
Domain-Specific Languages for Cyber-Physical Systems: A Survey
Selin Mehmed

s.a.mehmed@student.utwente.nl
University of Twente

Enschede, The Netherlands

ABSTRACT
Cyber-physical systems are systems that are interactions of com-
putation with physical processes. They are incredibly complex and
multidisciplinary, and thus benefit from models in order to achieve
requirements such as interoperability and reliability. A model in
the form of a domain-specific language (DSL) presents itself as
an attractive solution to managing the complexity of CPS as it is
geared towards a more specific application domain and can solve
domain-specific issues. This paper looks at concerns a CPS model
should address, proposes necessary features a DSL for CPS should
have, and analyses existing DSLs and the concrete features they
implement (such as task scheduling). Its aim is to be a starting
point for creating DSLs by identifying some of the overarching
things that it should be able to do, present concrete features and
capabilities, and give an overview of existing work.

KEYWORDS
Cyber-physical systems, Domain-specific languages, MDE, Survey

1 INTRODUCTION
Cyber-physical systems are interactions of computation and physi-
cal processes. More specifically, cyber systems control or monitor
physical processes, which requires the use of components like sen-
sors and actuators. Sensors sense information about the physical
environment and relay it back to the cyber system, whereas ac-
tuators affect the physical environment in some way upon being
required to so by the computational elements of the system. This
leads to a feedback loop between the physical and cyber.

Cyber-physical systems have many potential application do-
mains and benefits [18, 34, 38]. Such domains are smart manufac-
turing, robotics, healthcare and medicine, intelligent transportation,
smart cities etc. For example, in healthcare and medicine specif-
ically some potential applications are "proton therapy machines,
electro-anatomic mapping and intervention, bio-compatible and
implantable devices, and robotic prosthetics" [43]. The potential
benefits of CPS cannot be overstated; fully autonomous vehicles
could transport passengers safely with near zero fatalities, reduced

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

car accidents, and less traffic, smart power grids could lead to bet-
ter energy distribution and less blackouts, manufacturing could
become highly automated etc [38, 43].

However, there are many obstacles to fully harnessing the ben-
efits of CPS. The main issue is the inherent complexity and het-
erogeneity of CPS due to the integration of the physical and cyber
worlds. Models and model-driven engineering (MDE) are currently
utilised to deal with the complexity as models make it possible to
break down complex systems and make concerns understandable
and analysable [11]. Despite this, many difficulties in modelling
remain to be addressed. For example, the physical world is con-
tinuous and concurrent, whereas the cyber one is discrete and
sequential; integrating them is not straightforward and can lead to
non-deterministic behaviour in models [12, 30]. This does not lead
to reliable and dependable models because the outcome cannot be
predicted.

One approach to modelling is domain-specific languages (DSL).
Difficulties in modelling CPS can be mitigated by using more spe-
cialised, domain-specific models and modelling languages with
well-defined semantics [12]. Domain-specific languages are lan-
guages meant to handle a specific type of problem or be used in
a specific domain. SQL (for databases) and HTML (for creating
web pages) are well-known and widely used domain-specific lan-
guages [48]. The advantage comes from their ability to specify
domain-specific notations and constructs, and more easily imple-
ment actions necessary in that domain rather than going through
the effort of finding a general-purpose abstraction.

This paper seeks to answer the research question of what the
minimum necessary features that a DSL for CPS should have are.
Based on concerns CPS models should address, it identifies some
overarching features that a DSL should have. Following this, it
goes through existing DSLs that have been created and identifies
concrete features that they have. Its aim is to be a starting point for
creating a DSL by identifying some of the overarching things that
it should be able to do such as having timing semantics, present
concrete features and capabilities such as real-time task scheduling,
and give an overview of existing work.

The paper is structured as follow. Section 2 gives a definition for
CPS and an overview of the difficulties whenmodelling CPS. Section
3 describes the advantages and disadvantages, and development
of DSLs, and additionally gives a brief justification for creating
a DSL for CPS and a proposed approach for doing so. Section 4
analyses features that a DSL for CPS might have, gives motivation
for implementing such features, and primarily looks at the different

https://doi.org/10.1145/nnnnnnn.nnnnnnn

TScIT 41, July 5, 2024, Enschede, The Netherlands Selin Mehmed

ways in which existing DSLs incorporates those features. Lastly,
section 5 looks at related work.

2 CYBER-PHYSICAL SYSTEMS
2.1 Definition
Various definitions for cyber-physical systems have been proposed.
Lee [29] describes them as "interactions of computation with phys-
ical processes". Gunes et al. [18] summarise various definitions,
such as "physical and engineered systems, whose operations are
monitored, coordinated, controlled, and integrated by a computing
and communicating core", "embedded systems together with their
physical environment", and "physical, biological, and engineered
systems whose operations are integrated, monitored, and/or con-
trolled by a computational core. Components are networked at
every scale. Computing is deeply embedded into every physical
component, possibly even into materials. The computational core
is an embedded system, usually demands real-time response, and is
most often distributed". What is common across definitions is that
there is a cyber part and a physical part, and the cyber part can
control or monitor the physical part in some way. Thus, the defi-
nition that we stick to in this paper is that CPS are a combination
of computational and physical elements and processes where the
computational parts control or monitor in some way the physical
ones.

More concretely, a CPS consists of "the physical world, interfaces,
and cyber systems" [18]. The physical world refers to all the physi-
cal phenomena that are to be monitored and controlled, the cyber
systems are the devices that process data, and the interfaces are
what allow the physical world and the cyber systems to communi-
cate. Examples of interfaces are sensors, actuators, analog-to-digital
converters (ADC), digital-to-analog converters (DAC) etc.

