
Converting Decision Trees into Fault Trees
DAN NEGRU, University of Twente, The Netherlands

SUPERVISOR: MILAN LOPUHAÄ-ZWAKENBERG, University of Twente, The Netherlands

ABSTRACT
Decision trees and fault trees serve as foundational models for as-
sessing the reliability and performance of complex systems, albeit
originating from distinct domains. While their underlying informa-
tion is fundamentally equivalent, their different structures serve
different analytical perspectives, leading to distinct applications in
various fields. Despite extensive research into converting fault trees
to decision trees, the reverse process remains largely unexplored.
This paper seeks to bridge the gap between these two essential mod-
els. We propose novel algorithms based on cut sets and recursion
to facilitate this conversion process, highlighting the effectiveness
of the latter in our experimental results. The focus of this research
extends beyond mere translation, aiming to optimize the visual rep-
resentation of the generated fault trees and to acknowledge the
inherent challenges in transitioning from a decision-based frame-
work to a fault-based representation.

Keywords: decision tree, fault tree, conversion algorithm, reliability
engineering, decision making.

1 INTRODUCTION
Complex systems often require models to assess their reliability
and make informed decisions regarding their design, maintenance,
and operation. Decision trees (DTs) and fault trees (FTs) are two
popular graph models used for this purpose. They provide graphic
representations of a hierarchical data structure and are widely used
in different domains and applications such as reliability engineering,
system analysis, and computer memory optimization [4].

Decision trees, as illustrated in Figure 1a, are flowchart-like struc-
tures that model decisions and their possible consequences [4]. A
decision tree consists of nodes that form a rooted tree, meaning it is
a directed tree with a node called "root" that has no incoming edges.
All other nodes have exactly one incoming edge [8]. A node with
outgoing edges is called a decision node and it contains a binary
variable. All other nodes are called leaf nodes, representing the end
point of a decision path. DTs can cope with numerical and nominal
attributes. They have an intuitive interpretation and are applied
in text classification, diagnosis of diseases, fraud detection, speech
recognition, video analysis, among others [4].
Fault trees, as illustrated in Figure 1b, are graphical methods

that model how failures propagate through the system, i.e., how
component failures lead to system failures [9]. FTs can be described

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

as a graphical probabilistic risk assessment technique whereby an
undesirable event (called the top event) is postulated and the possible
ways for this top event to occur are systematically deduced for
combinations of initiating and intermediate events. The events are
generally binary, i.e., they either occur or not. System components
are either in parallel or in series so combinations of events that
lead to failure are identified with logic gates. The two basic gate
symbols used for fault tree construction are the AND gate and the
OR gate. The AND gate demonstrates that the higher-level event
(the gate’s output) will occur if and only all immediate lower-level
events (the gate’s inputs) occur. Similarly, OR gates demonstrate
that only one of the gate’s inputs must occur for the gate’s output to
occur. Although a gate can have many inputs, it only has one output
[3]. Sometimes, a third gate can be used: a 𝑘/𝑁 gate (or VOT gate),
which indicates that the associated event will occur if minimally 𝑘
of the 𝑁 gate’s inputs will occur [4]. Additionally, it is important
to mention that the NOT gate is not being used in the construction
of FTs, as this can result in a non-coherent structure, meaning that
components’ working states contribute to the system failure [1].

B1

B3 B2

B3

1

11

0

0

0 1

0 1 0 1

0 1

(a) Decision Tree

B3

OR

AND

B1 B2

System

(b) Fault Tree

Fig. 1. Example of equivalent trees representing
the Boolean expression (𝐵1 ∧ 𝐵2) ∨ 𝐵3.

Conversion methods are mathematical transformations that con-
vert one formalism into another, while preserving relevant proper-
ties. Although both FTs and DTs decode Boolean functions, they do
so in different ways: FTs typically use logical gates and probability
distributions, reflecting the hierarchical relationships and dependen-
cies among events leading to system failures, while DTs partition
the input space based on attribute values, aiming to classify or pre-
dict outcomes through a series of binary decisions. An example of
equivalent trees is depicted in Figure 1, showcasing the potential
for interchangeability between decision trees and fault trees.

