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Monitoring pedestrian dynamics is critical for urban planning, re-
source allocation, and public safety. Traditional methods of data
collection pose significant privacy concerns, necessitating the use
of privacy-preserving techniques. This paper analyzes the function-
ality of five prominent probabilistic data structures for pedestrian
counting and crowd monitoring and evaluates the performance of
two selected ones, Bloom Filters and HyperLogLog. We explore
their effectiveness in estimating set cardinality, union, and intersec-
tion sizes across varying parameters. Experimental results indicate
that both data structures have similar accuracy, with relative errors
around 0.43% for set cardinality and union estimations. However,
Bloom Filters demonstrate significantly better performance in terms
of execution time and memory usage, being five times faster and
more than 40 times more space-efficient than HyperLogLog. Despite
HyperLogLog’s slightly better accuracy in intersection estimations,
Bloom Filters’ overall efficiency makes them more suitable for real-
time applications.
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1 INTRODUCTION

Monitoring pedestrian dynamics and movement patterns is
crucial for various applications, including urban planning
[1], resource allocation and public safety [2]. City planners
require accurate pedestrian data about how numerous the
crowds are and how they move to optimize infrastructure,
transportation systems, and public spaces. Emergency ser-
vices need real-time information on crowd densities to re-
spond effectively in case of incidents or disasters. Businesses
and event organizers could also use the data for crowd anal-
ysis and control [3, 4].

Automatically measuring pedestrians’ dynamics allows
for the collection of more accurate data in a more convenient
manner than manual methods. In these methods, scanners
are placed in public areas to gather unique identifiers of
people like MAC addresses or public transport card infor-
mation for each person to automate the process. Collecting
these identifiers allows interested parties to approximate
the number of people around the scanners and the flow of
movement between them. Dealing with data of crowds has
always been a sensitive matter regardless of the monitor-
ing method as the people involved are worried about their
privacy. Gathering unique identifiers of people in different
places over a period of time can endanger their privacy since
they can be identified again [5]. These actions are forbidden
according to the European General Data Protection Regula-
tion (GDPR) [6]. As an instance of automatically analyzing
pedestrian dynamics, the widespread adoption of mobile
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devices has introduced a new approach. This method uti-
lizes signals emitted by these devices, such as Wi-Fi probe
requests. Although the method enables automatic pedes-
trian tracking, resulting in more efficient and accurate data
collection compared to manual methods, it also highlights
significant concerns regarding the privacy of the collected
data.

Traditional methods, which use storing and processing
raw data containing sensitive information, are no longer
viable due to data protection regulations. The proposed so-
lution uses probabilistic data structures as they only retain
hashed parts of the data or fingerprints representing it while
using fewer resources than standard databases. Of the five
analyzed, two have the required functions of set and in-
tersection cardinality calculation for analyzing pedestrian
dynamics - Bloom Filter and HyperLogLog.

In this paper, we discuss the potential solutions based
on the conducted experiment and previous research with a
focus on functionality and performance.

2 PROBLEM STATEMENT

In this research field, most of the works focus on implemen-
tations in different fields [7, 8] and the impact on privacy[9].
While these are indeed important topics, there is a lack of
analysis on the performance of the different probabilistic
data structures. They are important resource-preserving
instruments; understanding their nuances is key to choos-
ing and implementing one for your system. This paper will
analyse the performance of different data structures and ex-
plore how different parameters impact the relation between
pedestrian count accuracy and privacy preservation.

The problem statement leads to the following research
questions:
« RQ1: How effective are Bloom Filters, HyperLogLog, and
other probabilistic data structures in accurately counting
pedestrians?
« RQ2: How do parameters such as filter size, hash functions,
and error rates impact the performance of probabilistic data
structures in pedestrian counting?

3 BACKGROUND
3.1 Pedestrian dynamics

Pedestrian dynamics encompasses the study of how peo-
ple move and interact in various environments, providing
valuable insights into crowd behaviour and movement pat-
terns. Pedestrian dynamics studies how people move and
interact in different environments. It gives valuable insight
into crowd behaviour and movement patterns. Two key met-
rics in this field are footfall and crowd flow, terminology
formally defined in [10]. Footfall represents the count of
pedestrians passing through a particular area, in our case
those detected by sensors, over a specific period. Crowd
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flow involves people’s movement patterns through different
areas, which can be visualized by identifying the groups
of people detected at 2 or more different locations. If we
are to assume the data is gathered in sets, then to realize
the needed statistical data we shall need a system that has
the functions of calculating set cardinality and finding the
intersections of 2 or more sets while being fast and efficient
enough to accomplish those real-time analytics.