2.2 Modelling
Cyber-physical systems are complex and multidisciplinary, and
thus challenging to build. This is an issue because the number of
potential applications of CPS is staggering - from healthcare to agri-
culture to city design, the possible societal impact and economic
benefit cannot be overstated. Models are a promising solution to
addressing this as they make it possible to break down complex
systems and make concerns understandable and analysable [11].
Models in software engineering can serve various purposes from
code generation, system documentation, construction of the system,
exploration of solution possibilities etc. [11].

Important requirements for cyber-physical systems are inter-
operability, predictability, reliability, and dependability [18]. Inter-
operability refers to the ability of different components to work
together. Dependability, reliability, and predictability are related
to each other; dependability refers to the property of a system to
perform functions without degradation in performance and out-
come, predictability refers to the degree of being able to foresee a
system’s behaviour, and reliability refers to the degree of correct-
ness in functioning. All three are related to the overall functioning
of the system.

However, due to the complexity and heterogeneity of cyber-
physical systems, modelling itself presents several difficulties. Phys-
ical processes and computational elements require different ways
of modelling, timing becomes more crucial, various distributed be-
haviours arise, and components are various and interconnected.
A model must meet the requirements of reliability, predictability,
dependability and interoperability all while correctly expressing
the properties of the system.

The first issue when it comes to modelling CPS is due to the fact
that the physical world is continuous and concurrent where many
things are happening all at once, whereas the cyber one is discrete
and sequential [22]. Thus, different modelling methods are utilised
for the two parts of the system. For example, continuous-time mod-
els of dynamics model physical processes and state machines model
computations. However, integrating these twomodelling paradigms
is difficult [29] because it can lead to incompatibilities during the
separate design processes or non-deterministic behaviour [12, 30].
Therefore, this is an issue that a CPS must address. For example, a
CPS can be modeled as a hybrid system [12, 22].

An essential problem for CPS is that most models are unequipped
to deal with timing semantics. Such semantics are crucial [22, 28, 30]
due to the aforementioned interaction with the real world, where
time cannot be abstracted away as in the sequential cyber world.
At the moment, models generally focus on increasing performance
at the expense of predictability [22, 28] - caches, for example, are
unpredictable but lead to faster execution times. This is perfectly
acceptable for sequential programs but not so ideal for CPS. For
example, a C program by itself provides no meaningful time seman-
tics and the programmer must find ways around that obstacle, but
methods for increased performance are plentiful. This is a failure
of abstraction as the model is unequipped to deal with behaviour
essential to the system. One of the key requirements for a CPS
model is that it must be predictable, which means it needs to have
exact expressions of time rather than delegating them to the imple-
mentation (as one would with a C program).

Furthermore, the interaction between the physical and cyber
parts of the system itself takes time. Data is not transmitted in zero
time, there are network delays, components are separated in space,
and computations take time [12]. This also necessitates solutions
such as communication semantics, synchronous or asynchronous
message transmissions and timestamps.

CPS are also very complex and made up of multiple components
all interacting together. Components are highly interconnected and
models of a CPS might grow more complex with time [12]. In order
to meet the previously mentioned requirements, a model should
make it possible to ensure those components work together as in-
tended. Furthermore, a given model must be reliable when small
deviations from the expected operation occur [28]. Dealing with
unexpected deviations can happen at higher or lower levels, and a
CPS model must contain enough knowledge in order to be reliable
[27] especially since many CPS are safety-critical systems [22]. The
most obvious example of safety-critical systems are medical devices.

Domain-Specific Languages for Cyber-Physical Systems: A Survey TScIT 41, July 5, 2024, Enschede, The Netherlands

3 DOMAIN SPECIFIC LANGUAGES
3.1 Advantages and Disadvantages
There are various benefits to using a domain-specific language
(DSL) over a general-purpose programming language (GPL). DSLs
trade versatility for expressiveness in a specific domain. They of-
fer domain-specific notations, incorporate domain-specific con-
structs in a way that allows for easier definition and traversal, and
make it easier to program tasks that might be tedious and require
workarounds in a GPL by offering the needed code generation [33].
All of this reduces the amount of domain knowledge and program-
ming expertise needed when working with the domain in question,
which in turn leads to increased productivity and reduced mainte-
nance costs.

The main drawback of a DSL is the initial development process.
In order to design and implement a DSL, both extensive domain
knowledge and language development expertise is needed [33, 42].
Since the use of a DSL is by definition more limited than a GPL, it
might further put in question whether the development costs are
worth it. Furthermore, careful examination is needed whether a
DSL offers the benefits that make it preferable to using a GPL with
its associated workarounds for any arising limitations. Ultimately,
the benefits and drawbacks must be evaluated on a case by case
basis and might not be immediately apparent.

3.2 Development
The development of a DSL requires multiple steps. This section
presents a rough guideline. First, a decision must be made about
the trade offs of developing a DSL versus other existing methods. If
a DSL has significant advantages over other methods, the problem
domain must be identified and analysed. Following this is the de-
sign and implementation stages.

Before creating the DSL, the domain knowledge needs to be
captured and analysed. Domain analysis involves gathering domain
knowledge and constructing a domain model including the scope,
terminology, features, concepts, dependencies of said concepts, se-
mantics etc. [33]. Building an ontology is one established way of
doing so [9]. An ontology consists of the representative vocabulary
of the domain (such as concepts and features), i.e. a set of terms
defining domain concepts, and a body of knowledge of the domain
using this representative vocabulary, i.e. a collection of facts about
the domain [9]. Tairas et al. evaluate the usefulness of an ontology
in defining DSLs [42]. Walter et al. [47] propose an ontology-based
framework for defining DSLs.