In the transformation FT→DT, the basic events in the FT become
decision nodes in the DT, and the top events in the FT become
the leaf nodes in the DT. A few methods have been developed to
accomplish this task [2, 10] and they will be further discussed in the

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Dan Negru

related work section. On the other side, in the DT→ FT conversion,
the decision nodes in the DT become basic events in the FT, and the
leaf nodes in the DT become the top events in the FT [4].
While transformations from DTs to FTs are not inherently diffi-

cult to achieve, the challenge lies in crafting a transformation that
is deemed "good". In this context, a "good" transformation refers
to one that minimizes the number of intermediate gates in the re-
sulting FT. This criterion is crucial as it directly impacts the clarity
and efficiency of the FT model derived from the DT. By reducing
unnecessary complexity and ensuring a concise structure, such
transformations not only enhance our theoretical understanding of
the resulting models, but also improve the practical applications in
system reliability analysis and decision-making. In the following
sections, we aim to delve deeper into identifying methodologies that
fulfill these criteria effectively, thereby advancing our capability to
develop safer and more dependable systems across diverse domains.
This research focused on developing algorithms to convert DTs

into FTs. Additionally, some optimizations were introduced to sim-
plify the resulting models, making them more concise and compre-
hensible. Lastly, experiments were conducted to assess the effective-
ness of the respective algorithms.

In this paper, we will start by addressing the related work for the
conversion of FTs into DTs in section 2, and then we will discuss
the proposed research question in section 3. Next, in section 4,
we will describe the methodology used to develop the algorithms
for transforming DTs into FTs and, in section 5, we will cover the
experiments that we conducted to assess their effectiveness. Finally,
section 6 will highlight the potential areas of focus for future work,
and section 7 will provide the conclusion for this research paper.

2 RELATED WORK
In this section we will go over some of the related work about the
conversion algorithms of fault trees into decision trees, and about
the inference of fault tree models.
In 2004, Assaf and Dugan [2] described a methodology for de-

signing a diagnostic decision tree from a dynamic fault tree, which
makes use of Markov chains. The Vesely-Fussell measure of im-
portance is used as the corner stone of the methodology, because
it provides an accurate measure of components’ relevance from a
diagnosis perspective. The outcome represents a diagnostic decision
tree generated for a real dynamic system, and it can be used by
repair and maintenance crew to diagnose a system without having
previous knowledge or experience about the diagnosed system.

In their 2009 paper, Tao et al. [10] presented a fault tree analysis
method to generate diagnostic decision trees. All minimal cut sets,
their occurrence probabilities and components’ diagnosis impor-
tance factors are determined via fault tree analysis used for system
reliability. Minimal cut sets represent minimal sets of component
failures that cause a system failure. Using the diagnostic sequence
of system components, a diagnostic decision tree can be generated.

The paper by Jimenez-Roa et al. [4] compared the similarities and
differences between the three prominent graph models commonly
used in reliability engineering: fault trees (FTs), decision trees (DTs),
and binary decision diagrams (BDDs). The comparison focused

on their purpose, application, structural representation, analysis
methods, construction, benefits and limitations. The results showed
that, given that FTs, DTs and BDDs have different purposes and
application domains, they adopt different structural representations
and analysis methodologies that entail a variety of benefits and
limitations. Addressing the latter can be achieved by employing
conversion methods or extensions.
In their 2023 paper, Jimenez-Roa et al. [5] introduced the FT-

MOEA algorithm, which is based on multi-objective evolutionary
algorithms. Its goal is to infer efficient FT structures that achieve a
complete representation of the failure mechanisms contained in a
given failure data set without human intervention. The algorithm
enables the simultaneous optimization of different relevant metrics
such as the FT size, the error computed based on the failure data
set and the Minimal Cut Sets.

A different paper by Jimenez-Roa et al. [6] presented SymLearn, a
method to automatically infer FT models from data. It takes as input
the failure data of the system components and exploits evolutionary
algorithms to learn a compact FTmatching the input data. SymLearn
uses the symmetries in the failure data set to learn the symmetric
FT parts only once, and partitions the input data into independent
modules, subdividing the inference problem into smaller parts.

3 RESEARCH QUESTION
How can decision trees be effectively converted into fault trees?

This main research question can be answered with the following
two sub-questions:

(1) What are the key challenges in converting decision trees into
fault trees?

(2) What techniques can be employed to generate compact fault
trees while preserving essential information?

4 METHODOLOGY
In this section, we outline the methodologies employed to convert
decision trees into fault trees. Our approach involves two main
algorithms: one based on cut sets and the other based on recursion.
In the following figures from this section, a system failure in the
decision tree is represented by a leaf node with value 1, which
is equivalent to the value True, indicating that the system fails.
Conversely, a leaf node with value 0 (False) means that the system
does not fail. Additionally, for each node in the decision tree, we
have two options depicted by its outgoing edges: 1 or 0, depending
on whether the event represented by the given node fails or not.