3.2 Probabilistic data structures

Probabilistic data structures are one of the most prominent
solutions for handling large-scale data efficiently, often at
the cost of some accuracy [11]. They are beneficial in sce-
narios where approximate results are acceptable and of-
fer significant memory and computation time savings. The
pedestrian count does not require to be exact to be use-
ful therefore they are a logical choice to explore as their
low space and time complexity makes them more suited for
real-time analysis than deterministic data structures. The
research conducted on available probabilistic data structures
identified five key structures, as shown in Table 1: Bloom
Filter, HyperLogLog, Count-min Sketch, Cuckoo Filter, and
Quotient Filter. These structures were selected based on
their ability to efficiently manage large-scale data with mini-
mal memory and computational requirements, making them
ideal for real-time analysis applications. Each of these data
structures supports different functions that are crucial for
various applications. Bloom Filters and HyperLogLog, in par-
ticular, fit the criteria because they support both cardinality
estimation and intersection operations. These functions are
essential for applications in pedestrian dynamics analysis
where calculating the number of distinct elements (footfall)
and identifying intersections (crowd flow) are critical tasks,
therefore the focus of this paper will be on Bloom Filters
and HyperLogLog.

3.2.1 Bloom Filter. Bloom Filters [12] is a space-efficient
probabilistic data structure whose main functionality is to
check if an element is part of a set. It is implemented using
an array of bits and multiple independent hash functions.
When an element is added to the Bloom Filter, it is hashed
by each hash function, and the corresponding bits in the
array are set to 1. Querying for an element requires that
it is passed through all the hash functions and that the
received bits be inspected. If any of them are 0’s, then the
element is guaranteed to not be in the filter. When all the
bits are set to 1, the element is estimated to be in the set.
Its probabilistic nature comes from the fact that it produces
false positives as the query returns a positive result, it might
be the case that the corresponding bits have been set to
1 by the addition of another element. The probability of
any of these bits to be 1is (1 — (1 — %)k”) for m bits,
k hash functions and n inserted elements, which can be
approximated to (1 —e” N ). Therefore when taking into
account the number of hash functions, the probability of
all selected bits being 1 and the algorithm returning an
incorrect positive claim of membership is approximately

(1—e” 0 )k The authors of [8] show that for a finite Bloom
filter, the false positive probability of the data structure does
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Fig. 1. The normalized RMSE of intersection estimations of Bloom
Filter

ki (n+0.5)
not exceed (1—e~ " m-1 )K_ As the optimal amount of hash

functions can be derived from the false positive probability
to be 2 In 2[13], the parameters of the algorithm can be
adjusted to the expected number of entries and the needed
error rate.

The count of the elements in BF can be approximated

with the following formula: count(BF) ~ — 7+ In(1 - %)
where [BF| is the number of bits set to 1.

Operations on different Bloom Filters can be done by us-
ing bitwise OR and AND operations to create the union
and intersection of the sets respectively. The union oper-
ation keeps the same False positive rate of the used algo-
rithms, the count can be calculated using the same formula
- count(BFy U BF) ~ =22 In(1 - %) [7]. However,
for intersections, this method will result in more false posi-
tives compared to creating another Bloom Filter (BF) with
the common elements of the sets. This is because the AND
operation might indicate matching bits that were set by
different values, which are not actually in the intersection.
To avoid this the intersection cardinality can be calculated
using the inclusion-exclusion principle: count(BF; NBF;) =
count(BF)+count(BF)—count (BF; UBF;). Experimenting
with both methods [Figure 1] shows that using the bitwise-
AND function results in large error for relatively small in-
tersection sizes. More about the metrics and the settings of
the experiment are explained in Section 4.

In Bloom filters, the time complexity for adding and query-
ing an element is O(k), and the time complexity for estimat-
ing the count is O(m). The space complexity is also O(m),
showing that both scale linearly with the size of the filter.