There are a few choices to make in regards to DSL design and
implementation. One can base the design of a DSL on an existing
programming language and create an internal DSL, or choose not to
do so and create an external DSL [33]. The former option is the sim-
pler one, but the latter offers more novelty. Furthermore, a design
might be formal or informal. An informal design is represented by
natural language or some form of illustration, whereas a formal one
includes specifications and semantics such as a grammar. A formal
design simplifies the implementation process later on and can bring
potential problems to light earlier. To make the transition between

ontology and grammar, there is the following approach [35]. In
terms of implementation, various implementation approaches exist
[26]. For example, a DSL might be embedded in another language
such as Haskell or some compiler/interpreter approach used.

A language has both syntax and semantics. Syntax refers to the
way sentences are constructed in a language [19, 48]. In the con-
text of programming languages, this could be the grammar of the
language. Semantics on the other hand is the study of meanings
in the language [19, 48]. Semantics consist of a semantic domain
and semantic mapping, where the domain is the collection of el-
ements and concepts that make up the language’s meanings and
the mapping is what relates the syntax to the domain [19]. This
presents an alternative approach to creating a DSL - that is, one
can begin by constructing the semantic domain of the language
and working backwards from there [14]. For example, a calendar
application would offer the ability to define appointments at partic-
ular times. This means that both "times" and "appointments" are
essential concepts of the semantic domain and also that they must
be mapped to each other.

3.3 Justification
While many approaches to modelling CPS exist, a DSL is an attrac-
tive one for various reasons. First, difficulties in modelling CPS can
be mitigated by using more specialised, domain-specific models
and modelling languages with well-defined semantics [12]. Fur-
thermore, working with cyber-physical systems requires working
with a low-level environment as high-level languages lack crucial
features especially related to timing [49], which makes it more com-
plicated for developers and requires extensive domain knowledge.
A DSL would make it possible to implement such features on a
higher level of abstraction, simplifying the development process.

3.4 Proposed Approach
The first step in developing a DSL for CPS is domain analysis. As
mentioned previously, ontologies are an established way to do so
and there are works on approaches for cyber-physical systems
specifically. Petnga and Austin [36] present a framework for cre-
ating models and domain-specific semantics for CPS. First they
separate CPS into three ontologies: physical, cyber, and meta ontol-
ogy (for any concepts that don’t fall under either physical or cyber
such as time and space). The ontologies are then integrated using an
"integrator ontology" and logic-based rules. Voinov and Senokosov
[46] propose a high-level CPS ontology where various interactions
are defined. They include definitions for concepts such as resources,
space, time, events etc. Hildebrandt et al. [20] have developed a
domain-centric approach for developing a CPS ontology. It consists
of requirements specification and lightweight ontology building by
domain experts and end users, and heavyweight ontology build-
ing by ontology experts. In the heavyweight ontology building
phase, the ontology is explicitly defined in Ontology Web Lan-
guage (OWL). Lastly Dillon et al. [13] analyse the key requirements
that must be met by CPS systems and propose semantics based
on said requirements. They focus on the semantics of sensors and
events, integrating them through semantic frameworks and models.

TScIT 41, July 5, 2024, Enschede, The Netherlands Selin Mehmed

Building an ontology might be aided by considering domain
ontologies that experts use but also ontologies of modelling lan-
guages that describe existing languages and tasks that they solve
[32]. Analysing languages helps identify trends and patterns can
provide a better foundation for building a CPS ontology. In the next
section we shift our focus to the analysis of languages.

4 ENGINEERING A CPS LANGUAGE
This section gives an overview of some important features, moti-
vation for these features, and existing languages that implement
them. These features are as follows: a DSL should be able to specify
how the components work together, be able to define the flow of
operation, have timing semantics, and have a way to model both
the physical and cyber parts of the system (i.e. integrate the contin-
uous and discrete). These features are not fully separable - timing
is directly related to the flow of operation rather than being totally
distinct from it for instance - so there might be overlaps between ex-
isting work. Nonetheless, this section will focus on them as mostly
distinct.

4.1 Specify How Components Work Together
Interoperability is one of the crucial requirements for CPS [18]. CPS
is a complex and intertwined system; in order for it to function
correctly the separate components must work together as intended.
A DSL for CPS can make it possible to achieve this by implement-
ing the ability to specify how the parts should work together and
interact.

With a focus on interoperability specifically, there is aDSL [44].
The language models all the systems that a CPS is composed of,
which themselves can be further broken down into systems or con-
crete parts. Parts and systems both have different requirements. For
example, speed can be a requirement defined for a certain tractor
part. Systems and parts only operate if the requirements are met.
The DSL implements a way to define components recursively - a
system can be composed of subsystems which might be composed
of subsubsystems etc. - and constraints for the systems.

Chariot [37] is a DSLwith a focus on clean separation-of-concerns
between computation and communication aspects and explicit defi-
nitions for systems goals, objectives and associated functionalities.
As mentioned previously, communication is also tricky in a CPS
[12]. Chariot enforces a clean separation between communication
logic and computation logic in order to support heterogeneous
communication middleware. Different communication patterns can
be modelled without having to worry about the middleware that
will support these interactions. It can also model the state of the
entire system and different resources available, well known faults,
system goals, objectives and corresponding functionalities.

For the integration of sensors specifically, there is SensOr In-
terfacing Language (SOIL) [5]. It is a graphical domain-specific
programming language for defining sensor interfaces. It models
them as trees and specifies the information physically sensed by
the sensor, any data required for operation, and functions that trig-
ger tasks or change the internal state of the sensor. SOIL allows

for the easy definition of required interactions between different
components and the communication of measurement results.

MuScADeL [6] is a DSL for the deployment of multi-scale sys-
tems. Multi-scale systems are highly heterogeneous systems and
are composed of various components and families of components
that interact together. While not directly related to CPS, both are
complex systems of many components that must interact as re-
quired. The DSL can list components, the dependencies of that
component i.e. what other components that component depends
on, and any constraints that must be true. A less relevant feature
is the ability to define probes, which collect data about the system
for the purpose of deployment.

