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Modelling the deterioration of sewer and water pipes is vital for drawing up
efficient maintenance strategies such that preventive maintenance can be
executed at a certain time in the pipes’ life cycle when it is needed without
having to perform regular, expensive CCTV inspections. One such kind of
deterioration model is Homogeneous Discrete-Time Markov Chains, which
are stochasticmodels that can predict the severity of damage byworkingwith
states symbolising the severity level, and transition for expressing the time-
independent probability of moving from one state to another in discretized
time steps. Calibrating these transition probabilities is however not a trivial
task. That is why exploring new calibration techniques for deterioration
models of sewer systems is useful. This paper focuses on the application of
Genetic Algorithms (GA) in calibratingMarkov Chains by using evolutionary
concepts like selection, crossover and mutation. The result of this research
shows promising stable results following the application of the algorithms in
the sense that the calibrated models perform well if compared to real-world
data, and the fact that the algorithm is stable, e.g. multiple runs converged
to similar performing calibrated parameter sets.

Additional KeyWords and Phrases:Multi-state degradationmodelling,Markov
chains, sewer systems, genetic algorithms, optimization algorithms.

1 INTRODUCTION
Sewer pipe networks are important infrastructure systems cru-
cial for preventing overflow in the streets and the disposing of
wastewater. Any breaks or failures in said systems can cause public
health concerns and environmental problems and are costly to re-
pair [14, 17]. To prevent these system failures, timely and efficient
maintenance strategies are necessary.
Among the different maintenance strategies, predictive mainte-

nance promises to achieve long-term strategic planning by harness-
ing predictive model capabilities. In this way, maintenance strategies
can be devised such that any potential failures can be treated timely.

One such model is a Markov chain. It is a discrete-time stochastic
model which can simulate degradation processes. It models degra-
dation by having transition probabilities from one state to another.
For a Markov chain model to be helpful, these transition probability
values should be chosen carefully.

In this paper we will first talk about the motivation of conducting
this research, then the goals and objectives we set ourselves follow-
ing the motivation and then the research question that will aid in
fulfilling these goals and objectives. Afterwards, a concise overview
of existing literature about topics discussed in the paper is given.
Then The methodology of how the research is conducted is provided
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followed by the results of following the methods. Conclusively the
results are interpreted in the conclusion section, and later in the
discussion section and we are ending with potential future research.

1.1 Motivation
Getting the optimal parameters for stochastic models is not an easy
or trivial task. Tuning the values in the model to obtain an optimal
set of parameters is considered a Non-deterministic Polynomial-
time (NP-Hard) problem [16]. There is a need to understand and
obtain these parameters in a better and more efficient way. By
researching new algorithms, we can hopefully get a better insight
into how algorithms can streamline the process of making and
training a model to ultimately make better models. Hawari et al.
[7] also discussed that a limitation to Markov chains was that the
transitional probability matrix has to be filled in, with this research
we aim to better understand the calibration of these values and
perhaps find a new efficient method of doing so in the context of
stochastic sewer system models. Using genetic algorithms to solve
NP-hard solutions is no new application since it is commonly used
in problems such as the travelling salesman problem [20], thus the
application in this new context is promising.

1.2 Objective and goals
Counting on accurate and reliable degradation models is crucial
for better management of sewer assets, for example, by yielding
optimal maintenance strategies. However, calibrating these degra-
dation models is challenging when considering different types of
assumptions. So, aiming to identify better strategies to calibrate
these degradation models, in this study we would like to investigate
an algorithm that has not yet been used in the context of sewer pipe
systems that can be used to calibrate these models. This algorithm
is the Genetic Algorithm (GA), and we will investigate its usability
in the context of predictive stochastic models for the degradation of
sewer and water pipe systems.

1.3 Research questions
The objectives and goals of this research lead to the following gen-
eral research question:

How do Genetic Algorithms perform in calibrating Markov chain
models of stochastic degradation in sewer and water pipe networks
based on key performance metrics?

2 RELATED WORK

2.1 Genetic Algorithms
The usage of Genetic Algorithms (GA) in complex computer prob-
lems was first proposed in a paper from Holland in 1992 [8]. He
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translated two important roles in evolution, namely natural selec-
tion and sexual reproduction, to computer code by simulating their
components. It starts by having a population of several individuals.
Each individual, or chromosome, is represented by a bit stream,
such that each gene on the chromosome could have the value 0 or
1. The proceedings of the algorithm go as follows: first, the fitness
value of each individual is calculated. Based on these fitness values
some chromosomes are chosen, which will replicate with each other
using genetic operators to make a new population. A more extensive
explanation and implementation can be found in section 4.4.
GA belongs to the order of Evolutionary Algorithms (EA), an

umbrella term used to describe population-based stochastic direct
search algorithms that in some sense mimic natural evolution [2, 23].
EA are also referred to as population-based metaheuristics which
means that they utilize multiple candidate solutions during the
search process [12]. Among GA, other evolutionary algorithms are
Evolutionary Programming [4, 26], Evolution Strategies [3] and
Genetic Programming [13].