4.1 Algorithm Using Cut Sets
Cut sets are combinations of component failures that lead to a
system failure. In a decision tree, cut sets can be defined as sets of
decision nodes with value 1 that lie on a path to a leaf node with
value 1. Minimal cut sets are special cut sets where removing any
component from the set would prevent it from causing the system
failure, meaning that it would no longer be a cut set. They are
particularly significant because they point to system vulnerabilities,
highlighting the most critical points where failure can occur with
the least number of component failures.

2



Converting Decision Trees into Fault Trees TScIT 41, July 5, 2024, Enschede, The Netherlands

To obtain cut sets, we derive them directly from the decision tree.
For example, consider the decision tree illustrated in Figure 2a. The
tree has three decision nodes: B1, B2, and B3. The paths from the
root to the leaf nodes with value 1 are {B1} and {B2, B3}. Both of
them represent minimal cut sets. To offer an example of a cut set
that is not minimal, consider the set {B1, B2, B3}. We can remove B1
from the set and we will be left with {B2, B3}, or we can remove B2
and B3 from the set and we will be left with {B1}. In both cases, the
result is still a cut set.

B1

B2

B3

1

1

0

0

0 1

0 1

0 1

(a) Decision Tree

B1

OR

AND

B2 B3

System

(b) Fault Tree

Fig. 2. Example using the Cut Sets Algorithm.

Each cut set consists of decision nodes that we can translate into
basic events for the fault tree. Then, we can combine the basic events
of each cut set using AND gates, signifying that all of them must
occur for the system to fail. These AND gates are then consolidated
into a single main OR gate, which connects to the system. This
process essentially uses the disjunctive normal form to create the
fault tree, and it can be described as an OR of ANDs, illustrating
different combinations of events that can lead to a system failure.
Coming back to the example from Figure 2, when constructing

the fault tree, as shown in Figure 2b, the cut set {B1} directly leads
to a system failure, so we connect it to the main OR gate, avoiding
an intermediary AND gate with a single event. On the other hand,
the cut set {B2, B3} requires both B2 and B3 to fail. These events are
connected to an intermediary AND gate, which is then linked to
the main OR gate. Finally, the main OR gate represents the overall
system failure conditions.
There are challenges and considerations to keep in mind when

using this method. The process may produce sub-optimal fault tree
structures, for instance due to overlapping paths that occur when
multiple cut sets share common elements, leading to redundancy
in the fault tree. An example of this is illustrated in Figure 3b: the
basic event B1 is repeated two times. Additionally, consider if we
would add another decision node – B4 in the decision tree and the
Boolean expression would change to 𝐵1 ∧ (𝐵2 ∨ 𝐵3 ∨ 𝐵4). In this
case, the resulting fault tree would get another intermediate AND
gate between B1 and B4. Therefore, post-processing steps, such as
simplification and elimination of redundant nodes, may be required
to ensure the resulting fault tree is as concise as possible.

B1

B2

B3

1

1

0

0

0 1

0 1

0 1

(a) Decision Tree

OR

AND

B1 B2

System

AND

B1 B3

(b) Fault Tree

Fig. 3. Sub-optimal Fault Tree resulting from the Cut Sets Algorithm. The
initial Decision Tree represents the Boolean expression 𝐵1 ∧ (𝐵2 ∨ 𝐵3) .

In addition, the resulting fault tree will typically be very wide,
but not so tall. This may obscure the hierarchical relationships be-
tween system components and their failure modes. This hierarchical
clarity is crucial for understanding how failures propagate through
different levels of the system: from basic components to higher-
level system failures. Without it, stakeholders may find it difficult
to prioritize critical failure paths or identify sub-component fail-
ures. Furthermore, the complexity introduced by a wide fault tree
can hinder efficient analysis and communication, potentially delay-
ing decision-making processes and compromising the accuracy of
system improvement strategies.

4.2 Recursive Algorithm
The recursive algorithm constructs a fault tree by recursively split-
ting the decision tree into sub-trees and combining the results. This
method involves several steps and optimizations to enhance the
compactness and efficiency of the resulting fault tree.

