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This paper presents a CNN-LSTM-based approach for
mapping bicycle ego-trajectories based on inertial-camera
data, capable of accurately capturing non-straight-line
movements such as turns and curves. I introduce a novel
bicycle trajectory dataset that integrates recordings from
a 6 DOF IMU and two cameras, supplemented by GNSS
ground truth data. The study systematically evaluates 25
different CNN-LSTM configurations, varying architectures
and input parameters, with the top-performing model
achieving a RMSE of 4.4 m on a 134 m trajectory. The
best-generalised model achieved a RMSE of 33 m on a
598 m trajectory. Although the models are not directly
usable for urban trajectories, they lay the foundation for
the development and subsequent adoption of bike mapping
algorithms. The code and dataset are open source to
facilitate further research in this area.

I. INTRODUCTION

Intelligent transportation systems are attracting attention
from academia and industrial sectors because of their pos-
sible solutions to different transportation problems, such as
safety, congestion and energy usage [1]. Although bicycles
are an important mode of transport, they are not yet well-
integrated into current intelligent transportation systems. Tra-
jectory mapping of bikes is a step in making bikes smarter and
safer, because the cyclist’s location can be shared with other
traffic participants and infrastructure. Trajectory mapping can
eventually be extended to trajectory prediction, which could
foster the development of cycling assistance systems, such
as lane keeping, navigation, obstacle avoidance, and collision
prevention.

Currently, little research is performed on mapping bike
trajectories. Existing bike-related mapping algorithms, such as
[2], work only on straight lines and cannot correctly map turns
and curves. Most state-of-the-art algorithms focus primarily on
cars and Unmanned Aerial Vehicles (UAVs) as data sources.
The resulting methods, such as those discussed in [3]–[5],
may not be directly implementable in bikes. Bikes are cheaper,
have less space, have no onboard battery, and can move more
unpredictably [6]. In addition to that, data from cars or UAVs
is less noisy due to manufacturers’ stabilisation efforts.

The second problem with current trajectory mapping al-
gorithms is that they are not widely adopted, properly doc-
umented, or standardised. Manufacturers of self-driving cars

§S. Redeker, student BSc Electrical Engineering, is the corresponding author
for this work: s.redeker@student.utwente.nl. The members of the
responsible BSc thesis committee are: Y. Huang, Assistant Professor at the
Pervasive Systems Group, D. Yeleshetty, PhD candidate at the Pervasive Sys-
tems Group, and K. Niu, Assistant Professor at the Robotics and Mechatronics
group.

do not publish their algorithms, and the output of research
papers is often constrained to a paper with results and an
unmaintained codebase. Promising candidates for widespread
algorithms, such as ORB-SLAM(1/2/3), [7], or VINS-Mono,
[8], require specific operating systems and a large number
of dependencies. This impedes quick and rapid adoption,
especially on embedded platforms.

A. Research Questions & Contributions

This paper is part of the Smart Connected Bikes (SCB)
project, [9], from the University of Twente. The SCB project
aims to equip (e-)bikes with an Inertial Measurement Unit
(IMU) and a low-resolution camera for trajectory mapping.
This setup is significantly cheaper than measurement setups
from other studies. I will investigate how an existing algo-
rithm1, i.e. a Convolutional Neural Network with Long Short-
Term Memory (CNN-LSTM), can be deployed on the low-cost
setup for bicycle ego-trajectory mapping. The main research
question is:

1) What is the impact of different CNN-LSTM config-
urations on accuracy and generalisability for bicycle
ego-trajectory mapping using data from an inexpen-
sive IMU and a monocular camera?

Additionally, I set the following sub-research questions:

1) How can we design and implement a CNN-LSTM-
based model that accurately maps bicycle ego-
trajectories, considering key factors such as appro-
priate architectures, interpolation methods, input win-
dow lengths, and generalisation to unseen trajecto-
ries?

2) What are the key characteristics and requirements
for creating a comprehensive dataset for bicycle ego-
trajectory mapping, and how can this dataset be used
to benchmark and evaluate the performance of the
proposed CNN-LSTM models?

The primary contribution of this paper will be a CNN-
LSTM-based model that can accurately map bicycle move-
ments, including turns and curves. The secondary contribution
will be a novel dataset that can be used for future development.

II. ALGORITHM BACKGROUND

In this section, I will cover the background relevant to
my research. First, I will present a high-level overview of the
structure of common mapping algorithms. Then, I will discuss
the two algorithms I analysed and elaborate on why I picked

1Another algorithm, LARVIO, was also considered but eventually not used.
More can be read about LARVIO in Section II-B1.
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Fig. 1: High-level functional flow block diagram of an arbitrary trajectory mapping algorithm.

the CNN-LSTM architecture for further development. Lastly,
I will analyse different benchmark options.

A. High-Level Overview

Most trajectory mapping algorithms share the same high-
level structure. A visual representation of this structure can be
seen in Fig. 1. Generally, a path prediction or path mapping
program follows a four-step procedure:

1) Synchronising. If the various data sources, i.e. the
IMU, camera, and ground truth, are not synchronised,
this should be done first. Ideally, one would use a
shared clock or another means of hardware synchro-
nisation method for this. If a hardware synchronisa-
tion method is unavailable or not used, synchronisa-
tion is often done a posteriori, e.g. by analysing a
calibration movement sequence.