2.2 Degradation modelling of sewer networks
Modelling the degradation in sewer pipes has been discussed in the
literature. Hawari et al. [7] discusses threemain types of degradation
models. The first type is physical models, in this kind researchers
model the real world by recreating the properties of real-life pipes
and simulating how they react to phenomena that these pipes may
endure. Such models might help by mimicking corrosion in concrete
pipes. These deterministic models rest on the assumption that the
real-life factors are projected as well as possible. However, this is
hard to fulfil since there are too many dependent factors and a short-
age of data, making them often too simplistic for a deterministic
model [7, 21]. The second type is models that primarily use artifi-
cial intelligence. They use neural networks or rule-based models
to simulate the degradation of the pipes. The third and last type
Hawari et al. talked about are models based on statistics and prob-
ability. Stochastic models like Markov Chains and Multiple linear
regression. Which focuses on predicting the state of the pipes based
on probability and chance.

2.3 Calibration of Markov chain models for degradation
modelling of sewer networks

The calibration of the Markov chains that model the degradation
of sewer pipes has been done in many different ways. One way to
find the optimal parameters is by using non-linear Euclidean-based
methods, Jimenez Roa et al. [10] minimized the Root MeanWeighted
Square Error (Err) between the data and the model using Sequential
Least Squares Programming (SLSQP). Baik et al. [1] studied degra-
dation models of other degradation processes, and compared the
different calibration methods used there. They applied the ordered
probit model approach, as previously implemented for the bridge
deterioration models. This technique addresses the drawbacks of
nonlinear optimization-based approaches [1]. Another often-used
calibration method is the Metropolis-Hastings Algorithm, a Markov
Chain Monte Carlo method. and uses Bayesian logic to approximate
the parameters. Among others [15, 22], Jimenez-Roa et al. [11] used
the M-H algorithm, but combined it with the SLSQP, to initially
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Fig. 2. Transition Probability Matrix

find a good estimate for an optimal solution, to subsequently, fur-
ther improve these with the SLSQP algorithm, avoiding premature
convergence.

3 DISCRETE-TIME MARKOV CHAINS
To test GAs, and their capabilities of calibrating stochastic models,
we will use Homogeneous Discrete-Time Markov Chains (HDTMC).
These models are discrete-time in the fact that transitions hap-
pen in predetermined time steps so they cannot be simulated over
continuous time. Furthermore, homogeneous means that the condi-
tional probability of any future events depends only on the present
states[1]; in other words, the transition probabilities in the model
do not change over time. The Markovian property can be expressed
as follows

𝑃 (𝑋𝑛+1 = 𝑖𝑛 + 1|𝑋𝑛 = 𝑖𝑛, 𝑋𝑛−1 = 𝑖𝑛−1
, ..., 𝑋0 = 𝑖0)

= 𝑃 (𝑋𝑛+1 = 𝑖𝑛+1 |𝑋𝑛 = 𝑖𝑛)
(1)

Because the Markov chain is homogeneous, and the probabilities
do not change over time, 𝑃 (𝑋𝑛+1 = 𝑖𝑛+1 |𝑋𝑛 = 𝑖𝑛) is independent of
time-steps n,

𝑝𝑖 𝑗 = 𝑃 (𝑋𝑛+1 = 𝑖𝑛+1 |𝑋𝑛 = 𝑖𝑛), (2)
where 𝑝𝑖 𝑗 is the transition probability given a system in state 𝑖 a
time-step 𝑛, which is transitioning to a system that will be in state
𝑗 in time-step 𝑛 + 1. The transitions are most commonly expressed
as entries in a Transition Probability Matrix (TPM) P, which is a
𝑚×𝑚matrix where𝑚 is the number of states in the model. Since the
transitional values are probabilities, all outgoing transitions from a
state must add up to one. This could be expressed as the summation
of each entry in a row in the TPM like in Table 3.
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∑︁𝑗

𝑖
𝑃𝑖 𝑗 = 1 (3)

An HDTMC system models the probabilities of transition of a
one-time step. To determine the probabilities of any time steps 𝑛
we need to use the Chapman-Kolmogorov equation,

S(𝑛) = S(0)P(𝑛) (4)
where S(0) is the initial state vector which indicates the probabil-

ities of a system being at a state at step 𝑛 = 0, in our case we assume
that at the start of their life cycle, each pipe is in pristine condition,
so S(0) = [1, 0, 0, 0, 0, 0]. Equation 4 results in a probability vector
giving the probability of the system being at each state at step n.

