discussed features of block structures, we
are interested in constructing some algorithm that computes the minimal block decomposi-
tion of a schedule. It turns out that graph theory allows us to define an efficient algorithm
that solves this problem. The pseudocode for this algorithm is written in Algorithm 1.

14

Algorithm 1 MinimalBlockDecomposition(x)

Variables: xj,t for j ∈ J for t ∈ T
Create graph G = (J,∅)
for j ∈ J do

tj,min := mint∈T {xj,t|xj,t > 0}
tj,max := maxt∈T {xj,t|xj,t > 0}+ pj − 1
Interval Ij := [tj,min, tj,max]
for k ∈ J \ j do

if Ij ∪ Ik is non-empty then
Add the edge {j, k}

end
end
Compute the connected components V1, V2, . . .Vm of G using BFS
return V1, V2, . . .Vm

The complexity of the graph algorithm as written in Algorithm 1 is stated in the
following observation:

Observation 4.5. The graph algorithm as defined in Algorithm 1 terminates in O(|J |2)-
time.

Before we can start using MinimalBlockDecomposition in a computational setting, we
first prove that the algorithm as written in Algorithm 1 does work correctly. This leads us
to the following proposition:

Proposition 4.6. Algorithm 1 correctly returns minimal block decomposition of a schedule.

Proof. If suffices to show that jobs ji and jk belong in the same minimal block if |Ii∪Ik| ≥ 1,
where Ii and Ik are the intervals as defined in Algorithm 1.

Consider a schedule x that schedules n jobs ji, for i ∈ 1, . . . , n. Assume that for
two jobs ji and jk, such that 1 ≤ k < i ≤ n we have that |Ii ∪ Ik| ≥ 1. Now suppose
for contradiction that x has a minimal block decomposition consisting of a set of idle
times T ∗ and H minimal blocks Bh for h ∈ {1, . . . ,H} such that xji,ti > 0 for some
ti ∈ Bhi

and xjk,tk > 0 for some tk ∈ Bhk
̸= Bhi

. Because Bhi
and Bhk

are part of the
minimal block decomposition of x, we know that Bhi

∪ Bhk
= ∅, they can not contain

other blocks. By the definition of a minimal block, we have that
∑

t∈Bhi
xji,t = 1 and∑

t∈Bhk
xjk,t = 1, hence we can assume without loss of generality that tk ≤ ti for all

tk, ti such that xjk,tk > 0 and xji,ti > 0. Moreover, we can state that if ti ∈ Bhi
and

tk ∈ Bhk
then ti + pji ∈ Bhi

and tk + pjk ∈ Bhk
. The fact that |Ii ∪ Ik| > 1 implies that

tk,max = maxt∈T {xjk,t|xjk,t > 0}+ pjk − 1 ≥ mint∈T {xji,t|xji,t > 0} = ti,min. We conclude
that tk,max ≥ ti,min and that tk,max ∈ Bhi

∪Bhk
, this contradicts that Bhi

∪Bhk
= ∅. We

conclude that ji and jk must be scheduled inside the same minimal block. This implies
that the number of components of the graph as created in Algorithm 1 is the number of
minimal blocks and that the size of such a component equals the number of jobs scheduled
inside that minimal block.

We are now ready to perform some computational experiments, the results of which
are denoted in the next section.

15

5 Computational Experiments

We design a computational experiment with the main goal to obtain more insight into the
relevance of the block structure that was discussed in the previous sections. The linear
program that we construct is:

min
∑
j∈J

∑
t∈T

xj,t(λ · t · wj + (1− λ) · uj,t)

s.t. (2b), (2c), (2d)

We set up this linear program in the Gurobi module integrated in Python, also using
the Gurobi module to solve the LP [3]. For this objective function we have that 0 ≤ λ ≤ 1,
the variables Uj,t and wj are drawn independently from a uniform distribution over [−1, 1]
and [0, 1] respectively and pj ∼ Uniform(1, 5). Furthermore we calculate T after generating
the processing times pj , that is T =

∑
j∈J pj . This is not very relevant for a pure weighted

starting time formulation, as for bigger T the last few slots will always be empty. Using
the randomly distributed uj,t-variables however, implies that schedules might contain idle
times.

One of the experiments that we execute is varying the value of λ between 0 and 1.
Running the linear program for multiple instances and recording the results of the graph
algorithm as defined in Algorithm 1 will result in data on the number of minimal blocks
that schedules contain and the number of jobs per block. Because the objective function is
a convex combination of the weighted starting time objective function and some random
uj,t dependent function, by varying the λ we expect to gain more insight into the relative
importance of the block structure in weighted starting time formulated programs.