4.2.1 Basic Implementation.

The basic recursive approach operates in the following way. First,
for each node in the decision tree, we split it into two sub-trees:
the left sub-tree (where the node value is 0) and the right sub-tree
(where the node value is 1). Next, we construct the fault tree by
performing an OR operation between the fault tree represented by
the left sub-tree and an intermediate event. The intermediate event
is an AND operation between the current node and the fault tree
represented by the right sub-tree. This method captures the logical
dependencies and failure paths within the decision tree, translating
them into the fault tree structure, as illustrated in Figure 4.

The decision tree in Figure 4a shows a simple example where node
B1 is split into two sub-trees: DT-1 and DT-2. The corresponding
fault tree structure in Figure 4b is constructed by performing an OR
operation between FT-1 (the fault tree obtained from DT-1) and an
intermediate event, which is an AND operation between the current
node B1 and FT-2 (the fault tree obtained from DT-2).

To present an example with the intermediary and final results of
this algorithm, consider again the decision tree from Figure 2a. In
Figure 5, we can visualise the intermediate result of converting the

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Dan Negru

B1

0 1

DT-1 DT-2

(a) Decision Tree

OR

System

ANDFT-1

FT-2B1

(b) Fault Tree

Fig. 4. Recursive Algorithm Approach.

decision tree into a fault tree using the recursive approach. Note that
some basic events are mirrored from the leaf nodes of the decision
tree and have values of 0 and 1. These represent special cases that
are handled differently in our algorithm. If DT-2 is a leaf node with
value 1, this would translate into FT-2 also having value 1, and the
intermediate AND gate would, for example, look like this: (𝐵1 ∧ 1).
By applying the Boolean logic, we can replace this with just 𝐵1. In
the samemanner, if DT-1 is a leaf node with value 0, FT-1 would have
value 0 as well, and the intermediate OR gate would, for example,
look like this: (𝐵3∨0). Again, by applying the Boolean logic, we can
replace this with just 𝐵3. Finally, if we handle these special cases,
the resulting fault tree obtains the same structure as in Figure 2b.

OR

System

AND

B1 1

OR

AND

B2

0

OR

AND

B3 1

0

Fig. 5. Recursive Algorithm Intermediate Result.

4.2.2 Optimization 1: Merging Intermediate Events.

The fault trees resulting from our basic recursive algorithm generally
have a lot of intermediate gates with only two children: a basic
event and another intermediate gate of the same type (operand).
An example of this can be found in Figure 6a. Thus, during the
construction of the fault tree, we identify these intermediate events
and we merge them, in order to reduce redundancy and enhance
compactness. The result of the given example is shown in Figure 6b.
It is also important to mention that this optimization applies not
only to OR gates, as shown in the example, but also to AND gates.

B1

OR

B2 B3

System

OR

(a) Initial Structure

B3

OR

B1 B2

System

(b) Result After Merge

Fig. 6. Merging Intermediate Events.

This process is particularly useful in complex systems where
multiple intermediate events can be combined to simplify the fault
tree, thus making its analysis more efficient by reducing the number
of gates and edges between them.
While this technique generally makes the fault tree more con-

cise, there are cases where keeping the initial structure (Figure 6a)
might be preferable. For instance, if the initial structure visually
represents distinct sub-components of the system, maintaining this
organization could aid in understanding the fault tree’s hierarchical
structure.

4.2.3 Optimization 2: Removing Duplicate Intermediate Events.

Decision trees can sometimes contain duplicated sub-trees in their
structure. In these cases, the duplicates would also be reflected in
the fault tree resulting from the converting algorithm. To prevent
against this redundancy, this optimization checks if an intermediate
event that has to be added to the fault tree already exists and it only
adds it in case it does not. This ensures that each intermediate event
in the fault tree is unique, thereby maintaining clarity and reducing
complexity.
For example, consider the scenario in Figure 7a. The fault tree

includes multiple instances of the same intermediate event: an OR
gate between the two basic events B1 and B2. Instead of adding
multiple identical gates for each occurrence, the algorithm uses the
respective already existing gate, such as in the result from Figure
7b.

While this optimization generally reduces the size of the fault tree,
it can introduce a drawback regarding its visual structure. Specifi-
cally, allowing an intermediate event to have multiple parents (or be
referenced in multiple parts of the fault tree) can add a level of visual

4



Converting Decision Trees into Fault Trees TScIT 41, July 5, 2024, Enschede, The Netherlands

OR

AND

B3

System

AND

B4

B1 B2

OR

B1 B2

OR

(a) Initial Structure

OR

AND

B3

System

AND

B4

B1 B2

OR

(b) Result

Fig. 7. Removing Duplicate Events.

complexity due to the increased number of edges per event. For
small trees, since there are not a lot of connections between events,
this complexity is typically outweighed by the benefits of avoiding
duplicate events and maintaining a streamlined structure. However,
for larger trees, the number of edges becomes substantial and in
some cases this could make it hard for stakeholders to interpret and
understand the given models.