4 METHODOLOGY
To explore the possibility of applying GA to the calibration of
DTMCs, we will first lay out the different factors and steps of the
process, starting with the data that is used for calibrating, then mov-
ing on to how different genetic operators (chromosome encoding,
mutation, crossover and selection) are implemented in GA and what
the process looks like in practice for this research. And how the
results will be interpreted

4.1 Data preparation
The data used to train the model comes from a case study about the
sewer pipe network in the city of Breda, Netherlands. It consists
of more than 25 thousand pipes built from 1950 onwards. The data
is gathered by CCTV inspection where pipes are inspected from
the inside. Most pipes are inspected at most once and a minority
are inspected twice or more. The data observations are based on
the European standard for outdoor sewerage visual NEN-EN 13508-
2, where the condition of the sewer pipes is assessed on different
defects on a scale from 1-5, and are then reported. The data that
will be used is focused on the defect with the damage code BAF,
which is surface damage. The pipes themselves are made out of
concrete and transport mixed contents and wastewater [10]. The
data is transformed into a list of inspections with the precise age of
the pipe and the reported severity level. Since we are working with
discrete-time MCs, We have to group these observations in discrete
time steps. So a frequency table is created, shown in Table 1. Here
the inspected pipes are grouped based on their age, and the state of
the pipes is reflected by the frequency of each state. Together with
a count which stands for the number of pipes in each age group.

4.2 Markov chain structure
In this paper, we will use the degradation model suggested by [11],
which has 5 regular states, and one failure state 𝐹 . The system is a
degradation model with the assumption that there are no repairs
meaning that a system cannot move to a status that represents a
better condition than its current state. Each state has a transition
to the next-following state, and the failure state; so the sewer pipe
condition can remain the same, worsen with 1 severity level, or fail
in a certain time period. The failure state is absorbing, meaning that
once the system has reached state F, it will remain in state F This
Markov chain structure is shown in Figure 1, with the corresponding
TPM in Figure 2.

Table 1. Frequency Table of Inspection Data

Time State count
1 2 3 4 5 F

1 0.94 0.04 0.00 0.01 0.00 0.00 591
3 0.94 0.04 0.00 0.00 0.00 0.02 136
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47 0.26 0.58 0.14 0.02 0.00 0.01 1135
49 0.40 0.48 0.09 0.02 0.01 0.01 1485
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71 0.75 0.25 0.00 0.00 0.00 0.00 4
77 0.00 0.75 0.25 0.00 0.00 0.00 4

4.3 GA components
4.3.1 Chromosome Encoding. The first forms of GA used binary
encoded chromosomes, where each genewas represented as a binary
0 or 1. So a chromosome either has the gene or not. This binary
encoding scheme can also be translated to real values by taking the
binary value of the bit stream. This bit-wise representation makes
it so that genetic operators can be implemented in a way that is
more similar to how Darwinian evolution describes it. Another
way to encode the parameters is by simply taking the parameters
as real values, and treating these real values as separate genes. A
disadvantage of value encoding is that the genetic operators have
to be slightly modified since the genes are not binary anymore [24].
We want to calibrate a Markov Chain by finding optimal values

for the probabilities 𝑃𝑖 𝑗 of each transition between stat 𝑖 and 𝑗 . The
values are real numbers and probabilities, so they are bounded by
interval [0, 1], which means that if these values were encoded in
binary we would need many bits, and it would be harder to program
it. Since according to 3 the values of each row of a TPM must add
up to 1, we can write all transitions 𝑃𝑖𝑖 as subtraction of all other
transitions in the same row 𝑖 . For example 𝑃11 = 1− 𝑃12 − 𝑃1𝐹 . This
leaves us with 9 parameters to calibrate. Namely all non-diagonal,
non-zero entries in the TPM P. In the context of GA, this means that
the chromosome will exist out of 9 genes which will be optimized.