Chauhan et al. [10] develop a framework for programming CPS
with modelling languages. They aim to deal with issues such as com-
plexity due to CPS consisting of various entities like sensors and
actuators, differences in platforms that components run on, and the
different types of interactions components can have. In the frame-
work, one can specify domain-specific constructs such as sensors,
actuators, tags (any physical object that can act as identification),
and storage. Sensors produce measurements with specified data-
types and can be periodic, event-driven, or request-based. Period
sensors sample results periodically every few seconds as specified,
event-based sensors sample results when a specific event occurs,
and request-based sensors sample data only when the user makes a
request. One can furthermore specify computational services. This
includes using a certain measurement in order to generate some
result (such as computing average temperature), issuing requests
to access something in the system, commands (such as setting a
certain temperature). Lastly, one can define user interactions (for
example, sending notifications to the user) and deployment specifi-
cations. Overall, the framework has features to define individual
components, types of sensors, how to perform computations, var-
ious interactions between system components and between user
and system, and deployment options.

On a more concrete level, common features in DSLs implement-
ing the ability to specify how components work together are con-
straints and requirements, the ability to define the individual com-
ponents and their characteristics or functionalities, communication
protocols, states and descriptions of how changes in state are trig-
gered, and interactions between components. Structures such as
trees might also be used to better model interactions between com-
ponents of the system.

4.2 Define Flow of Operation
In a CPS, computational elements control or monitor some phys-
ical processes. A DSL can facilitate this by making it possible to
specify what to control or monitor and the appropriate responses
to changes in the physical world. For example, if some part of the
system reaches a certain temperature a DSL can define the appro-
priate action (such as shutting down the system in order to prevent
overheating) or implement constraints (the maximum temperature
that is safe).

Domain-Specific Languages for Cyber-Physical Systems: A Survey TScIT 41, July 5, 2024, Enschede, The Netherlands

AMon [45] is a DSL that monitors different states and provides
definitions for the data flow within the CPS. It makes it possible
to define various rules for the system. For example, if the battery
voltage level falls under a certain level specified actions can be
defined and executed as appropriate. Another feature of the lan-
guage is the ability to specify which devices check for which rules
and monitor what data. Furthermore, rules can apply to certain
devices or the entire system. AMon is ideal for adaptive monitoring
of cyber-physical systems and defining the general flow of data
between components. It implements rules to certain changes in
the physical environment and what part of the system should be
affected, and makes it possible to specify how data is processed and
how often it’s sampled.

A DSL for context-aware systems is developed in [21]. Context-
aware systems are systems that interpret the context and modify
the system based on it. Their similarity to CPS comes from the
fact that they make use of context sensors. In both cases, sensors
sense information about the environment and the system must take
appropriate action based on that. The proposed language achieves
this by modelling entities (people or objects) and their context with
the option to specify attributes of that context (such as the loca-
tion and time) and the source of that context (for example GPS
or a clock). The sources of context have a provider with certain
accuracy, units, and so on which implements methods for getting a
specific attribute. Lastly, it can specify situations in which based on
context facts some action can be undertaken. Additionally, the DSL
can deal with the problem of sensors not being 100 percent reliable.
It has a notion of context quality and helps select the most reliable
sources and trigger the appropriate behaviour as a result.

Another option is task-oriented programming. Steenvoorden et
al. [41] give a formalisation of task-oriented programming. Tasks
are interactive units of work based on information sources. Koop-
man et al. [25] present an example DSL. It uses light-weight threads
that produce immediate results after each evaluated step. There is a
well-defined evaluation order of tasks, which can communicate via
shared data sources. Tasks can be delayed, executed simultaneously,
be sequentially ordered, or act based on the output of other tasks.
The last part means the DSL is capable of reacting to the physical
environment. The delays give the language some very basic timing
semantics.

There are various features languages in this category implement.
Examples include rules to changes in the physical world with the
accompanying action to execute, definitions of states, specifying
which components monitor what, and tasks and their timing of
execution.

4.3 Have Timing Semantics
Timing is of crucial importance to cyber-physical systems. Tasks
must execute and finish at the correct time and order. Unlike soft-
ware systems, a process taking too long does not just impact the
performance of the application but might very well be incorrect be-
haviour for the system. For example, it is critical that a self-driving
car applies the brakes at just the right time and not too late; failing

to do so might well be catastrophic. In a CPS that directly controls
some physical process a delay in time is in many circumstances
unacceptable, especially in a safety-critical system. This means that
a DSL must have some form of timing semantics to introduce things
like delays, deadlines, actions happening simultaneously, and just
general task scheduling.

Triton [49] is a DSL with real-time scheduling. It defines sched-
uling blocks which contain tasks and are parameterised by time. It
additionally implements constraints and defines the appropriate
action in case a violation of the constraint occurs. For example,
using the DSL one can schedule a task to happen in 4 milliseconds
- however, in case the thermometer reaches a certain value the task
can be permanently stopped from executing or skipped until the
temperature is within normal range again. Triton also fits feature
2 as it’s another language that implements tasks and constraints
while also having basic timing semantics.

Lohstroh et al. [31] propose a language that implements timing
semantics. The language accomplishes this by taking into account
the relationship between logical time and physical time and spec-
ifying program behaviour by this relationship. It makes use of
timestamps to create a "logical timeline" to deal with the problem
of clock synchronisation that leads to a different "physical timeline"
for different components in a system. Furthermore, periodic and
one-time timers can be specified to trigger certain functions, delays
can be induced, actions can be scheduled, and deadlines put in place
for some events.