2) Preprocessing. The data is preprocessed. Depend-
ing on the exact application and model constraints,
this could mean that gravity is extracted, noise is
removed, or quaternions are set up to visualise the
orientation of an object in 3D space.

3) Processing. In the processing stage, one or more
algorithms compute the expected trajectory, also re-
ferred to as the state. I will discuss two different
processing algorithms, LARVIO and CNN-LSTM, in
Section II-B.

4) Visualising. The last step is visualising. In this step,
the trajectory of the bike can be visualised on a map.
Also, one might calculate evaluation parameters, such
as Root Mean Square Error (RMSE), in this step.

B. Considered Algorithms

In this section, I will discuss two existing algorithms that
could be adapted for bike trajectory mapping. I picked the
two algorithms based on a combination of different factors,
of which the accuracy and the ease of implementation were
the most important. All algorithms employ a fusion of IMU
and camera data. A common approach is to feed the IMU
data into a kinematic model, and camera data into a camera
measurement model. Both models produce an intermediate
state vector. These two state vectors are then combined into a
definitive state vector based on a filter-based or optimisation-
based strategy, also known as model-based or data-driven,
respectively.

A model-based algorithm maps the trajectory using pre-
defined mathematical models and physical principles. On the

other hand, data-driven algorithms rely on statistical methods
and machine learning techniques. These models learn patterns
directly from the data without assuming an explicit underlying
system model.

1) LARVIO: LARVIO is short for Lightweight, Accu-
rate and Robust monocular Visual Inertial Odometry. It is a
model-based algorithm derived from the Multi-State Constraint
Kalman Filter (MSCKF) architecture.

MSCKF combines IMU data and camera images to obtain
a state estimation. The gyroscope data is integrated once to
obtain rotation in 3D space, and the accelerometer data is
integrated twice to obtain translation. The camera images are
first preprocessed to obtain a set of features, which positions
are then tracked overtime to obtain a camera pose estimation.
This camera pose estimation is fused with the IMU estimation
to obtain a final state estimation. [10]

At the time of its creation, MSCKF claimed to outperform
all existing filter-based mapping architectures on accuracy and
computational complexity [10]. LARVIO improves on MSCKF
by adding better support for static scenes, implementing an
analytical error transition equation, and introducing calibration
parameters for the camera and IMU into the model. The
creators of LARVIO boast a statistically significant increase
in performance, and a decrease in computational complexity
compared to off-the-shelf MSCKF. [11]

LARVIO is open source, and a Docker image is available at
[12]. Despite that, LARVIO requires Rosbags as wrappers for
input data, which are nontrivial to create. Although Rosbags
are available for existing benchmarks, such as EuRoC –
discussed in Section II-C – converting bike data to the Rosbag
format proved not feasible within the scope of this research.

2) CNN-LSTM: A CNN-LSTM is not one particular al-
gorithm, but rather an architectural description of a subset
of data-driven methods. CNNs are a type of neural network
with great spatial capabilities. LSTM adds memory cells to the
network, increasing its temporal capabilities. Given the nature
of a trajectory, a model benefits from both this spatial and
temporal awareness.

The main motivations behind opting for a CNN-LSTM
are its adaptability, great literature coverage, and ease of
implementation in Python. Using off-the-shelf packages such
as Tensorflow, one can set up and train a basic CNN-LSTM
system within hours – facilitating easy development and ex-
pansion. The field of bike trajectory mapping is novel. Hence,
I deem it more important to prioritise ease of development over
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(a) The EuRoC dataset contains only indoor
images, captured from a UAV, which are not
comparable to outdoor images captured by a
bike.

(b) Another cyclist moves through a calibra-
tion sequence of the SCB dataset, making
it challenging to deploy movement-detecting
tools, e.g. OpenCV.

(c) In some parts of the SCB dataset, there
are many other – moving – traffic participants.
This makes it difficult to extract camera fea-
tures.

Fig. 2: Three flaws with the EuRoC and SCB datasets.

the relatively slow execution speed of Python. In later stages,
the models can be upgraded to faster languages, which could
aid the development of a real-time solution.

C. Benchmarks & Datasets

I analysed different benchmarks from existing works and
found that all tests can be divided into four categories, based on
the arbitrary classifications ’trajectory length’ and ’trajectory
difficulty’. An overview of the four categories can be found in
Table I.

Easy trajectory (ET) Difficult trajectory (DT)
Short
duration
(SD)

Existing work within the
SCB project, e.g. by [2].
The author uses two straight
lines of at most 100 meters.

Any algorithm tested on the
EuRoC dataset. EuRoC runs
take about a minute, which
allows for relatively little
time to drift.

Long
duration
(LD)

Some papers doing trajec-
tory mapping with cars, such
as in the first publication
about MSCKF [10]. Tra-
jectories consist of mostly
straight lines with some
right or left turns and rela-
tively empty streets.