Lastly, it is essential to note that implementing this optimization
requires careful management of event creation and modification
processes to maintain the integrity of the fault tree model.

4.2.4 Post-Processing.

Post-processing can be used to further simplify and refine the result-
ing models. As the name suggests, this technique is not a part of the
algorithm, but it can be employed on the fault trees obtained from
it. One method is to apply the Distributive Law from the Boolean
logic to restructure the resulting fault tree. For instance, when mul-
tiple AND gates in the fault tree combine the same intermediate
event and then these AND gates are linked via an OR gate, we can
apply the law: (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶) = 𝐴 ∧ (𝐵 ∨ 𝐶). Similarly, for
OR gates: (𝐴 ∨ 𝐵) ∧ (𝐴 ∨𝐶) = 𝐴 ∨ (𝐵 ∧𝐶). These simplifications
reduce the number of gates and edges, making the fault tree more
concise and comprehensible. It’s important to mention that this is
just one specific example of how Boolean logic laws can be applied.
Various other methods and patterns could be implemented as a
post-processing step, but their exploration will be left for future
work.

5 EXPERIMENTS
In this section, we present the results of applying our conversion
methodologies, evaluating their performance and efficiency based
on the size and complexity of the resulting fault trees.

5.1 Approach
To assess the effectiveness of our conversion algorithms, we con-
ducted a series of experiments. For these experiments, we needed
a large set of different decision trees that would serve as our test
suite. However, creating representative and valid decision trees in
a random manner is not an easy task. For this reason, we decided
to follow a different approach that creates the given decision trees
from randomly created fault trees. So, first, we generated multiple

random fault trees of varying sizes, ranging from 5 to 50 nodes.
There has already been done some research on this topic [7], pro-
viding open-source code in Python with the necessary functions
to generate fault trees, and we adapted these to be suitable for our
own implementation. Then, we used these fault trees to obtain their
corresponding decision trees, ensuring a diverse set of input data
for our algorithms. To do this, we parsed each fault tree and con-
structed the Boolean formula it represented, which we then used
to create the respective BDD using the dd package in Python. Next,
we created the decision tree from the BDD, which is a trivial trans-
formation. We then applied the cut sets algorithm and the three
variations of the recursive algorithm (basic, with merging, and with
duplicates removal) to convert the decision trees back into fault
trees. It is important to mention that the conversion for a single
decision tree is fast, ranging from 0.1 ms to a few milliseconds, de-
pending on the size and complexity of the decision tree and on the
used optimization. Finally, we compared the initial fault trees with
the ones resulting from our algorithms. For this analysis, we used
two metrics: the number of nodes, which measures the total number
of basic and intermediate events in the fault tree, and the number
of edges, which measures the total number of connections between
the nodes in the fault tree. These metrics were chosen to reflect the
size and complexity of the fault trees, which are critical factors for
practical applications.
To ensure the robustness of our results, each experiment was

repeated 5000 times. This extensive repetition allowed us to account
for variability in the randomly generated fault trees. Specifically, for
each size category, we generated 5000 random fault trees. For the
results (number of nodes and edges in the converted fault trees), we
computed the average across these 5000 repetitions. It is important
to note that due to this experimental approach, some fault trees may
have been generated multiple times, particularly for smaller sizes
where the number of distinct fault trees is limited. This occurrence,
however, does not undermine the reliability of our findings. By
repeating each experiment 5000 times and averaging the results, we
ensured robust statistical representation across varying tree sizes.
This approach effectively mitigates any potential biases that could
arise from duplicated fault trees. Moreover, encountering similar
fault scenarios multiple times is reflective of real-world scenarios,
where certain structures might be more common.

5.2 Results
The results of our experiments are summarized in Figures 8 and 9.
They illustrate the relationship between the size of the initial fault
trees and the size of the converted fault trees, measured in terms of
nodes and edges, respectively.