4.3.2 Mutation. The first genetic operator that GA uses is muta-
tion. Mutation ensures that solutions escape certain local optima
by altering the genes on the chromosome. In Binary encoding, this
means flipping certain bits. with a probability called the mutation
rate for binary coded solution: every bit has a certain change to be
changed. [24]
for real coded chromosomes a certain distribution and bounds

should be applied to alter a specific gene on the chromosome. The
bounds could be set, numerical values describing the maximum
change. It is accompanied by a certain mutation rate, a probability
which determines if a gene gets mutated. This could be a normal
distribution to favour smaller changes. Or a more uniform distribu-
tion to encourage larger changes to escape certain local optima One
such mutation algorithm using a uniform distribution is proposed
in a paper written by Wright, he proposed a mutation involving a
mutation rate and a maximum mutation size [24]. We implement

3



TScIT 41, July 5, 2024, Enschede, The Netherlands B.H.B. Ottenschot, M. Stoelinga, L.A. Jimenez-Roa

this by setting these mutation values to 0.5 below the current value
and 0.5 above the current value, such that the genes can escape
certain local optima quicker.

4.3.3 Crossover. Crossover, or recombination, is the operator which
ensures that when two parent chromosomes are mating, the new
solution will have genes from both parents, with the premise that
exchanging genes from two fit parents will inherently produce
even better offspring [27]. In the simplest form of crossover, certain
breakpoints are chosen on the chromosomes which divide the genes
in parts. These parts are exchanged between the parents, and end
up creating new children’s solutions. This method is called single-
point crossover when one breakpoint is selected, and multi-point
or K-point crossover for more breakpoints.

4.3.4 Fitness function. a fitness function evaluates all individuals
from the population and gives them a fitness value. In the context of
parameter calibration of Markov chain models, the fitness function
assesses how well the parameters in the Markov chain model the
real-life data.
the fitness function that will evaluate the individuals in this re-

search is root mean weighted squared error (Err)[10]. This function
creates a TPM from a proposed solution. And uses the Chapman-
Kolmogorov equation to evaluate the probability of a pipe being in
a certain state. For each time step Δ𝑡 and state 𝑆𝑚 this probability
is compared to the real data from the frequency table weighted to
the amount of pipes that are present in each time step. Since the
differences of the fitness value between individuals differ only a
fraction of the values in advanced stages of the algorithm, the fitness
value gets transformed to 𝑠𝑐𝑜𝑟𝑒

𝑠𝑐𝑜𝑟𝑒 = 𝑒
1

𝐸𝑟𝑟 (5)
where 𝑒 is raised to the power of the inverse of 𝐸𝑟𝑟 Such that

a small difference in the Err value of a solution results in a big
difference in the score value, thus promoting improvements of the
solutions even more. The library PyGAD [6] only offered the possi-
bility to evaluate the fitness function by rewarding higher fitness
values, whereas in our case a lower Err would mean a better solution.
After some test runs this method of calculating 𝑠𝑐𝑜𝑟𝑒 worked better
than only taking the inverse 1/𝐸𝑟𝑟 , or negating the fitness value
−𝐸𝑟𝑟 .

4.3.5 Parents Selection Techniques. After each individual has been
given a certain fitness value, some individuals need to be chosen to
be used for mating in the next generation. To ultimately eliminate
bad solutions from the population and keep better solutions apply
the different selection techniques to each member of the population
and their fitness value. An intuitive first approach is to assign a
certain probability to be selected to each organism relative to their
fitness value. This is called the roulette wheel approach where each
individual gets assigned a portion of the roulette wheel based on
their fitness value, and then the wheel is spun N times, based on
how many parents are needed.[25].

Roulette selection might induce premature convergence of the GA
to a local optimum instead of a global optimum [9], so to combat this,
and give a lesser fit solution a better chance of getting selected, the
rank selection method can be used. Instead of assigning probabilities

based on fitness value, they are assigned based on the rank of the
solutions if they are arranged based on fitness value. rank - each
solution gets a rank based on its fitness value, and the chance of
getting selected is proportional to its rank. The roulette is spun as
often as needed to select the required number of parents.
Another way to combat premature convergence is by using Sto-

chastic Universal Sampling (SUS) similar to the roulette wheel, the
solutions are placed on the wheel based on fitness level, but instead
of spinning the wheel multiple times, N evenly spaced pointers
are placed on the wheel. This selection procedure also has no bias
since the individuals are selected solely on their positions in the
population, or in this case on the roulette wheel [18].