To the best of my knowl-
edge, there are no con-
tenders in this category yet.
Any algorithm able to map
(or predict) a full run of a
SCB field trial would fall un-
der this.

TABLE I: Overview of the four benchmark categories based
on two arbitrary classifications. A trajectory is ’short’ if it is
smaller than 500 m or shorter than 5 minutes. A trajectory is
’easy’ if it contains mostly straight lines, little moving traffic,
and few turns.

Currently, the tests within the SCB project are limited.
Existing studies use mostly benchmarks of one or more
quiet, straight road(s). J. Koornstra implemented a CNN-
LSTM based on MobileNet and tested it on two straight-line
trajectories [2]. M. Bessi planned on testing a MSCKF-based
approach on a straight line and a trajectory with six turns, but
did not succeed due to poor-quality camera images [13].

Most trajectory mapping algorithms are tested on a difficult
trajectory (DT) for a short duration (SD), an easy trajectory
(ET) for a long duration (LD), or both. The EuRoC MAV
benchmark, [14], is often used as DT/SD. This dataset contains
eleven trajectories recorded from a UAV. Each trajectory is
approximately a few minutes long and is recorded using stereo

images and an IMU. Additionally, a high-precision ground
truth is available, recorded using either a Leica MS50 laser
tracker or a Vicon motion capture system. Although of high
quality and often used – enabling easy comparisons – the
EuRoC dataset has downsides. A UAV is more stabilised than a
bike. Also, all trajectories are recorded in indoor environments,
see Fig. 2a, which results in little disturbances from, e.g. other
traffic. Lastly, the EuRoC dataset is relatively small, which
adds complexity when setting up a data-driven algorithm [15].

Another often-used dataset is KITTI [16]. The KITTI
dataset is recorded from a car, which is also more stabilised
than a bike. An advantage of the KITTI dataset is that it
includes real-world traffic. However, the data is unsuitable for
our study because of the lack of an IMU.

To summarise, the main problem with the current bench-
marks is that they are not suitable for evaluating bike trajectory
mapping performance. I hypothesise that a straight-line bench-
mark is insufficient, especially for data-driven methods. A
CNN-LSTM, for example, will bias itself towards this straight
line. The algorithm will ignore any movement to the sides
and will, hence, always produce a straight-line outcome. As a
result, the algorithm may not properly detect turns.

1) SCB Dataset As Promising Candidate: There is one
promising candidate for a novel dataset. M. Boot et al.,
members of the SCB project, organised the SCB field trails
[17]. During the field trails, 17 participants used a sensor-
equipped e-bike to cycle a predetermined route, Fig. 4a,
of approximately 4 km. Each participant cycled the same
route 3 times. The researchers used a ProMove-mini Wireless
Inertial Sensing Platform for collecting inertial information,
an Akamduman camera for full colour, full HD video footage,
and a phone GPS as ground truth.

The resulting dataset contains approximately 70 GB of
highly relevant and high-quality data. However, the data are
not yet usable due to the lack of proper synchronisation.
There is no hardware synchronisation between the different
types of sensors. Hence, all synchronisation should be done
afterwards. This is a time-consuming process. Firstly, the IMU
data should be aligned with the camera images by analysing a
calibration sequence of predetermined movements. Then, the
camera should be aligned with the GPS ground truth based
on timestamps. Even with partly automated tools, such as the
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Fig. 3: High-level functional flow block diagram of the proposed CNN-LSTM-based trajectory mapping algorithm. I only used
the high-resolution camera images, since these yielded better results than the low-resolution ones.

one I proposed in [18], it is a labour-intensive process prone
to errors – see Fig. 2b.

In the future, when the SCB dataset is properly synchro-
nised, it will be a valuable contribution to possible benchmarks
for bike trajectory mapping. I hypothesise that the benchmark
is challenging due to large quantities of other traffic (see
Fig. 2c) in each frame and unstabilised data recording, but
the large size of the dataset would make it possible to deploy
data-driven methods confidently.

In conclusion, a new benchmark is needed to evaluate
the performance of bike tracking algorithms discussed in this
paper. I will propose a novel benchmark in Section III-B.

(a) The SCB trajectory. 4 km.
DT/LD.

(b) The proposed trajectory. 130-
150 m. ET/SD.

(c) The proposed zero-shot tra-
jectory. 600 m. ET/LD.

(d) The proposed urban trajec-
tory. 3.9 km. DT/LD

Fig. 4: The SCB trajectory and the newly proposed trajectories
in Section III-B. The lengths and the classifications (see
Table I) are given.

III. METHOD

In this section, I will first discuss the CNN-LSTM architec-
tures and configurations evaluated in this study. Then, I will
propose a novel benchmark that can be used. Lastly, I will
elaborate on the exact training and testing procedures.

Topology 1, based on [19], [20] Topology 2, based on [2], [5]
Layer 1 Conv1D Sequential
Layer 2 BatchNormalization LSTM
Layer 3 MaxPooling1D Dropout
Layer 4 Dropout LSTM
Layer 5 LSTM Dense
Layer 6 BatchNormalization Dense
Layer 7 LSTM
Layer 8 Dropout
Layer 9 Dense
Layer 10 Dense

TABLE II: Low-level structure of the two baseline neural
network topologies. The topologies in this table make up the
’CNN-LSTM (different configurations)’ block in the high-level
functional flow diagram as seen in Fig. 3.