Goknil and Peraldi-Frati [15] present another DSL for specifying
different timing requirements is developed. It supports four types
of timing requirements: delay requirements, synchronisation re-
quirements, repetition requirements, and periodic requirements. All
timing requirements interact with certain events, or state changes.
For example, a delay requirement describes how occurrences of a
target event are placed relative to a source event. This means that a
target event happens a certain amount of time after a source event,
i.e. it is delayed. Synchronisation requirements refers to how close
events can happen to each other (e.g. at the same time), repetition
requirements give some limits to how often events can occur, and
period requirements describe how often certain events are repeated.
The language furthermore addresses aspects of timing requirements
such as time base, dimension, equations and variables and allows
for their explicit modelling.

There are many different ways to implement timing constraints.
Possible concrete features in this category are task scheduling, time-
lines, timestamps, and different ways to time something (whether
periodically, a certain amount of time after some event, at the same
time as some event etc.). Timing semantics are very closely related
to the feature in 4.2 because timing semantics arise precisely due
to interactions with the physical world [8], especially when basing
timing on a certain event in the physical world.

TScIT 41, July 5, 2024, Enschede, The Netherlands Selin Mehmed

4.4 Model Hybrid Systems
ADSLmust have a way to capture what is happening in the physical
part of the system. However, as mentioned previously, the physical
world is continuous and must be modelled as such; unfortunately,
this leads to incompatibilities with the model of the rest of the
system which is discrete. Thus, a DSL must capture and model the
physical world in a way that avoids this issue - by appropriately
modelling the whole system as a hybrid one for example. This is a
complex task but some solutions exist.

CREST [24] is a DSL hybrid systems modelling. It is created
specifically for modelling CPS whose components "primarily in-
teract through the exchange of physical resource flows such as
water, heat or electricity" - that is, continuous resource flows. It
accomplishes this through the use of modelling techniques such as
hybrid automata, data-flow languages, and architecture description
languages. CREST defines both diagrams for visual representation,
and an internal DSL based on Python.

Another solution is xSHS [17], an executable domain-specific
language that models the hybrid behaviour of cyber-physical sys-
tems. For example, states in the model are captured also by ordinary
differential equations (ODEs) in order to model the continuous be-
haviour of physical processes. It also has semantics for representing
transitions between states and physical environment variables.

Diderot [23] is a DSL for scientific visualisation and image anal-
ysis. Its relevance comes from the fact that it supports the abstrac-
tions of continuous scalars. Similarly to CPS, most general-purpose
programming language do not have the necessary abstractions for
anything non-discrete and Diderot serves as a useful starting point
to creating abstractions of more complicated mathematical opera-
tions.

Overall, representing a continuous, physical world in a DSL is
complicated and requires the use of formalisms. Formalisms are
mathematical objects consisting of abstract syntax and a formal
semantics, which languages are a concrete implementation of [8].
For example, xSHS made use of ODEs [17] and CREST made use
of hybrid automata [24]. Implementing this last feature requires
expertise on modelling physical systems as opposed to concrete
features that can be described semantically.

5 RELATEDWORK
Beyond DSLs, timed automata are a formalism to modelling time
in applications. Timed automata are finite-state machines extended
with clock variableswhich allows one to capture quantitative continuous-
time properties [8] that arise in CPS. UPPAAL [4] specifically is
a language that implements the timed automata formalism and
it models a system as a network of timed automata in parallel. It
also makes it possible to specify discrete variables as in a regular
programming language, and the values of these variables can be
used to define the state of the system.

There are other helpful resources to keep in mind when de-
signing a DSL for CPS. Broman et al. [7] give an overview of the

challenges and other existing approaches in regards to time in CPS.
Shrivastava et al. [40] explain timing-related challenges in CPS
development and give insights as to the limitations of current ap-
proaches. Baillieul and Antsaklis [3] describe issues involved in
designing successful networked real-time systems. Sanfelice [39]
gives a hybrid systems approach to the analysis and design of CPS.

Modelling a CPS using a DSL is not the only approach. Graja
et al. [16] give an overview on various modelling techniques of
CPS. Many different architectures for CPS also exist, depending on
system requirements and application details [1]. Some examples
are given by Yu et al. [50] and Ahmed et al. [2].

6 CONCLUSION
The goal of this paper was to identify relevant information about
domain-specific languages for cyber-physical systems. We began
with introducing CPS and some of the difficulties of modelling CPS
in order to understand what problems a model should address. A
CPS model must meet the requirements of interoperability, depend-
ability, reliability, and predictability, and must be able to handle
timing and the integration of the continuous physical world and
the discrete cyber one. We similarly gave an overview of DSLs -
what the advantages and disadvantages are, how one develops a
DSL, some existing approaches to developing DSLs for CPS. We
found that DSLs often domain-specific notations and constructs,
but are difficult to develop as they require domain expertise. Their
development consists of a decision, domain analysis, design, and
implementation phases. We investigated the domain analysis phase
in particular and explored ontologies, and talked about some CPS-
specific frameworks. Following this we identified overarching nec-
essary features that a DSL for CPS should have - namely, it should
make it possible to specify how components interact together be-
cause CPS are composed of various components and subsystems,
define the flow of operation in regards to how the system reacts
to the physical environment, have timing semantics, and integrate
the continuous physical world with the discrete cyber one. Various
features appeared in a lot of languages, such as constraints and
rules, scheduling the order and timing of tasks by inducing delays
and periodic tasks, and ability to specify existing components and
their dependencies.