In Figure 8, we observe that the basic recursive algorithm results
in a significantly larger fault tree compared to the other methods.
This increase in size is due to the lack of optimization in the basic
approach, leading to redundant nodes. The cut sets algorithm and
the recursive algorithm with merging show similar performance,
with a moderate increase in the number of nodes as the size of the
initial fault tree increases. The recursive algorithm with duplicates
removal consistently produces the smallest fault tree, highlighting
the effectiveness of this optimization in reducing redundancy.

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Dan Negru

10 20 30 40 50
Initial FT size (nodes)

0

200

400

600

800

1000

Co
nv

er
te

d 
FT

 si
ze

 (n
od

es
)

Cut Sets
Recursive (Basic)
Recursive (w/ Merging)
Recursive (w/ Duplicates Removal)

Fig. 8. Results based on the number of nodes.

Table 1 shows the detailed results based on the number of nodes
for the Recursive (w/ Duplicates Removal) algorithm, providing
a clear understanding of its performance. This is necessary, since
Figure 8 makes it clear that this algorithm outperforms the others,
however it is hard to evaluate how well it does against the baseline
𝑦 = 𝑥 . The data reveals that for smaller trees, the converted model’s
size based on nodes is very similar to the one of the initial structure,
while for larger trees it tends to increase at a higher rate, nearly
doubling for trees with 50 nodes. Still, this is much better than the
other algorithms, with, for example, the Basic Recursive version
almost reaching 1000 nodes for the same initial size of 50 nodes.

Table 1. Detailed results based on the number of nodes for the
Recursive (w/ Duplicates Removal) Algorithm from Figure 8.

Initial FT size (x) 10 20 30 40 50

Converted FT size (y) 12.1 26.2 44.1 66.2 94.4

Figure 9 presents the results in terms of the number of edges.
Here, the cut sets algorithm results in fault trees with the highest
number of edges, reflecting its exhaustive enumeration of failure
paths. The recursive algorithmwith merging and duplicates removal
again show improved performance compared to the basic approach,

10 20 30 40 50
Initial FT size (edges)

0

1000

2000

3000

4000

Co
nv

er
te

d 
FT

 si
ze

 (e
dg

es
)

Cut Sets
Recursive (Basic)
Recursive (w/ Merging)
Recursive (w/ Duplicates Removal)

Fig. 9. Results based on the number of edges.

with the duplicates removal optimization yielding the most compact
fault trees.

Table 2 shows the detailed results based on the number of edges
for the Recursive (w/ Duplicates Removal) algorithm, offering a
clear insight into its performance. The motivation behind the need
for this table is the same as the one for the number of nodes. It
is also important to note that, unlike for nodes, fault trees cannot
be generated for a specific number of edges directly. Instead, we
generate fault trees based on a set number of nodes and then calcu-
late their average number of edges. This is why the initial values
in the table are not integers – they represent these averages. The
data shows that for smaller trees, the converted model’s size based
on edges is very similar to the one of the initial structure, while for
larger trees it tends to increase at a higher rate, more than tripling
for trees with an average of 48.6 edges. Still, this is better than the
other algorithms, with, for example, the Cut Sets version surpassing
4000 edges for the same initial average size of 48.6 edges.

Table 2. Detailed results based on the number of edges for the
Recursive (w/ Duplicates Removal) Algorithm from Figure 9.

Initial FT size (x) 10.3 20.9 31.6 41.7 48.6

Converted FT size (y) 16.9 42.0 78.4 126.8 167.8

These results demonstrate the importance of optimization tech-
niques in the recursive algorithm, which significantly improve the
compactness of the resulting fault trees. Our findings suggest that
while the cut sets algorithm could be useful for some applications,
the optimized recursive algorithms offer a more efficient approach
for converting decision trees into fault trees, creating better re-
sults according to our initial definition of a "good" transformation.
Overall, our experiments validate the proposed methodologies and
provide a comprehensive comparison of their performance.

6 FUTURE WORK
While our research has made significant progress in converting
decision trees into fault trees and optimizing the resulting structures,
there are several avenues for future work that can further enhance
the effectiveness and applicability of our methodologies.

6.1 Advanced Optimization Techniques
Future research could explore more advanced optimization tech-
niques to further minimize the size and complexity of the fault trees.
Some of these techniques include: using the Quine-McCluskey or
Espresso Algorithms to minimize the Boolean functions represented
by the converted fault trees; applying genetic algorithms to evolve
the fault tree structures and select the smaller and less complex
models over successive generations; developing parallel algorithms
for fault tree simplification that can leverage multi-core processors
to handle large and complex fault trees more efficiently.

