Cyclist Weight Inference using IMU Sensors on Bicycles
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Inertial Measurement Unit (IMU) sensors are widely used in various movable
applications, including sports science, healthcare, and navigation. Recently,
IMUs have also been used on bicycles to generate insights about road quality,
fall detection, maneuver prediction, etc. IMUs are usually not known to
contain sensitive data, but with the emergence of more advanced computer
intelligence and machine learning techniques, we cannot be sure that certain
sensitive insights, such as the weight of the cyclist, could not be inferred from
the sensor data. This research investigated to what extent the cyclist’s weight
can be determined using only the IMU data. This study included collecting
the IMU data from a cyclist with different added weights in a controlled
experiment. Next, it analyzed and preprocessed the obtained data, followed
by the development of models, using machine learning techniques, which
can classify the weights of cyclists based on the IMU data. Finally, it evaluated
the models and explored the feasibility of classifying the weights into an
increasing number of classes. It was found that we can feasibly classify the
weights up to 4 classes before the accuracy drops too low. We were able to
achieve models able to classify the weights with up to 84% accuracy. The
research is expected to contribute to advancing the understanding of privacy
considerations when using sensor data as well as the possibilities of modern
technologies to infer sensitive information from seemingly reliable and safe
sensor data.

Additional Key Words and Phrases: IMU, bicycle, weight classification, ma-
chine learning, privacy, accelerometer, gyroscope, sensitive data, data infer-
ence.

1 INTRODUCTION

Bicycles are a popular mode of transport and a cornerstone of urban
mobility, due to their convenience, sustainability, and health benefits.
In countries like the Netherlands, cycling accounts for more than
one-quarter (28%) of all trips [4]. With the advancement of modern
technologies, new types of bicycles such as electric bicycles (e-bikes)
and speed pedelecs are gaining more popularity. In this context, in-
tegrating various sensors into bicycles presents opportunities to
generate and collect a lot of useful data that could be harnessed in
multiple important applications. For instance, consider rental bike
companies that could use the data to monitor their bicycles more
extensively and improve their service, or governments that could
leverage the data for assessing the road quality or improving the
cyclists’ safety in traffic. However, alongside the convenience and
efficiency offered by these innovations, there are multiple concerns
regarding the potential leakage of sensitive information from em-
bedded sensors, particularly motion sensors [6, 8].

There have already been efforts to apply these technologies to the
domain of cycling. In this sense, the increasingly advanced IMUs are
promising for bicycles due to their low cost, simplicity, compactness,
and low processing power [1]. IMUs are already used in various
areas, such as manufacturing, healthcare, robotics, navigation, and
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sports learning [1]. Moreover, it’s already been extensively used
in various bicycle applications [3, 5, 10, 12, 13, 15]. However, there
has been little research regarding the leakage of sensitive data from
the IMU sensors, specifically in the context of bicycle applications.
Most existing work focuses on other mobile devices and applica-
tions. While it is usually believed that IMUs do not contain sensitive
data, we might underestimate the potential of advanced machine
learning techniques, which might be used for sensitive information
inference.

This is an important aspect that needs to be assessed, as it might
have real implications in certain use cases. Consider the scenario
where the rental bikes equipped with IMUs unintentionally leak
sensitive information about cyclists, such as their weight, height, or
location. Also, the organizations handling the data might compro-
mise privacy and fail to implement adequate security measures as a
result of their underestimation of the data value and potential.
This research will be focused on exploring the feasibility of infer-
ring the cyclist’s weight based only on the IMU sensor data. We will
collect the data by conducting a controlled experiment, then we’ll
build models capable of classifying cyclists’ weights using the ob-
tained data, based on which we’ll make the appropriate conclusions
regarding the data inference possibilities.

This paper is organized as follows. Section 2 outlines our main
research question and sub-questions. Section 3 reviews related re-
search in the domain of sensitive information inference from sensor
data and the usage of sensors on bicycles for various applications.
Section 4 describes the methodology that we used to answer each
of our research questions. Section 5 presents and thoroughly de-
scribes our obtained results. Finally, sections 6, 7, and 8 present the
discussion, conclusion, and future work, respectively.