REFERENCES
[1] Mohamed Anis Aguida, Samir Ouchani, and Mourad Benmalek. 2020. A Review

on Cyber-Physical Systems: Models and Architectures. In 2020 IEEE 29th Interna-
tional Conference on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (WETICE). 275–278. https://doi.org/10.1109/WETICE49692.2020.00060

[2] Syed Hassan Ahmed, Gwanghyeon Kim, and Dongkyun Kim. 2013. Cyber Phys-
ical System: Architecture, applications and research challenges. In 2013 IFIP
Wireless Days (WD). 1–5. https://doi.org/10.1109/WD.2013.6686528

[3] John Baillieul and Panos J. Antsaklis. 2007. Control and Communication
Challenges in Networked Real-Time Systems. Proc. IEEE 95, 1 (2007), 9–28.
https://doi.org/10.1109/JPROC.2006.887290

[4] Gerd Behrmann, Alexandre David, and Kim G. Larsen. 2004. A Tutorial on Uppaal.
Springer Berlin Heidelberg, Berlin, Heidelberg, 200–236. https://doi.org/10.1007/
978-3-540-30080-9_7

[5] M. Bodenbenner, M. P. Sanders, B. Montavon, and R. H. Schmitt. 2021. Domain-
Specific Language for Sensors in the Internet of Production. In Production at
the leading edge of technology, Bernd-Arno Behrens, Alexander Brosius, Wolf-
gang Hintze, Steffen Ihlenfeldt, and Jens Peter Wulfsberg (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 448–456.

https://doi.org/10.1109/WETICE49692.2020.00060
https://doi.org/10.1109/WD.2013.6686528
https://doi.org/10.1109/JPROC.2006.887290
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7

Domain-Specific Languages for Cyber-Physical Systems: A Survey TScIT 41, July 5, 2024, Enschede, The Netherlands

[6] Raja Boujbel, Sam Rottenberg, Sébastien Leriche, Chantal Taconet, Jean-Paul
Arcangeli, and Claire Lecocq. 2014. MuScADeL: A Deployment DSL Based
on a Multiscale Characterization Framework. In 2014 IEEE 38th International
Computer Software and Applications Conference Workshops. 708–715. https:
//doi.org/10.1109/COMPSACW.2014.120

[7] David Broman, Patricia Derler, and John Eidson. 2013. Temporal Issues in Cyber-
Physical Systems. Journal of the Indian Institute of Science 93 (07 2013), 389–402.

[8] David Broman, Edward A. Lee, Stavros Tripakis, and Martin Törngren. 2012.
Viewpoints, formalisms, languages, and tools for cyber-physical systems. In
Proceedings of the 6th International Workshop on Multi-Paradigm Modeling (Inns-
bruck, Austria) (MPM ’12). Association for Computing Machinery, New York, NY,
USA, 49–54. https://doi.org/10.1145/2508443.2508452

[9] B. Chandrasekaran, J.R. Josephson, and V.R. Benjamins. 1999. What are ontologies,
and why do we need them? IEEE Intelligent Systems and their Applications 14, 1
(1999), 20–26. https://doi.org/10.1109/5254.747902

[10] Saurabh Chauhan, Pankesh Patel, Flávia C. Delicato, and Sanjay Chaudhary.
2016. A development framework for programming cyber-physical systems. In
Proceedings of the 2nd International Workshop on Software Engineering for Smart
Cyber-Physical Systems (Austin, Texas) (SEsCPS ’16). Association for Computing
Machinery, New York, NY, USA, 47–53. https://doi.org/10.1145/2897035.2897039

[11] Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard Rumpe, Jim
Steel, andDidier Vojtisek. 2016. EngineeringModeling Languages : Turning Domain
Knowledge into Tools. https://doi.org/10.1201/b21841

[12] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni Vincentelli. 2012.
Modeling Cyber–Physical Systems. Proc. IEEE 100, 1 (2012), 13–28. https:
//doi.org/10.1109/JPROC.2011.2160929

[13] TharamDillon, Elizabeth Chang, Jaipal Singh, andOmarHussain. 2012. Semantics
of Cyber-Physical Systems. In Intelligent Information Processing VI, Zhongzhi
Shi, David Leake, and Sunil Vadera (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 3–12.

[14] Martin Erwig and EricWalkingshaw. 2012. Semantics First!. In Software Language
Engineering, Anthony Sloane and UweAßmann (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 243–262.

[15] Arda Goknil and Marie-Agnès Peraldi-Frati. 2012. A DSL for specifying timing re-
quirements. In 2012 Second IEEE International Workshop on Model-Driven Require-
ments Engineering (MoDRE). 49–57. https://doi.org/10.1109/MoDRE.2012.6360074

[16] Imen Graja, Slim Kallel, Nawal Guermouche, Saoussen Cheikhrouhou,
and Ahmed Hadj Kacem. 2020. A comprehensive survey on model-
ing of cyber-physical systems. Concurrency and Computation: Practice
and Experience 32, 15 (2020), e4850. https://doi.org/10.1002/cpe.4850
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4850 e4850 cpe.4850.

[17] Chunlin Guan, Yi Ao, Dehui Du, and Frédéric Mallet. 2018. xSHS: An Executable
Domain-Specific Modeling Language for Modeling Stochastic and Hybrid Behav-
iors of Cyber-Physical Systems. In 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). 683–687. https://doi.org/10.1109/APSEC.2018.00090

[18] Volkan Gunes, Steffen Peter, Tony Givargis, and Frank Vahid and. 2014. A Survey
on Concepts, Applications, and Challenges in Cyber-Physical Systems. KSII
Transactions on Internet and Information Systems 8, 12 (December 2014), 4242–
4268. https://doi.org/10.3837/tiis.2014.12.001

[19] David Harel and Bernhard Rumpe. 2004. Meaningful modeling: What’s the
semantics of "semantics"? Computer 37 (11 2004), 64 – 72. https://doi.org/10.
1109/MC.2004.172

[20] C. Hildebrandt, S. Törsleff, B. Caesar, and A. Fay. 2018. Ontology Building for
Cyber-Physical Systems: A domain expert-centric approach. In 2018 IEEE 14th
International Conference on Automation Science and Engineering (CASE). 1079–
1086. https://doi.org/10.1109/COASE.2018.8560465

[21] José R. Hoyos, Davy Preuveneers, Jesús J. García-Molina, and Yolande Berbers.
2011. A DSL for Context Quality Modeling in Context-Aware Applications. In
Ambient Intelligence - Software and Applications, Paulo Novais, Davy Preuveneers,
and Juan M. Corchado (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
41–49.