6



Converting Decision Trees into Fault Trees TScIT 41, July 5, 2024, Enschede, The Netherlands

6.2 Integration with Machine Learning Models
Integrating our conversion techniques with machine learning mod-
els could allow us to automatically generate fault trees from data-
driven decision models. Importantly, our conversion process from
decision trees to fault trees is fast, addressing a significant bottle-
neck in existing fault tree learning techniques which often struggle
with computation time constraints.

6.3 Post-Processing Enhancements
Further development of post-processing techniques, including the
application of additional Boolean logic simplifications and the ex-
ploration of other logical laws, can improve the compactness and
readability of fault trees. However, it is worth noting that there
exists a trade-off between the size of the fault trees and the algo-
rithm performance: more sophisticated post-processing methods
may lead to an improved tree quality but they could also increase
the computation time of the algorithm.

6.4 Tool Development
Creating user-friendly software tools that use our algorithms and al-
low stakeholders to visualise the conversion process would facilitate
a broader adoption and practical use of our research.

7 CONCLUSION
In this research, we addressed the main question: How can decision
trees be effectively converted into fault trees? We developed and eval-
uated several algorithms for this conversion, focusing on preserving
essential information while generating compact and comprehensible
fault tree models.
Our work began with the identification of the key challenges

in converting decision trees into fault trees. Based on our initial
insights, we proposed and implemented various techniques, such as
the cut sets algorithm and the recursive algorithms with different
optimizations (merging and duplicates removal), to tackle these
challenges.
The experimental results demonstrated that while the basic re-

cursive algorithm tends to produce larger fault trees, the optimized
versions significantly improve compactness and efficiency. The re-
cursive algorithmwith duplicates removal, in particular, consistently
yielded the most compact fault trees, highlighting the importance
of this optimization.
Additionally, we briefly discussed post-processing techniques

using the Boolean logic to further refine and simplify the fault trees.
By applying laws such as the Distributive Law, we can reduce the
number of gates and edges, making the fault trees easier to analyze.
It is also important to highlight the broader implications of our

work within the context of existing data-driven techniques. The
problem of generating decision trees from data is well-known. By
effectively converting decision trees into fault trees, we establish
a novel pathway to generate fault trees directly from data. This is
achieved by first creating decision trees from data using established
machine learning techniques and then applying our conversion
methods. This new approach not only leverages the strengths of

decision trees in initial data analysis but also enhances the subse-
quent fault tree generation, providing a powerful tool for predictive
maintenance and risk assessment based on data-driven decision
models.
In conclusion, our research provides a comprehensive method-

ology for converting decision trees into fault trees, offering vari-
ous algorithms and optimization techniques to suit different needs.
Future work will build on these foundations, exploring advanced
optimizations, machine learning integrations, and post-processing
enhancements to further advance the field of fault tree analysis.

REFERENCES
[1] J. D. Andrews. 2001. The use of not logic in fault tree analysis. Quality and

Reliability Engineering International 17, 3 (May 2001), 143–150. https://doi.org/
10.1002/qre.405

[2] T. Assaf and J.B. Dugan. 2004. Diagnostic expert systems from dynamic fault
trees. In Annual Symposium Reliability and Maintainability, 2004 - RAMS. IEEE,
Los Angeles, CA, USA, 444–450. https://doi.org/10.1109/RAMS.2004.1285489

[3] PhD Dillon-Merrill and L. Robin. 2008. Logic trees: Fault, success, attack, event,
probability, and decision trees. Wiley Handbook of Science and Technology for
Homeland Security (2008), 1–22. https://www.researchgate.net/profile/Gregory-
Parnell/publication/229578763_Logic_Trees_Fault_Success_Attack_Event_
Probability_and_Decision_Trees/links/54bd10690cf218da9390ef83/Logic-Trees-
Fault-Success-Attack-Event-Probability-and-Decision-Trees Publisher: John
Wiley & Sons, Inc. Hoboken, NJ, USA.

[4] L. A. Jimenez-Roa, T. Heskes, and M. Stoelinga. 2021. Fault Trees, Decision
Trees, And Binary Decision Diagrams: A Systematic Comparison. In Proceedings
of the 31st European Safety and Reliability Conference (ESREL 2021). 673–680.
https://doi.org/10.3850/978-981-18-2016-8_241-cd arXiv:2310.04448 [cs].