2 RESEARCH QUESTIONS

Our introduction and problem statement lead to the following for-
mal research question:

To what extent can we determine the weight of a cyclist using only
the IMU sensor data mounted on the bicycle?

This general question leads us to the following sub-questions:

(1) How can we collect data relevant to the cyclist’s weight from
the IMU sensors?

(2) How can we use the machine learning models to infer the
weight of a cyclist using the IMU data?

(3) How do the ML models compare in terms of performance?

3 RELATED WORK

In this section, we review some existing research relevant to the in-
ference of sensitive information from sensor data, as well as studies
focusing on the usage of sensors on bicycles for various applications.
In their paper, Huang et al. [8] assessed the risk of keystrokes and
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full-text input inference from the motion sensors (including ac-
celerometers and gyroscopes) of Android devices. For inference, they
developed a machine learning model, specifically a Deep Fully Con-
ventional Neural Network (DFCNN) that achieved a high enough
accuracy to eavesdrop on users’ sensitive information, such as ac-
count numbers, passwords, and other exact values. In another paper,
Naval et al. [11] used the motion sensors’ data (accelerometer, gyro-
scope, orientation sensors) to infer 4-digit PINs from smartphones
embedded with such sensors. In their approach, they also used ma-
chine learning models, such as MLP, Decision Tree, Random Forest,
and Naive Bayes. Also, Han et al. [7] used the accelerometers on
smartphones to infer the location of the device owner within a 200-
meter radius of the true location, while Van hamme et al. [14] studied
the feasibility of predicting age and gender with reasonable accu-
racy on gait traces using the IMUs sensors. In their study, they also
employed machine learning models for feature extraction as well
as for the predictions. Additionally, Kroger et al. [9] presented an
overview of even more possible inferences from accelerometer data,
including user’s activities, location, device inputs, moods/emotions,
or personality traits.

These papers highlight the existing potential vulnerabilities of infer-
ring sensitive data from motion sensors, further justifying the scope
of our research. Additionally, they can serve as valuable reference
points for our methodology, specifically for the data analysis and
ML model selection and development process.

In the domain of bicycles, there has been substantial research regard-
ing the usage of IMUs mounted on bicycles for various applications.
For example, de Smit et al. [5] used IMUs to predict the turn ma-
neuvers of cyclists to help prevent collisions, Zhang et al. [15] used
the sensors to estimate the pose of the rider/bicycle to better study
unstable physical human/robot interaction or human rider’s gait,
Mihaldinec et al. [10] used them to estimate the cycling cadence
that could provide better personal health insights and assistance
in training, Tabei et al. [12] tried to develop an accident detection
system for cyclists using a variety of sensors to improve the cyclist’s
safety on the road, while Chang et al. [3] proposed a system to im-
prove the cycling navigation using the IMUs from portable devices.
These papers highlight the potential benefits of using the data from
IMUs on bicycles for various applications. However, most of these
papers assume that the data from the sensors is non-intrusive, which
might not be entirely true, thus enhancing the importance of our
research. Additionally, these papers can be used as reference points
in our research, including the placement of sensors on the bicycle
during data collection or the selection of appropriate ML models for
our task.

Finally, it’s worth noting that similar research to ours was already
done by another student. In his research, Benitah [2] also explored
the possibility of inferring the cyclist’s weight using the IMU data,
however, we claim that his methodology was partly flawed. Specifi-
cally, for his data collection, he used multiple (12) participants for
the experiment. This introduced more variables in the experiment
and resulted in an unevenly distributed dataset, which highly influ-
enced the accuracy and correctness of the models. In our approach,
we propose an entirely different methodology. First, we will use
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Fig. 1. ProMove-mini IMU node

only one cyclist for the experiment, with a larger set of additional
weights on him, so we’ll simulate different weight classes with one
cyclist. By considering a single cyclist, we ensure consistency in
data collection, and a more evenly distributed dataset as we reduce
the variability that is introduced by different individuals. In the end,
we aim to obtain a more controlled environment for the experiment,
which should translate to better outcomes. Secondly, during the
development of the models, previous research used the user ID as a
training feature, which is considered wrong since the models will
learn more based on that ID, rather than the actual data from the
IMU. In our approach, we’ll avoid this mistake and investigate more
suitable models as well, which could lead to more accurate results.
Also, we use different IMU sensors, which are better synchronized,
more accurate, and easier to use.