4.3.6 GA parameters. AGA also needs initialisation, a good popula-
tion size has to be chosen, and the mutation probability must be set.
Determining the right size of this population is vital for the conver-
gence and the performance of the process. choose a population size
too small, like 10, and the gene pool is simply not diverse enough,
choose a population size too high, like 4000, and the computational
cost will be too great, The magnitude of the search space also plays
a role in choosing the population size, since a larger search space
might benefit from a larger gene pool of different values. Another
parameter is the mutation probability, which determines how many
genes will be mutated. A mutation prevents the algorithm from
converging to local optima, but setting the mutation probability to
high will result in a random search. [5] Chiroma et al. [5] conducted
a survey in which they researched different GA processes and noted
down these 2 parameters. From this, we see that a population size
of 100 is deemed a good size since it is a good tradeoff between gene
diversity and computational feasibility. And a mutation rate of 0.3
is chosen to support more change during the iterations.

4.4 Calibrating a model
To implement all the chosen decisions, we opted to program in
Python since previous similar projects have used the language, and
thus certain resources could be re-used. Additionally, it is an easy-
to-use programming language and the go-to language in machine
learning because of the available low-level libraries and performance
[19]. For the implementation of GA in Python a handful of libraries
exist that all enable the user to implement a GA instance. Most
libraries are frameworks in which the user can set up any evolu-
tionary algorithm, like in Pyevolve, DEAP and LEAP. Compared to
some libraries focusing solely on GA, such as PyGAD and EasyGA.
Both categories of libraries had roughly the same functionalities
in setting up GA parts of the other libraries, but the GA-focused
ones were easier to set up and required less unnecessary code. From
the two selected libraries, PyGAD has more genetic operations op-
tions and better follows the textbook definition of a GA. That is
why we utilise the PyGAD library [6] to implement the the genetic
algorithm.

The hyperparameters, as discussed in section 4.3.6, are set in the
model, and the GA starts by initializing the genes of the chromo-
somes by randomly picking a value that is on the gene space, which
in this case are probabilities, thus being in the closed interval [0, 1].
The fitness function gives all the individuals a fitness value, 𝐸𝑟𝑟 , as
described in section 4.3.4. From these values, 40 parents are selected
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by the SUS technique described in 4.3.5 for replication. These par-
ents then perform a two-point cross-over and random mutation to
create a new population. These newly created individuals all get a
fitness value and the cycle starts over again. These steps iterate until
the GA has converged, so if the fitness value of the best solution
has not changed in 50 iterations or once 500 iterations have passed.
The whole process is displayed in Figure 3.

4.5 Interpreting Solution
After the GA process has stopped due to convergence, or the itera-
tion limit has been reached. The solution with the highest fitness
function is picked from the population as an optimal solution. To
evaluate the performance of this found solution and the calibration
process, some metrics should be in place to systematically assess it.
The metrics include:

• Convergence time. Howmany iterations does the algorithm
need before the fitness level has stagnated, and hasn’t changed
for 50 iterations?

• Accuracy. The fitness value that the final best solution gets
using the 𝐸𝑟𝑟 [10].

• Stability. How much does the final fitness value vary on
different runs, using the same data?

5 RESULTS
The primary objective of this research was to research the effec-
tiveness and performance of Genetic Algorithms in calibrating and
optimizing the transitional probability matrix from Homogeneous

Table 2. Results from the Calibration Runs

Run Score
(×1018) 𝐸𝑟𝑟

generations
till convergence

1 4.1667 0.0233243516326512 500
2 5.3658 0.0231875564252668 284
3 7.0761 0.0230397483259682 273
4 5.7962 0.0231461487657747 500
5 4.5758 0.0232734977879196 272
6 4.8134 0.0232461142403455 500
7 5.4716 0.0231770607504200 269
8 5.4241 0.0231817478766909 234
9 6.8970 0.0230533637959656 414
10 5.2267 0.0232016893348690 500

Fig. 4. Evaluation of Parameters

Discrete-Time Markov Chains such that it reflects the real-world
data as best as possible. We will do this with the data described in
section 4.1. To test the stability of the calibration technique we ran
the process 10 times, in which each run, the GA was set up with the
same data and parameters. The data recorded from these 10 runs
were the 𝑠𝑐𝑜𝑟𝑒 (Equation 5), the 𝐸𝑟𝑟 and the number of generations
until convergence, and are shown in Table 2.
After convergence, the 𝐸𝑟𝑟 values of the final solutions average

0.0232 with a standard deviation of 8.44067𝐸−05. To better illustrate
the fitness values of each solution, the proposed final solution with
the highest fitness of each run has been plotted together with the
real-world data points in Figure 4. In the graph, for each state, the
probability of the system being at that state at a certain time step is
shown. The real-world data is graphed as grey dots, following the
distribution from the Frequency Table 1, where their size reflects
the amount of inspection data in that time step.