[5] Lisandro Arturo Jimenez-Roa, Tom Heskes, Tiedo Tinga, and Mariëlle Stoelinga.
2023. Automatic Inference of Fault Tree Models Via Multi-Objective Evolutionary
Algorithms. IEEE Transactions on Dependable and Secure Computing 20, 4 (July
2023), 3317–3327. https://doi.org/10.1109/TDSC.2022.3203805 Conference Name:
IEEE Transactions on Dependable and Secure Computing.

[6] Lisandro Arturo Jimenez-Roa, Matthias Volk, and Mariëlle Stoelinga. 2022. Data-
Driven Inference of Fault Tree Models Exploiting Symmetry and Modularization.
In Computer Safety, Reliability, and Security, Mario Trapp, Francesca Saglietti,
Marc Spisländer, and Friedemann Bitsch (Eds.). Springer International Publishing,
Cham, 46–61. https://doi.org/10.1007/978-3-031-14835-4_4

[7] Meike Nauta, Doina Bucur, and Mariëlle Stoelinga. 2018. LIFT: Learning Fault
Trees from Observational Data. In Quantitative Evaluation of Systems, Annabelle
McIver and Andras Horvath (Eds.). Springer International Publishing, Cham,
306–322. https://doi.org/10.1007/978-3-319-99154-2_19

[8] Lior Rokach and Oded Maimon. 2005. Decision Trees. In Data Mining and
Knowledge Discovery Handbook, Oded Maimon and Lior Rokach (Eds.). Springer
US, Boston, MA, 165–192. https://doi.org/10.1007/0-387-25465-X_9

[9] Enno Ruijters and Mariëlle Stoelinga. 2015. Fault tree analysis: A survey of the
state-of-the-art in modeling, analysis and tools. Computer Science Review 15-16
(Feb. 2015), 29–62. https://doi.org/10.1016/j.cosrev.2015.03.001

[10] Yongjian Tao, Decun Dong, and Peng Ren. 2009. Notice of Violation of IEEE
Publication Principles: Decision Trees Generation Based on Fault Trees Analysis.
In 2009 International Forum on Information Technology and Applications, Vol. 2.
178–180. https://doi.org/10.1109/IFITA.2009.192

APPENDIX
During the preparation of this work, the author used ChatGPT to
correct grammatical errors, express his own ideas more coherently,
and quickly adapt figures and tables to the LaTeX syntax. After using
this tool, the author reviewed and edited the content as needed and
takes full responsibility for the content of the work.

7

https://doi.org/10.1002/qre.405
https://doi.org/10.1002/qre.405
https://doi.org/10.1109/RAMS.2004.1285489
https://www.researchgate.net/profile/Gregory-Parnell/publication/229578763_Logic_Trees_Fault_Success_Attack_Event_Probability_and_Decision_Trees/links/54bd10690cf218da9390ef83/Logic-Trees-Fault-Success-Attack-Event-Probability-and-Decision-Trees
https://www.researchgate.net/profile/Gregory-Parnell/publication/229578763_Logic_Trees_Fault_Success_Attack_Event_Probability_and_Decision_Trees/links/54bd10690cf218da9390ef83/Logic-Trees-Fault-Success-Attack-Event-Probability-and-Decision-Trees
https://www.researchgate.net/profile/Gregory-Parnell/publication/229578763_Logic_Trees_Fault_Success_Attack_Event_Probability_and_Decision_Trees/links/54bd10690cf218da9390ef83/Logic-Trees-Fault-Success-Attack-Event-Probability-and-Decision-Trees
https://www.researchgate.net/profile/Gregory-Parnell/publication/229578763_Logic_Trees_Fault_Success_Attack_Event_Probability_and_Decision_Trees/links/54bd10690cf218da9390ef83/Logic-Trees-Fault-Success-Attack-Event-Probability-and-Decision-Trees
https://doi.org/10.3850/978-981-18-2016-8_241-cd
https://doi.org/10.1109/TDSC.2022.3203805
https://doi.org/10.1007/978-3-031-14835-4_4
https://doi.org/10.1007/978-3-319-99154-2_19
https://doi.org/10.1007/0-387-25465-X_9
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1109/IFITA.2009.192

	1 Introduction
	2 Related Work
	3 Research Question
	4 Methodology
	4.1 Algorithm Using Cut Sets
	4.2 Recursive Algorithm

	5 Experiments
	5.1 Approach
	5.2 Results

	6 Future Work
	6.1 Advanced Optimization Techniques
	6.2 Integration with Machine Learning Models
	6.3 Post-Processing Enhancements
	6.4 Tool Development

	7 Conclusion
	References