Another experiment that we perform is for some fixed values of λ that the number
of positive xj,t-variables in a schedule will be stored. For these specific λ values, we will
be varying the length of the time-horizon T . As stated before, in combination with the
randomly generated part of the objective function, we expect to witness some different
scheduling behaviour whenever the time-horizon is bigger than the sum of all the processing
times. This is interesting, because recent developments have shown that so-called column-
generating algorithms are a powerful tool to help solve large linear programs. As the speed
of the column-generating algorithm depends on the number of positive decision variables,
it is convenient to have an idea of the size of the number of positive decision variables.

5.1 Relevance of Block Structures

We choose λ ∈ {0, 0.4, 0.6, 0.8, 0.9, 1}. This way, we hope to envision the influence of the
objective function on the number of blocks. We run N = 1000 instances with n = 20
jobs for each λ. For each instance we record the number of blocks in the minimal block
decomposition of the schedule, as proven in Lemma 4.6. The result is shown in Figure 1,
which has Subfigures 1a until 1f.

In the histograms one can easily see that the higher the λ, the higher the average of
the number of blocks. Recall that in case of λ = 0, the objective function represents a
completely randomized schedule. Concluding from Figure 1a, we can say that such an
objective function results in a low number of minimal blocks in the minimal block decom-
position, as the linear program will find a way to efficiently schedule jobs over multiple
starting values. Once we start increasing λ, we can see that the number of blocks is a lot
more spread over the possible [1, 20]-interval. In Figure 1b the most frequent encountered

16

(a) The number of blocks in a sched-
ule where the λ-value = 0

(b) The number of blocks in a sched-
ule where the λ-value = 0.4

(c) The number of blocks in a sched-
ule where the λ-value = 0.6

(d) The number of blocks in a sched-
ule where the λ-value = 0.8

(e) The number of blocks in a sched-
ule where the λ-value = 0.9

(f) The number of blocks in a sched-
ule where the λ-value = 1

Figure 1: The number of blocks as recorded after running N instances of n jobs

17

number of blocks per schedule is still 1, but this changes when increasing λ to 0.6, this is
visible in Figure 1c. The peak has shifted a bit towards 4 or 5 minimal blocks per schedule
on average. It is interesting to see that the more influence that the weighted starting time
objective function has, i.e. the higher λ is, that the peak at 20 starts growing. At some
point, the influence of the weighted starting time objective is so big that most of the jobs
are scheduled fully at one specific time, i.e. xj,t = 1 for some t ∈ T . In Subfigure 1d we
can see that the peak at 20 is a lot higher than at any other number of blocks, while the
other bins show some resemblance of a normal "bell-curve". When the λ-value approaches
1, in Subfigures 1e and 1f, we can observe that almost to all of the jobs are scheduled
inside their ’own’ block, significantly increasing the number of blocks in the minimal block
decomposition of a schedule.

5.2 Influence of the Size of the Time Horizon

We choose for λ the following values: 0, 0.4 and 0.8, because the case with λ = 1 is not
interesting, as stated before. For each λ, we run an instance with T =

∑
j∈J pj and an

instance where the time horizon is equal to 2T . We hope to envision the influence of
the size of the time-horizon on the number of positive xj,t-variables. We run N = 1000
instances with n = 20 jobs for each combination of λ and T . For each instance we record
the number of positive x-variables. The result is shown in Figure 2, which has Subfigures
2a until 2f.

Something that was quite expected in these histograms is that the change in time-
horizon has less effect for larger λ, in other words for a weighted starting time objective
function, the size of the time-horizon does not matter as much. The difference in the
Figures 2a and 2b is striking. Doubling the time-horizon has as effect that almost all of
the jobs are scheduled at one time point, whereas the peak was around 55 in case of the
normal T . We can safely say that the number of positive x-variables for a random objective
function decreases significantly with the time-horizon increasing. This is not the case when
the weighted starting time objective comes into play. In Figures 2c and 2d we see that
the number of positive x-variables is more centered around one point, around 50, once the
time-horizon is doubled. We can observe that in the last two Subfigures, 2e and 2f, the
number of posititve x-variables is increasing after doubling the time-horizon. We conclude
that for a low λ, that increasing the T yields less positive x-variables, while for a higher
λ, increasing the T results in more positive x-variables.

18

(a) The number of positive x-
variables in a schedule where the λ-
value = 0 and the time-horizon is T

(b) The number of positive x-
variables in a schedule where the λ-
value = 0 and the time-horizon is 2T

(c) The number of positive x-
variables in a schedule where the λ-
value = 0.4 and the time-horizon is
T

(d) The number of positive x-
variables in a schedule where the λ-
value = 0.4 and the time-horizon is
2T

(e) The number of positive x-
variables in a schedule where the λ-
value = 0.8 and the time-horizon is
T

(f) The number of positive x-
variables in a schedule where the λ-
value = 0.8 and the time-horizon is
2T

Figure 2: The number of positive xj,t-variables as recorded after running N in-
stances of n jobs