[22] K.-D Kim and Panganamala Kumar. 2013. An Overview and Some Challenges in
Cyber-Physical Systems. Journal of the Indian Institute of Science 93 (07 2013),
341–352.

[23] Gordon Kindlmann, Charisee Chiw, Nicholas Seltzer, Lamont Samuels, and John
Reppy. 2016. Diderot: a Domain-Specific Language for Portable Parallel Scientific
Visualization and Image Analysis. IEEE Transactions on Visualization and Com-
puter Graphics 22, 1 (2016), 867–876. https://doi.org/10.1109/TVCG.2015.2467449

[24] Stefan Klikovits and Didier Buchs. 2020. Pragmatic reuse for DSML development:
Composing a DSL for hybrid CPS modeling. Software and Systems Modeling 20, 3
(Oct. 2020), 837–866. https://doi.org/10.1007/s10270-020-00831-4

[25] Pieter Koopman, Mart Lubbers, and Rinus Plasmeijer. 2018. A Task-Based DSL
for Microcomputers. In Proceedings of the Real World Domain Specific Languages
Workshop 2018 (Vienna, Austria) (RWDSL2018). Association for Computing Ma-
chinery, New York, NY, USA, Article 4, 11 pages. https://doi.org/10.1145/3183895.
3183902

[26] Tomaž Kosar, Pablo E. Martı´nez López, Pablo A. Barrientos, and Marjan Mernik.
2008. A preliminary study on various implementation approaches of domain-
specific language. Information and Software Technology 50, 5 (2008), 390–405.
https://doi.org/10.1016/j.infsof.2007.04.002

[27] Edward Lee. 2007. Computing Foundations and Practice for Cyber Physical
Systems: A Preliminary Report. (01 2007).

[28] Edward A. Lee. 2008. Cyber Physical Systems: Design Challenges. In 2008 11th
IEEE International Symposium on Object and Component-Oriented Real-Time Dis-
tributed Computing (ISORC). 363–369. https://doi.org/10.1109/ISORC.2008.25

[29] Edward A. Lee. 2010. CPS foundations. In Proceedings of the 47th Design Automa-
tion Conference (Anaheim, California) (DAC ’10). Association for Computing Ma-
chinery, New York, NY, USA, 737–742. https://doi.org/10.1145/1837274.1837462

[30] Edward A. Lee. 2015. The Past, Present and Future of Cyber-Physical Systems:
A Focus on Models. Sensors 15, 3 (2015), 4837–4869. https://doi.org/10.3390/
s150304837

[31] Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten, Matthew
Weber, Jeronimo Castrillon, and Edward A. Lee. 2020. A Language for Determin-
istic Coordination Across Multiple Timelines. In 2020 Forum for Specification and
Design Languages (FDL). 1–8. https://doi.org/10.1109/FDL50818.2020.9232939

[32] Lyudmila N. Lyadova, Alexander O. Sukhov, and Marsel R. Nureev. 2021. An
Ontology-Based Approach to the Domain Specific Languages Design. In 2021 IEEE
15th International Conference on Application of Information and Communication
Technologies (AICT). 1–6. https://doi.org/10.1109/AICT52784.2021.9620493

[33] Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When and how to
develop domain-specific languages. ACM Comput. Surv. 37, 4 (dec 2005), 316–344.
https://doi.org/10.1145/1118890.1118892

[34] Sascha Julian Oks, Albrecht Fritzsche, and Kathrin M. Möslein. 2017. An Applica-
tion Map for Industrial Cyber-Physical Systems. Springer International Publishing,
Cham, 21–46. https://doi.org/10.1007/978-3-319-42559-7_2

[35] Maria João Varanda Pereira, João Fonseca, and Pedro Rangel Henriques. 2016. On-
tological approach for DSL development. Computer Languages, Systems Structures
45 (2016), 35–52. https://doi.org/10.1016/j.cl.2015.12.004

[36] Leonard Petnga and Mark Austin. 2016. An ontological framework for knowledge
modeling and decision support in cyber-physical systems. Advanced Engineering
Informatics 30, 1 (2016), 77–94. https://doi.org/10.1016/j.aei.2015.12.003

[37] Subhav M. Pradhan, Abhishek Dubey, Aniruddha Gokhale, and Martin Lehofer.
2015. CHARIOT: a domain specific language for extensible cyber-physical sys-
tems. In Proceedings of the Workshop on Domain-Specific Modeling (Pittsburgh,
PA, USA) (DSM 2015). Association for Computing Machinery, New York, NY,
USA, 9–16. https://doi.org/10.1145/2846696.2846708

[38] Ragunathan Rajkumar. 2012. A Cyber–Physical Future. Proc. IEEE 100, Special
Centennial Issue (2012), 1309–1312. https://doi.org/10.1109/JPROC.2012.2189915

[39] Ricardo G. Sanfelice. 2015. Analysis and Design of Cyber-Physical Systems: A
Hybrid Control Systems Approach. https://api.semanticscholar.org/CorpusID:
29069010

[40] Aviral Shrivastava, Patricia Derler, Ya-Shian Li Baboud, Kevin Stanton, Mo-
hammad Khayatian, Hugo A. Andrade, Marc Weiss, John Eidson, and Sun-
deep Chandhoke. 2016. Time in cyber-physical systems. In Proceedings of the
Eleventh IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (Pittsburgh, Pennsylvania) (CODES ’16). Association
for Computing Machinery, New York, NY, USA, Article 4, 10 pages. https:
//doi.org/10.1145/2968456.2974012

[41] Tim Steenvoorden, Nico Naus, and Markus Klinik. 2019. TopHat: A formal
foundation for task-oriented programming. In Proceedings of the 21st International
Symposium on Principles and Practice of Declarative Programming (Porto, Portugal)
(PPDP ’19). Association for Computing Machinery, New York, NY, USA, Article
17, 13 pages. https://doi.org/10.1145/3354166.3354182

[42] Robert Tairas, Marjan Mernik, and Jeff Gray. 2009. Using Ontologies in the
Domain Analysis of Domain-Specific Languages. In Models in Software Engineer-
ing, Michel R. V. Chaudron (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
332–342.