A. CNN-LSTM Architectures & Configurations

There are multiple approaches to setting up a CNN-LSTM-
based system. One approach – taken by e.g. [2] – is directly
inputting camera images into a CNN layer. This approach has
the advantage of requiring little data preprocessing. Another,
more common approach is to preprocess the camera images
first. The main advantage of this approach is that it simplifies
the input to the neural network. Preprocessing could entail
detecting and extracting features and feeding these features
into the neural network, as done in [5], [20]. The proposed
CNN-LSTM architectures used in the remaining part of this
paper will follow the latter approach.

I started with two baseline topologies used in other studies
and designed a pipeline, Fig. 3, for adaptation to bicycle data.
The low-level structure of both topologies can be seen in
Table II. Then, I devised 25 different versions on the baseline
topologies, varying the following parameters:
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1) Model architecture. I tested different architectures,
and different hyperparameters within these architec-
tures.

2) Data input. I varied which parts of the proposed
benchmark were used for training, validation, and
testing.

3) Input window length. I varied the input window
length between 100 and 3200 samples.

4) Data upsampling method. The IMU data has the
largest sample rate, i.e. 139 Hz, whereas the GPS
ground truth has the smallest sample rate, i.e. 1
Hz. I explored two different methods to handle this
sampling rate difference. The first method is to repeat
copies of the last known data point, until a new
data point is received. This is most comparable to
a real-world, real-time application, but might cause
unwanted inaccuracies in the output of the algorithm.
The second method is interpolation, where I inter-
polate between two known data points using linear
interpolation.

These 25 versions are compared in this study. An overview
of the versions and their hyperparameters can be found in
Section VIII-D.

B. Proposed Benchmark

A proper benchmark is important to test the performance of
trajectory mapping algorithms. Since bike path trajectory map-
ping is novel, no standardised benchmark has been proposed.
Given that existing benchmarks are suboptimal, as discussed
in Section II-C, there is a need for a suitable benchmark that
can be used. In Fig. 4, I propose a novel benchmark. The
largest part of the benchmark, Fig. 4b, consists of a square
trajectory. The main motivation behind this square trajectory is
that any model can no longer ignore side movements. Another
advantage is that each trajectory ends at the starting position.
Thus, a value for the model drift can be computed, independent
of the ground truth quality. The last advantage is that this
square is less traffic-dense than the SCB trajectory, simplifying
the camera feature extraction part of the algorithms.

The proposed benchmark also consists of a larger (600
m) square trajectory, Fig. 4c, that can be used as a zero-
shot test case to check for overfitting on the specific small
square. Lastly, I included a realistic urban trajectory of 3.9
kilometres, see Fig. 4d. The motivation for this last test is to
discover possible improvement strategies to move to real-world
applications in the future.

For the benchmark data, I connected an MPU-6050 to the
handlebars of a bike. I used an Akamduman camera for high-
resolution (1080p, full HD) video data and a Raspberry Pi
camera for low-resolution (720p) video. I used a ZED-F9P
GNSS module as ground truth. The IMU data, low-resolution
camera data, and ground truth were hardware synchronised
using the Raspberry Pi platform designed by G. S. Salustiano
[21]. In total, I cycled the small square trajectory 120 times –
of which 60 times clockwise and 60 times counterclockwise.
I cycled the zero-shot test trajectory 3 times and the urban
trajectory 1 time. The entire dataset is available at [22].

C. Training & Evaluation Procedure

I trained between 10 and 15 networks in parallel, using
Jupyter Notebook environments on the cloud compute servers
of the University of Twente. All used code is available at [18].
The models are set to train at most 50 epochs – early stopping
enabled – with the RMSE as the evaluation parameter. After
training, the performance on the test set is quickly evaluated,
both on the RMSE, and by visual inspection. Promising algo-
rithm candidates are put forward to the evaluation procedure.

I evaluated each promising algorithm twice – before and
after post-processing – on the specified test set. I allowed three
post-processing operations, in the following order:

1) Filtering using a moving average filter. The in-
putted IMU data is unfiltered, which causes a noisy
prediction. I use a moving average (MA) filter to
reduce high-frequency noise.

2) Scaling. The current models are unaware of any
intrinsic camera parameters; hence, obtaining the
correct scale is difficult. Additionally, the filtering
operation will alter the scale. I allow a basic scaling
operation – i.e. multiplying two constants cx and cy
with the x and y output values – to correct for both
problems.

3) Shifting. A low-pass filter causes delay. Furthermore,
the starting location is not known by the model. The
predicted x and y trajectories may be shifted by a
constant in both horizontal and vertical directions.

The models will first be tested on a part of small square
benchmark data (Fig. 4b) that was not used for training. Then,
I will test all models on the zero-shot square trajectory as
seen in Fig. 4c. Lastly, the models that generalise best are
tested against the realistic urban trajectory in Fig. 4d. I do
not expect the algorithms to perform well on this last test; the
urban trajectory test data is not comparable to anything in the
dataset used to train the models. An overview of the evaluation
parameters can be seen in Section VIII-C, Table IV.