Bloom Filters are widely used in various domains due to
their efficiency in space and time. Bloom Filters help manage
cache and reduce latency in web servers by quickly checking
if a web object is cached [14] and are also used in systems
like Apache Cassandra [15] and Google Bigtable [16] to min-
imize disk look-ups for non-existent rows, enhancing read
performance. A lot of variants have been created to com-
pensate for the specific limitations of the initially proposed
algorithm or to improve its performance. Some examples of
them are:
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Data Structure ~ Membership Testing Union Intersection Cardinality Frequency Deletion

Bloom Filter Yes Yes Yes Yes No No
HyperLogLog No Yes No Yes No No
Count-min Sketch No No No No Yes No
Cuckoo Filter Yes Yes No No No Yes
Quotient Filter Yes Yes No No No Yes

Table 1. Functions supported by the presented data structures

o Counting Bloom Filter: Supports deletion of elements
by maintaining a count of the number of times a bit
is set to 1 [14].

o Scalable Bloom Filter: Adapts dynamically to the num-
ber of stored elements while ensuring a maximum
false positive probability, making it suitable for envi-
ronments with constantly varying dataset sizes [17].

e Bloomier Filter: An extension that supports associ-
ating values with keys. It can be used to implement
associative arrays with probabilistic space efficiency
[18].

A thorough survey of most variations and their fields of de-
ployment has been performed by the authors of [19]. Table
4 on page 31 of their paper summarizes the extensive com-
parison of the functionalities and complexity of the different
implementations.

3.2.2 HyperLoglog. HyperLogLog [20] is a probabilistic
data structure used for counting the number of distinct
elements (cardinality estimation) in a multiset. It provides a
trade-off between accuracy and memory usage, making it
suitable for large-scale data processing tasks.

HyperLogLog works by applying uniform hashing on
each element of the set and using the properties of hash
functions to estimate the cardinality. It divides the hash
space into multiple registers and keeps track of the maxi-
mum number of leading zeros observed in each register. If
the longest leading sequence of zeros is n bits long, then a
good estimation of the cardinality of the multiset is 2".

When an element is added to HyperLogLog, it is hashed,
and the hash value is divided into two parts: the index part
and the value part. The index part determines which register
to update, while the value part is used to count the number
of leading zeros plus one. This value updates the register if
it is greater than the current value stored.

The probability of observing a certain number of leading
zeros follows a geometric distribution. By averaging the
observations across all registers and applying a harmonic
mean, HyperLogLog produces an estimate of the cardinality.
The formula used to estimate the cardinality is as follows:
count(HLL) » apmm?Z = amm® (Z;":l 2_M[j])_1, where a;,
is a bias correction constant, m is the number of registers
and Z is the harmonic mean of the values in the registers.
To improve accuracy, HyperLogLog applies corrections for
small and large cardinalities:

e Small Range Correction: If the estimate E < %m, the
algorithm uses a linear counting approach [21].

e Large Range Correction: The algorithm applies a log-
arithmic correction for very large estimates to adjust
for the maximum possible hash value.

HyperLogLog also has a merge function that allows the
combination of multiple HyperLogLog structures to pro-
duce a single estimate representing the union of all the
combined sets. To merge two HyperLogLog structures, you
take the maximum value of each corresponding register
and set it to the merged HyperLogLog: HLLy,epgeqli] =
max(HLL; [i], HLLz[i]). This operation ensures that the re-
sulting HyperLogLog structure accurately reflects the max-
imum number of leading zeros observed for each register
across all merged structures.

As HyperLogLog does not directly support intersection
operations, the cardinality of the intersection of two sets can
be estimated using the principle of inclusion-exclusion and
the estimates from the merged HyperLogLog structures in a
similar fashion as for Bloom Filter: count(HLL; N HLLy) =
count(HLL1) + count(HLLy) — count(HLL; U HLLy).

The theoretical space complexity of HyperLogLog is O(log(log(n)).

The time complexity for adding an element and getting
the count are both constant at O(1) and O(m) respectively.
Meanwhile, the merge operation has O(x*m) complexity for
merging x amount of HLLs.

The most notable variation of the algorithm is HLL+ [22].
It achieves a reduction in memory usage and adjusts the bias
for smaller cardinalities by replacing Linear counting. By
using a 64-bit hash function instead of the 32-bit one as in
the original papers, the hash collisions for large cardinalities
are reduced, removing the need for large-range correction.

3.2.3 Non-counting data structures.

e Count-Min Sketch [23] is a probabilistic data struc-
ture that provides frequency estimation for data streams.
It uses multiple hash functions to map elements to
a series of counters, allowing it to estimate the fre-
quency of elements with sub-linear memory usage.
While it does not support direct cardinality or mem-
bership testing, it excels in scenarios where tracking
the frequency of elements is essential, such as natu-
ral language processing [24]. Its functions could also
be utilized to highlight stationary objects that are
constantly detected by the sensors, e.g. printers and
other IoT, but bear no value to the statistical data to
be extracted [25].