[43] Amit Kumar Tyagi and N. Sreenath. 2021. Cyber Physical Systems: Analyses,
challenges and possible solutions. Internet of Things and Cyber-Physical Systems
1 (2021), 22–33. https://doi.org/10.1016/j.iotcps.2021.12.002

[44] Freek Van Den Berg, Vahid Garousi, Bedir Tekinerdogan, and Boudewijn R.
Haverkort. 2018. Designing cyber-physical systems with aDSL: A domain-specific
language and tool support. In 2018 13th System of Systems Engineering Confer-
ence, SoSE 2018 (2018 13th System of Systems Engineering Conference, SoSE 2018).
Institute of Electrical and Electronics Engineers Inc., United States, 225–232.
https://doi.org/10.1109/SYSOSE.2018.8428770

[45] Michael Vierhauser, Rebekka Wohlrab, Marco Stadler, and Jane Cleland-Huang.
2023. AMon: A domain-specific language and framework for adaptive monitoring
of Cyber–Physical Systems. Journal of Systems and Software 195 (2023), 111507.
https://doi.org/10.1016/j.jss.2022.111507

[46] Artem Voinov and Ilya Senokosov. 2021. Ontological models of cyber physical
systems. Journal of Physics: Conference Series 1889, 2 (apr 2021), 022064. https:
//doi.org/10.1088/1742-6596/1889/2/022064

https://doi.org/10.1109/COMPSACW.2014.120
https://doi.org/10.1109/COMPSACW.2014.120
https://doi.org/10.1145/2508443.2508452
https://doi.org/10.1109/5254.747902
https://doi.org/10.1145/2897035.2897039
https://doi.org/10.1201/b21841
https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10.1109/MoDRE.2012.6360074
https://doi.org/10.1002/cpe.4850
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4850
https://doi.org/10.1109/APSEC.2018.00090
https://doi.org/10.3837/tiis.2014.12.001
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/COASE.2018.8560465
https://doi.org/10.1109/TVCG.2015.2467449
https://doi.org/10.1007/s10270-020-00831-4
https://doi.org/10.1145/3183895.3183902
https://doi.org/10.1145/3183895.3183902
https://doi.org/10.1016/j.infsof.2007.04.002
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1145/1837274.1837462
https://doi.org/10.3390/s150304837
https://doi.org/10.3390/s150304837
https://doi.org/10.1109/FDL50818.2020.9232939
https://doi.org/10.1109/AICT52784.2021.9620493
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/978-3-319-42559-7_2
https://doi.org/10.1016/j.cl.2015.12.004
https://doi.org/10.1016/j.aei.2015.12.003
https://doi.org/10.1145/2846696.2846708
https://doi.org/10.1109/JPROC.2012.2189915
https://api.semanticscholar.org/CorpusID:29069010
https://api.semanticscholar.org/CorpusID:29069010
https://doi.org/10.1145/2968456.2974012
https://doi.org/10.1145/2968456.2974012
https://doi.org/10.1145/3354166.3354182
https://doi.org/10.1016/j.iotcps.2021.12.002
https://doi.org/10.1109/SYSOSE.2018.8428770
https://doi.org/10.1016/j.jss.2022.111507
https://doi.org/10.1088/1742-6596/1889/2/022064
https://doi.org/10.1088/1742-6596/1889/2/022064

TScIT 41, July 5, 2024, Enschede, The Netherlands Selin Mehmed

[47] Tobias Walter, Fernando Silva Parreiras, and Steffen Staab. 2009. OntoDSL: An
Ontology-Based Framework for Domain-Specific Languages. In Model Driven
Engineering Languages and Systems, Andy Schürr and Bran Selic (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 408–422.

[48] Andrzej Wąsowski and Thorsten Berger. 2023. Building Modeling Languages.
Springer International Publishing, Cham, 25–46. https://doi.org/10.1007/978-3-
031-23669-3_2

[49] Bradley Wood and Akramul Azim. 2021. Triton: a Domain Specific Language
for Cyber-Physical Systems. In 2021 22nd IEEE International Conference on Indus-
trial Technology (ICIT), Vol. 1. 810–816. https://doi.org/10.1109/ICIT46573.2021.
9453575

[50] Chengyuan Yu, Song Jing, and Xuan Li. 2012. An Architecture of Cyber Physical
System Based on Service. In 2012 International Conference on Computer Science
and Service System. 1409–1412. https://doi.org/10.1109/CSSS.2012.355

https://doi.org/10.1007/978-3-031-23669-3_2
https://doi.org/10.1007/978-3-031-23669-3_2
https://doi.org/10.1109/ICIT46573.2021.9453575
https://doi.org/10.1109/ICIT46573.2021.9453575
https://doi.org/10.1109/CSSS.2012.355

	Abstract
	1 Introduction
	2 Cyber-Physical Systems
	2.1 Definition
	2.2 Modelling

	3 Domain Specific Languages
	3.1 Advantages and Disadvantages
	3.2 Development
	3.3 Justification
	3.4 Proposed Approach

	4 Engineering a CPS Language
	4.1 Specify How Components Work Together
	4.2 Define Flow of Operation
	4.3 Have Timing Semantics
	4.4 Model Hybrid Systems

	5 Related Work
	6 Conclusion
	References