IV. RESULTS

Based on manual inspection, of which the observations can
be found in Section VIII-D, I selected seven algorithms for the
evaluation procedure as described in Section III-C. Table IIIa
and Table IIIb show the results of the selected neural network
architectures for the standard test and the zero-shot trajectory,
respectively. For the standard test case, Fig. 5a shows the best-
performing model without interpolated data input, i.e. model
11. Fig. 5b shows Model 10i, the best-performing model with
interpolated data input. Subsequently, for the zero-shot test
case, the best performing models – models 9 and 7i – can be
seen in Fig. 5c and Fig. 5d, respectively.

Since Models 9 and 7i generalise best based on the zero-
shot test case, these models are tested against the 3.9 km urban
trajectory in Fig. 4d. The results can be seen in Fig. 5e and
Fig. 5f. For model 9, the RMSE of the unfiltered output is
1749 m, the RMSE of the filtered output is 940 m, and the
drift error after filtering is 3003 m. For model 7i, the RMSE
of the unfiltered output is 1746, the filtered is 1165 m, and the
drift error is 3129 m.
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Model Length full
test set

RMSE without post-
processing

MA window size Length best
round

RMSE best round Drift error best round Turn accuracy
metric

Total score

in m in m in samples in m in m in % in m in %
7i 2901 20 1600 130 13 10.2 5 3.8 23 41

8 2882 20 1200 133 14 10.1 10 7.7 22 45

9 2837 18 1000 134 9 6.4 11 8.4 12 32

9i 2834 20 1000 133 9 6.5 7 5.3 16 31

10 2812 10 300 130 5 4.1 4 2.8 8 17

10i 2811 12 400 133 7 5.2 13 9.4 11 31

11 2764 9 100 134 4 3.3 1 0.4 8 13

(a) Standard test trajectory as seen in Fig. 4b.

Model Length full
test set

RMSE without
processing

MA window
size

Length best
round

RMSE best round Drift error best round Total score

in m in m in samples in m in m in % in m in %

7i 1818 156 7750 604 45 7.5 15 2.5 60

8 1818 152 7750 599 72 12.0 13 2.2 85

9 1818 154 10000 598 33 5.5 41 6.9 74

9i 1818 152 10000 602 37 6.1 97 16.1 134

10 1818 153 5000 598 96 16.1 100 16.7 196

10i 1818 155 9000 610 73 11.9 91 14.9 164

11 1818 152 7750 598 73 12.2 166 27.7 239

(b) Zero-shot test trajectory as seen in Fig. 4c.

TABLE III: The seven selected network architectures tested against different trajectories. Lower scores are better. The best scores
for models without interpolation are marked in blue, and those for models with interpolation are marked in green. The overviews
of the evaluation metric calculations and model topologies can be found in Section VIII-C and Section VIII-D, respectively.

V. DISCUSSION

The first observation one can make is that the best models
for the standard test and the zero-shot test are not the same.
Model 11 maps an almost perfect trajectory on the standard
test, as seen in Fig. 5a, but is the worst-performing model
on the zero-shot test. This indicates overfitting on the specific
small square trajectory. The main difference between the well-
performing models on both tests is the model size. The best-
performing model on the zero-shot is 7i, of which the first
convolutional layer has 8 filters, whereas 10i and 11 – the
best-performing models on the standard test – have 16 and
32 filters, respectively. The other layers of 10i and 11 are also
larger than 7i and 9, as seen in Section VIII-D. Although larger
models can perform better than smaller ones, they are also
more prone to overfitting – which is observed here.

Nevertheless, the obtained results are useful. For the first
time in literature, algorithms have been proposed to map non-
linear bike trajectories, including turns and curves. Models 9
and 7i show the possibilities of generalising a model to work
on unseen trajectories. Models 11 and 10i show practical max-
imums to performance on known trajectories. The drift error of
model 11 during the standard test is on par with LARVIO [11].
Both the smaller and larger neural network configurations are
worth further researching. The smaller models can be tested
against different trajectories to discover their limitations. The
larger models can be trained with more data, e.g. the SCB
dataset, to reduce the possibility of overfitting.

Currently, the tested algorithms perform poorly on real-
world urban trajectories, as seen in Fig. 5e and Fig. 5f, which

confirms the initial hypothesis. The primary reason for this
poor performance is that the urban trajectory significantly
differs from the training data: it consists of moving traffic,
speed bumps, traffic lights, etc. The SCB dataset could again
be of use here. Training a CNN-LSTM model on this more
varied dataset could help make a more generalised model.
An interesting observation is that model 7i tries to output a
square in Fig. 5f, which it has been trained on. Model 9,
Fig. 5e, generalises better, with parts of the outputted trajectory
showing similarities to the ground truth. I hypothesise that the
large anomalies on the xpred and ypred halfway through the
trajectory are caused by the presence of other moving traffic
participants.