In summary, the described papers emphasize the motivation of
our research and its importance. In addition, these papers will serve
as valuable guidelines and insights for our decisions throughout the
research.

4 METHODOLOGY

This section will detail the methodology that we used to answer
each of our proposed research questions. The process includes data
collection through a controlled experiment, data analysis and pre-
processing, the application of machine learning models, and perfor-
mance evaluation. This section is organized into subsections that
present the approach used to answer each research (sub-)question.

4.1 On answering the 1st sub-question

To answer our first sub-question: How can we collect data relevant
to the cyclist’s weight from the IMU sensors, we decided to con-
duct a controlled experiment, in which we acquired the necessary
data from the IMUs. The experiment consists of configuring and
strategically attaching several sensors on a simple bicycle, collecting
the data through a cyclist making multiple trips on the bike with
different added weights and at different speeds, and recording and
saving the data captured by the sensors. Next, we describe each of
these parts in more detail.

4.1.1  Sensor Placement and Configuration. The sensor device used
for this project is the ProMove-mini wireless IMU, which is a wire-
less networked inertial and orientation sensor. See Figure 1 for the
visual representation of one such sensor node. For the scope of our
research, we have decided to use simultaneously 3 such sensors that
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Fig. 2. Weight vest used to simulate different weights

were placed on different parts of the bicycle. Each of the sensors
was configured to record only the accelerometer and gyroscope
data along the 3 axes (x, y, z). The sensors were set at 200Hz, which
means that the sensors recorded 200 samples of data per second.
The placement of the sensors was chosen as follows:

(1) Head Tube: This location was chosen because it captures
the data from the front part of the bicycle, specifically it
should capture the steering movements of the wheel, which
we believe can be highly influenced by the cyclist’s weight.
Under the Seat: This placement was selected as it should
capture the movements and vibrations transmitted through
the seat post and the impacts experienced by the saddle, which
should carry a significant portion of the cyclist’s weight, as
the cyclist sits directly on it, providing useful data related to
the cyclist’s weight.
(3) Rear frame: This position was chosen because it captures
the data from the rear part of the bicycle, which also bears
a significant portion of the rider’s weight, especially during
acceleration.

—
)
~

See Appendix A for pictures of the bicycle setup, including the place-
ment of the sensors.

We believe that, by using 3 sensors that record data from different
parts of the bicycle, we can get a more complete set of data, which
allows us to analyze the inference of the cyclist’s weight from differ-
ent parts of the bicycle, and even see which one is more indicative
of the weight.

4.1.2 Data Collection. As mentioned in Related Work section, our
methodology focuses on collecting the data from one cyclist, which
ensures consistency in data collection, a (relatively) evenly dis-
tributed dataset, and a more controlled environment overall. Our
experiment requires several additional considerations, which are
stated in Table 1, along with their motivation and our solution.

Overall, we performed the data collection for 16 different weights
at 3 different speeds each, resulting in a total dataset of 48 different
rides. Since the data collection process lasted multiple days, it re-
sulted in slightly different weights between the speed categories,
therefore we treat each weight from a ride as a separate data point.
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Fig. 3. Selected road type for data collection

4.1.3 Recording and storing the data. For recording and storing
the data, we used the internal memory of the sensor nodes. Gener-
ally, the sensor nodes are provided with a software tool from the
manufacturer that allows for plot visualizations of the data, as well
as synchronization between multiple sensor nodes and automatic
recording of the data. However, this tool only works if the sensors
are within the range of the gateway connected to the laptop via
USB, but when we performed our data collection, the cyclist would
very soon get out of range, therefore, we used the manual recording
for each sensor.

Before each ride, the cyclist would manually turn on the recording
of each sensor node by double-clicking the button on each sensor.
After the ride, the cyclist would again double-click the button to stop
the recording. The recordings of the sensors from each ride are thus
saved in the internal memory of the nodes in a separate file. Then,
after the rides, we would export the files from the internal memory
of the nodes and convert them to .csv files by using the software tool.

As a result, we obtained 48 different CSV files for each speed (16
weights from 3 sensors), each containing the timestamp, node-id,
ax, ay, az, gx, gy, and gz columns, that we could use further in our
analysis and development of the models.