19

6 Conclusion

The results obtained show a variety of structures present in the linear programming solu-
tions to the single machine scheduling problem. Using the weighted starting time objective
function and some interesting techniques we could prove some intriguing properties of so-
called fractional schedules. The main result in this section is that it was shown that Smith’s
rule can be extended to linear programming solutions. We also introduced the concept of a
block, a way to grasp the structure of solutions to the single machine scheduling problem.
Using this concept we were able to prove a nice result, namely that minimal blocks in a
schedule preserve the property of being a vertex solution. Lastly, with some computational
experiments we were able to deduce the relationship between the weighted starting time
objective function and the number of minimal blocks in a schedule, as well as the link
between the size of the time horizon and the number of positive variables in a solution to
the single machine scheduling problem. These relations are interesting, as they not only
provide insight into the relevance of the block structure that was discussed in Section 4,
but also shed more light onto the performance of so-called column-generating algorithms
that are a promising tool to solve large linear programs.

In further research, one might expect several other results regarding the block structure
in linear programming solutions to be proven. It remains to show what properties are
preserved by the blocks in a schedule and whether this block structure is relevant at
all in different scheduling problems. More specifically, the concepts as introduced in this
paper could be applied to different types of objective functions, for example by introducing
deadlines or release dates. The relevance of the introduced block structure in these cases
might be able to better estimate the relevance of the block structure in linear programming
solutions as a whole. It is also not unlikely that in future research more specific bounds for
the number of positive decision variables in a linear programming solution will be derived,
as the technique of solving large linear programs using column-generating algorithms still
has a long way ahead of it.

20

References

[1] A. S. Schulz. “Scheduling to minimize total weighted completion time: Performance
guarantees of LP-based heuristics and lower bounds”. en. In: Integer Programming and
Combinatorial Optimization. Ed. by W. H. Cunningham, S. T. McCormick, and M.
Queyranne. Berlin, Heidelberg: Springer, 1996, pp. 301–315. isbn: 978-3-540-68453-4.
doi: 10.1007/3-540-61310-2_23.

[2] G. B. Dantzig. “Origins of the simplex method”. In: A history of scientific computing.
New York, NY, USA: Association for Computing Machinery, June 1990, pp. 141–151.
isbn: 978-0-201-50814-7. url: https://doi.org/10.1145/87252.88081.

[3] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2024. url: https:
//www.gurobi.com.

[4] H. W. Lenstra. “Integer Programming with a Fixed Number of Variables”. In: Math.
Oper. Res. 8.4 (Nov. 1983), pp. 538–548. issn: 0364-765X. doi: 10.1287/moor.8.4.
538.

[5] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. “Complexity of Machine
Scheduling Problems”. In: Annals of Discrete Mathematics. Ed. by P. L. Hammer
et al. Vol. 1. Studies in Integer Programming. Elsevier, Jan. 1977, pp. 343–362. doi:
10.1016/S0167-5060(08)70743-X.

[6] J. M. van den Akker. “LP-based solution methods for single-machine scheduling prob-
lems”. Phd Thesis 1 (Research TU/e / Graduation TU/e). Eindhoven: Technische
Universiteit Eindhoven, 1994. doi: 10.6100/IR428838.

[7] J. P. Sousa and L. A. Wolsey. “A time indexed formulation of non-preemptive single
machine scheduling problems”. en. In: Mathematical Programming 54.1 (Feb. 1992),
pp. 353–367. issn: 1436-4646. doi: 10.1007/BF01586059.

[8] L. A. Hall et al. “Scheduling to Minimize Average Completion Time: Off-Line and
On-Line Approximation Algorithms”. In: Mathematics of Operations Research 22.3
(1997). Publisher: INFORMS, pp. 513–544. issn: 0364-765X. url: https://www.
jstor.org/stable/3690391.

[9] W. E. Smith. “Various optimizers for single-stage production”. en. In: Naval Research
Logistics Quarterly 3.1-2 (1956), pp. 59–66. issn: 1931-9193. doi: 10.1002/nav.
3800030106.

21

https://doi.org/10.1007/3-540-61310-2_23
https://doi.org/10.1145/87252.88081
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1016/S0167-5060(08)70743-X
https://doi.org/10.6100/IR428838
https://doi.org/10.1007/BF01586059
https://www.jstor.org/stable/3690391
https://www.jstor.org/stable/3690391
https://doi.org/10.1002/nav.3800030106
https://doi.org/10.1002/nav.3800030106

	Introduction
	Formulation of the problem
	Weighted Starting Time
	Job Swapping
	Smith's Rule
	Job Splitting
	Exchanging Starting Values
	Optimality in Fractional and Non-Fractional Schedules

	Block Structures
	Minimal Blocks
	Vertex Schedules
	Graph of a Minimal Block Decomposition

	Computational Experiments
	Relevance of Block Structures
	Influence of the Size of the Time Horizon

	Conclusion