I identified various limitations and flaws of the methods
used. The first limitation is the accuracy of the ground truth.
By comparing the camera images to the recorded GNSS data, I
estimate that the approximate accuracy is ± 1 m. This accuracy
could further drop in urban environments. Future work could
explore integrating different ground truth systems, e.g. LIDAR,
which is used in [16].

The second flaw is the synchronisation error between
the different data sources. Although the IMU, low-resolution
camera, and GNSS module are hardware synchronised, I used
the data from the high-resolution camera as the source for
the OpenCV odometry toolbox. The high-resolution videos
yielded significantly better results than the low-resolution
ones. Synchronisation was based on timestamps, accepting a
synchronisation error of at most 1 s. I limited the influence of
this error by reducing the number of different dataset runs. The
entire dataset has been recorded over 6 continuous sessions,
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(a) Best round of model 11, tested against the standard test trajectory
as shown in Fig. 4b.

(b) Best round of model 10i, tested against the standard test trajectory
as shown in Fig. 4b.

(c) Best round of model 9, tested against the zero-shot test case as
shown in Fig. 4c.

(d) Best round of model 7i, tested against the zero-shot test case as
shown in Fig. 4c.

(e) Model 9 tested against the urban trajectory as shown in Fig. 4d. (f) Model 7i tested against the urban trajectory as shown in Fig. 4d.

Fig. 5: Comparison of the best-performing models on the three test trajectories. All models without interpolation can be seen on
the left, and all models with interpolation on the right. The ground truth is blue, and the model output is red.

yielding at most 6 different synchronisation errors. In the
future, the synchronisation error can be solved by including
the high-resolution camera in the hardware synchronisation
platform. The error can also be mitigated entirely by building a
version of the model that uses only the low-resolution camera.

The third flaw is that – depending on the algorithm –
significant post-processing operations might be required, as
described in Section III-C. It is more efficient to filter the data
prior to feeding it through the neural network because this
reduces the number of calculations the model should perform.

Future work could investigate the impact of different sampling
rates and filter strategies.

The last flaw is the limited diversity of cyclists used for the
novel dataset. I cycled all the recorded trajectories, potentially
causing the models to be overfitted to my cycling patterns and
behaviours. This flaw can be solved by adding data from more
participants, e.g., by using the SCB dataset.
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VI. CONCLUSION

This paper presents a pioneering approach to bicycle ego-
trajectory mapping using CNN-LSTM models, demonstrating
their ability to map turns and curves accurately. I also proposed
a novel dataset that was used to train the current models and
can be used as a benchmark for future systems.

All flaws of the currently proposed system – as discussed
in Section V – can be solved by extending the dataset or
improving the model. Additionally, one can use the proposed
model to implement prediction functionality, e.g. by shifting
the ground truth values of the dataset and retraining the model.
An interesting study would be investigating the time-ahead
prediction versus the model accuracy. Other studies could
investigate the robustness of the model when sensor data is
missing or unreliable. For example, consider a case where
a raindrop falls on the camera sensor. This raindrop will be
tracked as a feature but will not move. Hence, the odometry
system might report that the bike is not moving, whereas the
IMU data could show otherwise.

It is important to remember the bigger picture. In the future,
the aim is to deploy trajectory mapping and prediction systems
on bikes in real traffic. For this to work, the datasets used
to train models should be extended with more varied data,
e.g. longer routes, different weather conditions, different road
surfaces, etc. The SCB dataset could be of use for this. Then,
the system should be able to handle moving traffic, which is
undesirable for getting an accurate camera state estimation. A
solution proposed in [10] is using a Mahalanobis distance test.
Another solution could be to deploy an object detection and
recognition system that masks out often-moving objects, e.g.
pedestrians, other bikes, and cars.

An important step in widespread adoption is developing
an easy-to-use, easy-to-contribute framework. As stated in the
introduction, most state-of-the-art algorithms require specific
operating systems and many dependencies. In Section VIII-E,
Fig. 6, I propose a Python-based processing pipeline to facil-
itate faster development. The main novelty of the proposed
pipeline is that different processing steps can be executed
independently, and all data is inputted and outputted in easy-
to-access file formats, i.e. CSV files.

Lastly, a useful experiment would be to compare the per-
formance of model-based trajectory mapping algorithms with
data-driven ones. If a tool was made to convert the IMU and
camera data into a usable Rosbag format, one could compare
the proposed CNN-LSTM system with existing algorithms
such as LARVIO.

Ultimately, this research should be seen as one of many
puzzle pieces to the widespread adoption of bike mapping
algorithms. The proposed algorithm and dataset can be used to
develop other models, e.g., ones that are faster, more accurate,
or better suited for embedded platforms. The code, model
weights, and dataset are open source to endorse this further
development.
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VIII. APPENDIX

A. AI statement

During the preparation of this work, I used Grammarly Premium to check the document for language mistakes and improve
fluency. Furthermore, I used ChatGPT 4o for implementing the OpenCV odometry toolbox in Python, generating code for plotting
trajectory predictions, setting up sub-figure environments in LATEX, and converting the tables in this paper from Excel to LATEX.
After using these services, I thoroughly reviewed and edited the content as needed, taking full responsibility for the final outcome.

B. Provided Code and Documentation

The following scripts and programs are the output of this research paper. They are provided under the MIT licence at [18].