To get a better insight into howGA converge over time, the fitness
levels of the best solution in each generation are plotted in Figure
5. In the figure, the plotted line stops when it has converged. In
Figure 5a the score is plotted against the generation, and in Figure
5b the actual Fitness value of 𝐸𝑟𝑟 is plotted against the generation.
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In this figure we can see that most major fitness level improvements
occur in generations 0 to 50; from generations 51 to 150 smaller
improvements occur and from generation 151 onwards, only minor
improvements happen.

6 CONCLUSION
With the newfound result, we can give an informed answer to our
research question: "How do Genetic Algorithms perform in calibrating
Markov chain models of stochastic degradation in sewer and water
pipe networks based on key performance metrics?". Overall we can
say that Genetic Algorithms are a viable option in the calibration
of stochastic models like HDTMCs since the resulting calibrated
models, model real-world data well, and the algorithm produces
stable outcomes with similar, fit solutions over multiple runs. Most
calibrations have found a rough optimum as a solution between 100
and 200 generations, after which this solution gets fine-tuned with
smaller improvements.

A model with an optimal calibration should follow the real-world
data as well as possible. In Figure 4, most plotted staircases follow
the plotted points well. The fitness scores of the runs reflect this by
indicating that the distance between the predicted point (the plotted
line) and the real-world data points (the grey dots) is small.
The stability of an algorithm says something about how similar

the results are if the algorithm is run multiple times. A good way to
measure this is by looking at the standard deviation of the results of
the calibration, the fitness scores. Such a small standard deviation
in the 𝐸𝑟𝑟 value shows that the GA is a relatively stable algorithm
for calibrating HDTMCs. This is further substantiated in Figure 4,
where all plotted runs follow roughly the same trajectory.

On the number of generations, each GA calibration run used can
be said less, Because the GA method is still based on a degree of
luck, some runs might reach an optimum earlier than others, hence
the greatly differing convergence times. This is further founded by
the fact that in general, runs with a higher iteration count do not
necessarily have a better fitness value. For example, the run with
the best fitness score only needed 273 generations to reach it, and
the run with the (relatively) worst fitness score took all 500 genera-
tions. What can be said about the fitness vs generations plotting as
shown in Figure 5b is that the majority of the fitness improvements
are made early on in the calibration process, within the first 150
generations, after which most runs were near the optimum solution.
Most graphs have settled around 𝐸𝑟𝑟 ≈ 0.024 between 100 and 200
generations. And the later generations only improved their fitness
marginally. This implies that a calibration process using GA with
the discussed parameters does not need all 500 generations, but
has sufficient time to converge to a good set of parameters in 200
generations.

7 DISCUSSION
In the current state of the GA setup, combined with the limited
computational power of the technical setup, one iteration of the
algorithm takes up to 6 seconds, which means that running the
algorithm for 500 iterations already takes up close to an hour. We
would like to have tested the algorithm for more than 10 runs, but
due to time constraints, this was not achievable. The numbers from

Table 2 show that some runs of the algorithm used all 500 iterations,
meaning that there was still potential for them to improve further.
Combing this knowledge with the fact that in some runs increases
of the fitness level can happen, even after a period of less increase
in the fitness level, perhaps if more iterations were allocated to the
algorithm, it would perform even better.

Furthermore, it is proven that some inhomogeneousMarkov chain
models (or semi-Markov chains) better model the degradation of
sewer pipes [11]. These structures however deemed too difficult to
adapt to genetic algorithms since the rates that had to be calibrated
had too large a solution space, and any attempt to apply GA would
result in poor solutions which got stuck on poor local optima far
away from the global optima.

8 FUTURE WORK
While researching the topic, and testing the GA algorithm, many
more research directions emerged as the research went on. However
unfortunately due to the time constraints that were put on this
research, most of these emerging questions were left unanswered.
Another direction could be to explore how GA performs when

used on different Markov chain structures, perhaps with more or
less transitions. This can be extended by using different Markov
chain models like inhomogeneous where the transition is dependent
on time in contrast to HDTMC. Or MCs using continuous time to
evaluate the transitional probabilities instead of using set discrete
time steps.

Finally, research that would be helpful is to test amultitude of used
calibration methods (including, but not limited to the ones described
in section 2.3) in the context of stochastic models for sewer pipe
networks. And benchmark them against each other based on certain
key metrics.

ACKNOWLEDGMENTS
The main author of this paper wants to thank Lisandro Jimenez-Roa
and Mariëlle Stoelinga for their guidance, supervision and feedback
during the period the research was conducted.