4.1.4 Experiment Setup. In this section, we will discuss the exact
setup of the experiment. Before the ride, we first made sure that
all the sensors were charged and firmly attached to the bike. Then,
the cyclist would measure his weight right before the ride using
a simple scale, with all the necessary added weights on him. This
weight would then be recorded and stored separately. Then the
cyclist would turn on manually the recording of each sensor on the
bike, as well as the speedometer. The cyclist would then start the
ride at the specified speed for exactly 5 minutes on the designated
segment of the road, keeping track of the duration and speed of the
ride from the speedometer. After 5 minutes of riding, the cyclist
would stop immediately and manually turn off the recording of each
sensor node. Then, he would go to the starting position and repeat
the process with a different weight and possibly at a different speed.

4.2 On answering the 2nd sub-question

To answer our second sub-question: How can we use the machine
learning models to infer the weight of a cyclist using the IMU data,
we propose 2 approaches: feature-based approach and deep-learning
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Table 1. Experiment considerations

variable.

Consideration Motivation Solution
The cyclist wore a weight vest, similar to the one in Figure 2,
To collect data produced by different allc?w1ng several weight .blocks t.O be added~ in 1ts~pocke.ts. We
. . . . . decided to collect data using 16 different weights, including the
Weight Simulation weights but use only one cyclist, to . . . :
. base weight of the cyclist (without the weight vest) and 15
exclude other variables. . . . .
different added weights, resulting in a range of weights
between 84.5 - 105.7 kgs.
We considered 3 speed classes: slow, medium, and fast. We
didn’t set an exact speed for each category, as maintaining a
The speed of the cyclist can greatly constant spe.ed turned out to be challenging. Therefor.e, we set
. an approximate range for each speed category, which the
L. influence the collected data, therefore . . .
Speed Variation cyclist would follow during all the trips. Also, we recorded the

we need to consider it as another

average speeds after each ride. These ranges can be observed
in Table 2. To monitor and adjust the speed during the rides,
the bicycle was equipped with a speedometer on the handlebar,
visible to the cyclist, as seen in Appendix A.

Road Selection

To ensure consistency and to collect
more complete and accurate data.

All the rides were performed on the same road segment,
covered in circles if needed. To collect more accurate and
complete results from the sensors, especially from the
gyroscope, we also decided to select a road type that contains
multiple bumps and turns. As a result, we decided to select a
circle portion of the road type, as presented in Figure 3.

Duration of the Ride
ride.

To ensure that we have enough
collected continuous data from each

We set the duration of each ride to exactly 5 minutes. The
duration was monitored by the cyclist using the speedometer.
After 5 minutes of cycling, the cyclist would stop, regardless of
the covered distance.

Cyclist’s Positi d Post . . . .
yeist s Tosttion and Fostte rides with different weights.

To ensure consistency throughout the

The cyclist was instructed to straighten their back and bend
only as necessary to grab the handlebars and try to keep a
constant position throughout the entire ride.

Table 2. Speed ranges and average speed

Speeds Range Average speed
Slow speed 7.5-9.5 km/h 8- 8.3 km/h
Medium speed | 12 - 13.5km/h | 13 - 13.5 km/h

Fast speed 16 - 20 km/h | 17 - 17.5 km/h

approach. Both of these approaches would also require some data
preparation and preprocessing. These are further explained in the
following sections.

4.2.1 Data preparation. To use our collected data for the develop-
ment of our models, we first need to preprocess and transform the
data to be suitable for our task. We decided that, for both approaches,
we would build the models for each speed separately and then com-
pare the results. For our classification task, we decided to initially
classify the weights into 3 classes: light, medium, and heavy. For
this reason, we nearly evenly split the 16 weights from each speed
into the 3 classes. Then, we further split the data into training and
testing sets. We used 2 weights from each weight class for testing
and the other weights were used for training the models. We also
transformed the raw time-series sensor data using the "windowing’
technique, as standard classification algorithms cannot be directly

applied to raw time-series data. Therefore, we split the data into
windows of 2 seconds, each containing 400 samples (200 samples/s).
For labeling the samples, we used the most-occurring weight class
from the window. Additionally, we considered overlapping win-
dows with 50% overlap, instead of discrete windows. This ensures
that every subsequent window in the transformed dataset contains
some information from the previous window as well, preserving
more correlations and continuity in the data, which is important
for time-series analysis. This approach also helped us artificially
increase the dataset for training and testing the models.