Cuckoo Filter [26] is an extension of the Bloom Filter
that supports element deletion in addition to inser-
tion and query operations. It uses cuckoo hashing
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to manage collisions and stores fingerprints of the
inserted elements, allowing it to handle dynamic data
sets efficiently. An advantage it holds over its prede-
cessor is that has better space efficiency and uses less
time to perform membership queries. Cuckoo Filter is
particularly useful in applications requiring frequent
updates and deletions, such as database management
systems and network security [27].

e Quotient Filter [28] is another alternative to Bloom
Filters that supports membership queries and dele-
tions. It uses a compact representation of a hash table
where each entry contains a quotient and a remainder,
making it space-efficient. Quotient Filter is beneficial
for applications requiring dynamic membership test-
ing with low memory overhead, such as file systems
and distributed databases [29].

4 METHODOLOGY
4.1 Experiment Design

We implemented the base version of Bloom Filter and the
64-bit version of HyperLogLog ! in Python and initialized
them by the desired error rate for the experiment p = 1%.
To gather the data, each setting will be iterated 100 times
to ensure statistical reliability, for sets of n = 1000 numbers.
The rest of the parameters of the algorithms are:

e To minimize the memory usage of the Bloom Filter,
the size of the bit array is set to contain 2000 elements,

‘(1';*—;“)5 ~ 9585 bits.

e As shown in [13] the false positive rate is minimized
when the density of set bits in the array is 0.5, there-
fore the optimal number of hash functions used for
Bloom Filterisk =  +In2 ~ 6.

o The optimal amount of registers for HyperLogLog is
m = (174)? ~ 10816.

e MurMurHash3 is a non-cryptographic hash function
that was used for both algorithms as it is highly uni-
form, which is a requirement for HLL, and a fast func-
tion, making it suitable for the situation.

therefore m =

4.2 Scenarios

To evaluate the performance and accuracy of Bloom Filter
and HyperLogLog, a series of experiments are conducted
focusing on the two primary crowd monitoring scenarios:
footfall and crowd flow. The experiments were designed to
measure the ability of these data structures to perform set
and intersection cardinality counting under varying inter-
section sizes. The datasets used for the experiment were
sets consisting of randomly generated numbers up to 101°
to simulate the different encrypted information given to the
data structures. Two sets of equal length are generated for
each iteration, with varying degrees of intersection to mimic
different levels of crowd overlap covering all values for the
sets - from 1 to 1000. The analyzed metrics for accuracy will
be the relative error and Root-mean-square error (RMSE) of
the cardinality, union and intersection estimations. The for-
mer is calculated by dividing the deviation from the actual

!https://github.com/tituncho/probabilistic_data_structures
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Fig. 2. The RMSE of union estimations of Bloom Filter and Hyper-
LogLog for different intersection sizes

value by the actual value, giving us a normalised error mea-
sure, and allowing comparisons across different scales and
units. The former is the quadratic mean of the differences
between the estimated and actual values and represents the
standard deviation of the estimation errors.

5 EXPERIMENT RESULTS
5.1 Set Cardinality

Computing the arithmetic mean of the relative error of
set cardinality estimation of all iterations returns approxi-
mately 0.43% for both algorithms. Performing paired t-test
on the differences gives us a p-value of 0.42 which shows
for a = 0.05 that there is no significant difference between
the relative errors. The standard deviation of the estimation
data is 0.00025, confirming that the iteration parameter has
no bearing on the cardinality estimation functions.

5.2 Union and Intersection Cardinality

The results plotted in Figures 2 and 3 show that the devia-
tion of the union estimations has a linear relation with the
decreasing size of the union as the estimations have a mean
relative error of approximately 0.44%.
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Fig. 3. The mean relative error of union estimations of Bloom Filter
and HyperLogLog for different intersection sizes