REFERENCES
[1] Hyeon-Shik Baik, Hyung Seok Jeong, and Dulcy M Abraham. 2006. Estimating

transition probabilities in Markov chain-based deterioration models for manage-
ment of wastewater systems. Journal of water resources planning and management
132, 1 (2006), 15–24.

[2] Thomas Bartz-Beielstein, Jurgen Branke, Jorn Mehnen, and Olaf Mersmann. 2014.
Evolutionary algorithms. Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery 4, 3 (2014), 178–195.

[3] Hans-Georg Beyer and Hans-Paul Schwefel. 2002. Evolution strategies–a compre-
hensive introduction. Natural computing 1 (2002), 3–52.

[4] YJ Cao and QH Wu. 1997. Evolutionary programming. (1997), 443–446.
[5] Haruna Chiroma, Sameem Abdulkareem, Adamu Abubakar, Akram Zeki, Ab-

dulsalam Gital, and Mohammed Usman. 2013. Correlation Study of Genetic
Algorithm Operators: Crossover and Mutation Probabilities.

[6] Ahmed Fawzy Gad. 2021. PyGAD: An Intuitive Genetic Algorithm Python Library.
CoRR abs/2106.06158 (2021). arXiv:2106.06158 https://arxiv.org/abs/2106.06158

[7] Alaa Hawari, Firas Alkadour, Mohamed Elmasry, and Tarek Zayed. 2020. A
state of the art review on condition assessment models developed for sewer
pipelines. Engineering Applications of Artificial Intelligence 93 (2020), 103721.
https://doi.org/10.1016/j.engappai.2020.103721

[8] John H. Holland. 1992. Genetic Algorithms. Scientific American 267, 1 (1992),
66–73. http://www.jstor.org/stable/24939139

[9] Khalid Jebari, Mohammed Madiafi, et al. 2013. Selection methods for genetic
algorithms. International Journal of Emerging Sciences 3, 4 (2013), 333–344.

6

https://arxiv.org/abs/2106.06158
https://arxiv.org/abs/2106.06158
https://doi.org/10.1016/j.engappai.2020.103721
http://www.jstor.org/stable/24939139


Parameter Calibration of Stochastic Degradation Models of Sewer and Water Pipe Networks using Genetic Algorithms TScIT 41, July 5, 2024, Enschede, The Netherlands

(a) Convergence of Score (b) Convergence of Err

Fig. 5. Fitness Convergence of Algorithm Runs

[10] Lisandro A. Jimenez-Roa, Tom Heskes, Tiedo Tinga, Hajo J.A. Molegraaf, and
Marielle I.A. Stoelinga. 2022. Deterioration modeling of sewer pipes via discrete-
time Markov chains: A large-scale case study in the Netherlands. In Proceedings
of the 32nd European Safety and Reliability Conference (ESREL 2022). 1299–1306.
https://doi.org/10.3850/978-981-18-5183-4_R22-13-482-cd 32nd European Safety
and Reliability Conference, ESREL 2022 : Understanding and Managing Risk and
Reliability for a Sustainable Future, ESREL ; Conference date: 28-08-2022 Through
01-09-2022.

[11] Lisandro A. Jimenez-Roa, Tiedo Tinga, Tom Heskes, and Marielle Stoelinga. 2024.
Comparing Homogeneous and Inhomogeneous Time Markov Chains for Mod-
elling Degradation in Sewer Pipe Networks. In Advances in Reliability, Safety and
Security, Vol. Part 6 - Complex Systems and Critical Infrastructures Reliability,
Safety and Security Modelling and Optimization. Polish Safety and Reliability
Association, 87–96.

[12] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. 2021. A review on
genetic algorithm: past, present, and future. Multimedia tools and applications 80
(2021), 8091–8126.

[13] John R Koza. 1994. Genetic programming as a means for programming computers
by natural selection. Statistics and computing 4 (1994), 87–112.

[14] Carles Mateu Marc Ribalta, Ramon Bejar and Edgar Rubión. 2023. Machine
learning solutions in sewer systems: a bibliometric analysis. Urban Water Journal
20, 1 (2023), 1–14. https://doi.org/10.1080/1573062X.2022.2138460

[15] Tom Micevski, George Kuczera, and Peter Coombes. 2002. Markov Model for
Storm Water Pipe Deterioration. Journal of Infrastructure Systems 8, 2 (2002),
49–56. https://doi.org/10.1061/(ASCE)1076-0342(2002)8:2(49)