1) LocationMapper. A Python script that takes coordinates and places these on a map.
2) SyncSystem. The first version of a system that could be used to automatically synchronise camera, IMU, and GPS data

from the SCB dataset.
3) MapAndVideo. A Python script that takes location and camera data, and plots both on an interactive map.
4) RosbagExtraction. A tool that can be used to extract Rosbag output data from LARVIO.
5) OpenCVFeatures. A system that uses the odometry toolbox from OpenCV to find trackable features in a video.
6) OpenCVOdometry. A system that used the odometry toolbox from OpenCV to create a state estimate based on only

camera data.
7) ProposedFramework. The first version of a Python processing pipeline which can be used to facilitate further

development and research.
8) CNN-LSTM. This contains all scripts related to the development of the CNN-LSTM mapping algorithm, including but

not limited to:
a) Code to synchronise the input data.
b) Code to convert GPS coordinates to relative coordinates.
c) Code to train the neural networks.
d) The weights and biases of the trained neural networks.
e) Code to evaluate the performance and compute the relevant metrics.

Additionally, the novel dataset is made public at [22].

C. Evaluation Metrics

Test case Evaluation parameter Post-processing operations Explanation

Standard test (small square
trajectory)

RMSE full test set None. Gives an indication of the out-of-the-box perfor-
mance.

RMSE, best single round At least three consecutive
rounds are selected and
post-processed.

The best single round is selected. The RMSE is
calculated for that single round.

Drift error, best single
round

Since every round starts and ends in the same place,
one can compute the error caused by drift. This
excludes the influence of any ground truth errors.

Turn accuracy metric,
(best) single round

Identical to the RMSE, however, errors during a
turn are multiplied by 2. This penalises models that
do not work properly on turns and curves.

Total score The sum of the RMSE for the best single round,
the drift error, and the turn accuracy metric.

Zero-shot test case (larger
square trajectory)

RMSE full test set None. Gives an indication of the out-of-the-box perfor-
mance.

RMSE, best single round All post-processing operations,
on all rounds.

The best single round is selected. The RMSE is
calculated for that single round.

Drift error, best single
round

The drift error of the best single round.

Total score The sum of the RMSE for the best single round
and the drift error.

Urban traffic test
RMSE full test set None. Gives an indication of the out-of-the-box perfor-

mance.
RMSE, best single round All post-processing operations.Drift error end position

TABLE IV: Evaluation parameters for the different test cases.
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D. Analysed CNN-LSTM Configurations

Training parametersModel Architecture TR
data

VAL
data

TEST
data

Window
length

Data input Observations

2 Conv1D(16) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(25, return sequences) -
BatchNormalization - LSTM(25) -
Dropout(0.3) - Dense(25) - Dense

1 0,5*2 0,5*2 200 repetition Overfitted, but showed signs of
periodicity on the test data.

3 Conv1D(32) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(50, return sequences) -
BatchNormalization - LSTM(50) -
Dropout(0.3) - Dense(50) - Dense

1 0,5*2 0,5*2 400 repetition Overfitted.

4 Conv1D(16) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(25, return sequences) -
BatchNormalization - LSTM(25) -
Dropout(0.3) - Dense(25) - Dense

1 0,5*2 0,5*2 400 repetition Did not move away from the
starting location.

5 Conv1D(16) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(25, return sequences) -
BatchNormalization - LSTM(25) -
Dropout(0.3) - Dense(25) - Dense

1,2,4 0,5*5 0,5*5 200 repetition Shows some signs of periodic-
ity, is able to successfully pre-
dict one corner location of the
test trajectory (most likely due
to overfitting).

5i Conv1D(16) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(25, return sequences) -
BatchNormalization - LSTM(25) -
Dropout(0.3) - Dense(25) - Dense

1,2,4 0,5*5 0,5*5 200 interpolate Shows some signs of periodic-
ity, is able to successfully pre-
dict one corner location of the
test trajectory (most likely due
to overfitting).

6 Conv1D(8) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(12, return sequences) -
BatchNormalization - LSTM(12) -
Dropout(0.3) - Dense(12) - Dense

1,2,4 0,5*5 0,5*5 200 repetition Does not converge.

6i Conv1D(8) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(12, return sequences) -
BatchNormalization - LSTM(12) -
Dropout(0.3) - Dense(12) - Dense

1,2,4 0,5*5 0,5*5 200 interpolate Does not converge.

7 Conv1D(8) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(12, return sequences) -
BatchNormalization - LSTM(12) -
Dropout(0.3) - Dense(12) - Dense

1,2,4 0,5*5 0,5*5 100 repetition Only converges for the y trajec-
tory, and not for the x trajectory.

7i Conv1D(8) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(12, return sequences) -
BatchNormalization - LSTM(12) -
Dropout(0.3) - Dense(12) - Dense

1,2,4 0,5*5 0,5*5 100 interpolate Results after heavy post-
processing seem promising.

8 Conv1D(8) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(12, return sequences) -
BatchNormalization - LSTM(12) -
Dropout(0.3) - Dense(12) - Dense

1,2,4 0,5*5 0,5*5 800 repetition Slightly overfitted, good period-
icity, proper idea of scale even
without post-processing.