To illustrate better the proportion of the intersection esti-
mations, a normalization of RMSE will be used - Normalized
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RMSE = W. The metric is similar to Rela-
tive error but provides a more intuitive understanding of the
error in terms of the actual count. The range of its values is
from 1 to infinity, with 1 meaning the RMSE = 0 and the es-
timation is equal to the actual value and any bigger number
representing the growing proportional difference between
the observed and the correct values. In Figure 4 it can be
seen that for intersection sizes below 10, the estimation can
differentiate up to 8-9 times from the actual count. With
intersections of bigger sizes, the mean normalized RMSE
is 1.016 for both algorithms. Performing a paired t-test on
these values returns p-value = 5 * 107> and a test statistic
of 3.5, therefore it can confidently be said that the mean
normalized RMSE of HLL is smaller.
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Fig. 4. Normalized RMSE of the intersection estimations of Bloom

Filter and HyperLogLog for different intersection sizes

5.3 Performance

The tests were run on a Windows device with AMD Ryzen
7 5800H and 16 GB RAM. The accuracy of the data struc-
ture may be similar but their performance is not. In all cases,
Bloom Filter was 5 times faster than HyperLogLog in adding
all elements to the array, creating the union between the sets
and estimating the cardinalities of the sets, union and inter-
section. The theoretical space for the implemented Bloom
Filter and HyperLogLog would be 9585 bits and 10816 regis-
ters * 64 bits = 692224 bits. This would make Bloom Filter
72 times more space-efficient than HyperLogLog. However,
as per the calculations of the library Pympler, the objects
in Python used 23744 and 1055736 bits respectively. In com-
parison that would make the two data structures have a
difference of 44 times instead.

6 DISCUSSION AND FUTURE WORK

This research provides a focused performance analysis on a
limited pool of probabilistic data structures due to the given
time frame. Here will be discussed part of the research that
could be extended.

6.1 Privacy

An important part of crowd monitoring is the privacy and
animosity of the people involved. While HyperLogLog pro-
vides the advantage of slightly lower deviation in estima-
tions and does not support membership queries, which can

TScIT 41, July 5th, 2024, Enschede, The Netherlands

0.030
0.025
o
15
E
5 0020 —— Bloom Filter
k= HyperLoglog
o
2 0015
w
0.010
D005 - b eamnbar b Aol il el b M i

o 200 400 00 800 1000
| (Commaen Elements)

Fig. 5. Execution time of Bloom Filter and HyperLogLog

enhance privacy, Bloom Filter’s efficiency in speed and mem-
ory usage makes it a more suitable choice for real-time
pedestrian monitoring applications. Moreover, there are al-
ready implementations of Bloom Filter in the field of crowd
monitoring with a focus on privacy and encryption [10].
Obstacles like MAC randomization [9] and statistical tech-
niques which take it into account are important to consider
when applying the system in practice and outdoor environ-
ments.

6.2 Scope

We gave an overview of the prominent probabilistic data
structures but not all counting ones were analyzed. Also,
the implementations are of the naive versions of the algo-
rithms as mentioned in Section 4. If more thorough research
is to be done, the rest will need to be taken into account
as well. There is related work in the sphere which solely
focuses on reviewing the relevant structures [11]. There is
additionally a lot of effort into creating different variations
and optimising them for specific use cases, e.g. for Bloom
Filter [19], which offer additional flexibility and efficiency
improvements.

7 CONCLUSION

This paper explored the performance and accuracy of Bloom
Filters and HyperLogLog for privacy-preserving pedestrian
dynamic analysis. The experiments demonstrated that both
data structures provide similarly accurate cardinality and
intersection estimations, with relative errors around 0.43%
and 0.44% for set and union cardinalities, respectively. How-
ever, a paired t-test showed a statistically significant lower
mean normalized RMSE for HyperLogLog in intersection
cardinality estimations, indicating its slightly better accu-
racy.

Despite the comparable accuracy, Bloom Filter exhibited
significantly better performance in terms of execution time
and memory usage. Bloom Filter was consistently five times
faster than HyperLogLog across all operations, including
element addition, union creation, and cardinality estimation.
Additionally, we found Bloom Filter to be 44 times more
space-efficient based on the actual memory usage of the
Python objects.
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The parameters used for the algorithms are calculated by
using mathematical formulas for the optimal values, pro-
vided by the cited research on them. The dynamic parameter
of the conducted experiment was the intersection size. As it
increased, the accuracy of the intersection cardinality expo-
nentially increased as well, plateauing after passing 10% of
the maximum tested intersection size.
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During the preparation of this work, the author used Chat-
GPT and Grammarly to rephrase certain parts of the text for
improved readability. After using these tools and services,
the author reviewed and edited the content as needed and
assumed full responsibility for the content of the work.
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