[16] Sajjad Nematzadeh, Farzad Kiani, Mahsa Torkamanian-Afshar, and Nizamettin
Aydin. 2022. Tuning hyperparameters of machine learning algorithms and deep
neural networks using metaheuristics: A bioinformatics study on biomedical
and biological cases. Computational Biology and Chemistry 97 (2022), 107619.
https://doi.org/10.1016/j.compbiolchem.2021.107619

[17] Titilayo A. Owolabi, Saeed R. Mohandes, and Tarek Zayed. 2022. Investigating
the impact of sewer overflow on the environment: A comprehensive literature
review paper. Journal of Environmental Management 301 (January 2022), 795–825.
https://doi.org/10.1016/j.jenvman.2021.113810

[18] Tania Pencheva, Krassimir Atanassov, and Anthony Shannon. 2009. Modelling of
a stochastic universal sampling selection operator in genetic algorithms using
generalized nets. In Proceedings of the tenth international workshop on generalized
nets, Sofia. 1–7.

[19] Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine Learning
in Python: Main Developments and Technology Trends in Data Science, Machine
Learning, and Artificial Intelligence. Information 11, 4 (2020). https://doi.org/10.
3390/info11040193

[20] Noraini Mohd Razali, John Geraghty, et al. 2011. Genetic algorithm performance
with different selection strategies in solving TSP. In Proceedings of the world
congress on engineering, Vol. 2. International Association of Engineers Hong Kong,
China, 1–6.

[21] Comfort Salihu, Saeed Reza Mohandes, Ahmed Farouk Kineber, M. Reza Hosseini,
Faris Elghaish, and Tarek Zayed. 2023. A Deterioration Model for Sewer Pipes

Using CCTV and Artificial Intelligence. Buildings 13, 4 (2023). https://doi.org/10.
3390/buildings13040952

[22] HuuDung Tran, BJC Perera, and AWMNg. 2010. Markov and neural networkmod-
els for prediction of structural deterioration of storm-water pipe assets. Journal
of Infrastructure Systems 16, 2 (2010), 167–171.

[23] Pradnya A Vikhar. 2016. Evolutionary algorithms: A critical review and its future
prospects. In 2016 International conference on global trends in signal processing,
information computing and communication (ICGTSPICC). IEEE, 261–265.

[24] Alden H. Wright. 1991. Genetic Algorithms for Real Parameter Optimization.
Foundations of Genetic Algorithms, Vol. 1. Elsevier, 205–218. https://doi.org/10.
1016/B978-0-08-050684-5.50016-1

[25] Saneh Lata Yadav and Asha Sohal. 2017. Comparative study of different selection
techniques in genetic algorithm. International Journal of Engineering, Science and
Mathematics 6, 3 (2017), 174–180.

[26] Xin Yao, Yong Liu, and Guangming Lin. 1999. Evolutionary programming made
faster. IEEE Transactions on Evolutionary computation 3, 2 (1999), 82–102.

[27] Farah Ayiesya Zainuddin, Md Fahmi Abd Samad, and Durian Tunggal. 2020. A
review of crossover methods and problem representation of genetic algorithm in
recent engineering applications. International Journal of Advanced Science and
Technology 29, 6s (2020), 759–769.

A USAGE OF AI
During the preparation of this work, the authors used Grammarly in
order to correct minor spelling and grammar mistakes. After using
this tool/service, the authors reviewed and edited the content as
needed and takes full responsibility for the content of the work.

7

https://doi.org/10.3850/978-981-18-5183-4_R22-13-482-cd
https://doi.org/10.1080/1573062X.2022.2138460
https://doi.org/10.1061/(ASCE)1076-0342(2002)8:2(49)
https://doi.org/10.1016/j.compbiolchem.2021.107619
https://doi.org/10.1016/j.jenvman.2021.113810
https://doi.org/10.3390/info11040193
https://doi.org/10.3390/info11040193
https://doi.org/10.3390/buildings13040952
https://doi.org/10.3390/buildings13040952
https://doi.org/10.1016/B978-0-08-050684-5.50016-1
https://doi.org/10.1016/B978-0-08-050684-5.50016-1

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Objective and goals
	1.3 Research questions

	2 Related work
	2.1 Genetic Algorithms
	2.2 Degradation modelling of sewer networks
	2.3 Calibration of Markov chain models for degradation modelling of sewer networks

	3 Discrete-Time Markov Chains
	4 Methodology
	4.1 Data preparation
	4.2 Markov chain structure
	4.3 GA components
	4.4 Calibrating a model
	4.5 Interpreting Solution

	5 Results
	6 Conclusion
	7 Discussion
	8 Future work
	Acknowledgments
	References
	A Usage of AI