TABLE V: Analysed CNN-LSTM configurations, part I. Promising candidates are marked in green.
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Training parametersModel Architecture TR
data

VAL
data

TEST
data

Window
length

Data input Observations

8i Conv1D(8) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(12, return sequences) -
BatchNormalization - LSTM(12) -
Dropout(0.3) - Dense(12) - Dense

1,2,4 0,5*5 0,5*5 800 interpolate By visual inspection, good per-
formance on the y trajectory,
poor performance on the x tra-
jectory. Good periodicity.

9 Conv1D(8) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(12, return sequences) -
BatchNormalization - LSTM(12) -
Dropout(0.3) - Dense(12) - Dense

1,2,5 0,5*4 0,5*4 800 repetition Slightly overfitted, good per-
formance on the y trajectory,
medium performance on the x
trajectory. Good periodicity.

9i Conv1D(8) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(12, return sequences) -
BatchNormalization - LSTM(12) -
Dropout(0.3) - Dense(12) - Dense

1,2,5 0,5*4 0,5*4 800 interpolate Strong x and y performance,
especially after post-processing.

10 Conv1D(16) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(25, return sequences) -
BatchNormalization - LSTM(25) -
Dropout(0.3) - Dense(25) - Dense

1,2,5 0,5*4 0,5*4 1600 repetition Strong x and y performance,
also without post-processing.
Might be overfitted to the spe-
cific trajectory, further testing
should show this.

10i Conv1D(16) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(25, return sequences) -
BatchNormalization - LSTM(25) -
Dropout(0.3) - Dense(25) - Dense

1,2,5 0,5*4 0,5*4 1600 interpolate Strong x and y performance,
also without post-processing.
Might be overfitted to the spe-
cific trajectory, further testing
should show this.

11 Conv1D(32) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(48, return sequences) -
BatchNormalization - LSTM(48) -
Dropout(0.3) - Dense(24) - Dense

1,2,5 0,5*4 0,5*4 3200 repetition Excellent performance on both
x and y, also without post-
processing. Might be overfitted
to the specific trajectory.

11i Conv1D(32) - BatchNormalization
- MaxPooling1D(2) - Dropout(0.3)
- LSTM(48, return sequences) -
BatchNormalization - LSTM(48) -
Dropout(0.3) - Dense(24) - Dense

1,2,5 0,5*4 0,5*4 3200 interpolate Excellent performance on both
x and y, also without post-
processing. Might be overfitted
to the specific trajectory. Is not
able to run all tests.

12 Sequential - LSTM(100, return se-
quences) - Dropout(0.2) - LSTM (100)
- Dense(50) - Dense(2)

1,2,5 0,5*4 0,5*4 400 repetition Good periodicity, proper scaling
even without post-processing.
Medium prediction results.

12i Sequential - LSTM(100, return se-
quences) - Dropout(0.2) - LSTM (100)
- Dense(50) - Dense(2)

1,2,5 0,5*4 0,5*4 400 interpolate Good periodicity, proper scaling
even without post-processing.
Medium prediction results.

13 Sequential - LSTM(100, return se-
quences) - Dropout(0.2) - LSTM (100)
- Dense(50) - Dense(2)

1,2,5 0,5*4 0,5*4 200 repetition Poor prediction results, even af-
ter post-processing. Signs of pe-
riodicity.

13i Sequential - LSTM(100, return se-
quences) - Dropout(0.2) - LSTM (100)
- Dense(50) - Dense(2)

1,2,5 0,5*4 0,5*4 200 interpolate Poor prediction results, even af-
ter post-processing. Signs of pe-
riodicity.

14 Sequential - LSTM(100, return se-
quences) - Dropout(0.2) - LSTM (100)
- Dense(50) - Dense(2)

1,2,5 0,5*4 0,5*4 100 repetition Poor results, even after post-
processing. Little signs of peri-
odicity. Proper idea of scale.

14i Sequential - LSTM(100, return se-
quences) - Dropout(0.2) - LSTM (100)
- Dense(50) - Dense(2)

1,2,5 0,5*4 0,5*4 100 interpolate Poor results, even after post-
processing. Little signs of peri-
odicity. Proper idea of scale.

15 Sequential - LSTM(50, return se-
quences) - Dropout(0.2) - LSTM (50)
- Dense(25) - Dense(2)

1,2,5 0,5*4 0,5*4 800 repetition DNF - not enough memory
available to train.

15i Sequential - LSTM(50, return se-
quences) - Dropout(0.2) - LSTM (50)
- Dense(25) - Dense(2)

1,2,5 0,5*4 0,5*4 800 interpolate DNF - not enough memory
available to train.

TABLE VI: Analysed CNN-LSTM configurations, part II. Promising candidates are marked in green.
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E. Proposed Python Processing Pipeline

Fig. 6: Low-level block diagram of the proposed Python processing pipeline for using the SCB dataset. The main novelty
is that every step produces intermediate CSV output files, facilitating platform-independent development and object-oriented
programming strategies, such as abstraction and encapsulation.
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