4.2.2  Feature-based approach. In this approach, we aimed to ex-
tract several features from the raw sensor data and then build some
standard classification models based on the identified features. We
explored both some simple statistical features and features in the
frequency domain by performing a Fast-Fourier transform on the
data (FFT).

For this approach, we selected 4 classification models: KNN, Deci-
sion Tree, Support Vector Machine (SVM), and Logistic Regression
due to their complementary strengths and reviewed literature. KNN
was used for its simplicity and ability to classify based on the similar-
ity of data, rather than hyperparameters. Decision Trees can handle
well non-linear relationships and are relatively robust against data
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noise. SVMs are known for their ability to handle high-dimensional
data and find optimal decision boundaries. Finally, Logistic Regres-
sion offers a straightforward, computationally efficient, probabilistic
approach that is widely used for multi-class classification tasks.

4.2.3 Deep-learning approach. In the deep-learning approach, we
wanted to see if we could leverage the raw sensor data directly,
without manual feature engineering, allowing the models to auto-
matically learn and extract relevant features.

To achieve this, we leveraged some simple deep-learning models,
specifically a Convolutional Neural Network (CNN) model and a
Multilayer Perceptron (MLP) model. CNN was used for its ability
to capture spatial, temporal, and hierarchical structures from a se-
quence of IMU data and automatically learn relevant features, as
well as for its simplicity and computational efficiency. MLP was se-
lected for its simple architecture and capacity to model complicated,
non-linear relationships between features and target classes.

Both these models can learn intricate patterns in the data and have
the potential to achieve great results compared to the manually
extracted features.

4.3  On answering the 3rd sub-question

To answer our third sub-question: How do the ML models perform
and compare in terms of performance, we decided to build multiple
models based on different data, like speed, sensor-id, and the type of
collected data (accelerometer and gyroscope). Then, for each model,
we made a classification report and confusion matrix. We assessed
the performance based on the reported accuracy and f1 scores, but
we also examined the precision and recall scores.

4.4 On answering the main research question

Finally, to answer our main research question: To what extent can
we determine the weight of a cyclist using only the IMU sensor data
mounted on the bicycle, we decided to extend our classification task
to include multiple weight classes instead of just 3. This allowed
us to evaluate the performance of our models when attempting to
classify the weights into more precise classes.

To achieve this, we chose the models with the highest accuracy from
our initial 3-class classification setup and then used them to classify
the weights into a range of classes, from 2 to 8. As a result, we could
assess the performance of these models and make conclusions about
the extent of our classification possibilities.

5 RESULTS

In this section, we present the results that we obtained after follow-
ing our described methodology. First, we’ll describe our analysis of
the obtained data from the experiment, as well as the necessary pre-
process that was done. Then, we’ll describe how we developed our
feature-based and deep-learning models, and present the evaluation
of their performance. Finally, we’ll describe the results obtained
from multiple classes classification.

5.1 Data Analysis & Preprocess

After conducting the data collection experiment, we examined our
obtained dataset. As mentioned in the Methodology section, we
obtained a dataset of 48 data points (16 weights at 3 speeds). Then,
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Fig. 4. Weight Distribution

Fig. 5. Example of the real-time replay of a ride in Inertia Studio

for each of them, we have data from 3 sensors simultaneously. The
weight distribution can be seen in Figure 4.

Next, we analyzed all the obtained files in the Inertia Studio (the
software app for the sensors), which allows for real-time replay of
the ride. An example of how we can visualize the data is presented
in Figure 5. While checking the files, we noticed that the actual
ride starts a few seconds after the start of the recording. This is
because the cyclist had to turn on manually each sensor, and then
after adjusting himself on the bike, he would start the 5-minute
ride. This resulted in different amounts of samples recorded from
each ride. To ensure the consistency and even distribution of the
data, we decided to keep exactly 5 minutes of data from each ride,
by deleting the first samples from each file, which corresponded to
the adjusting and calibrating time before the start of the actual ride.
Apart from this, the manual inspection of the files did not reveal
any visible patterns or observable conclusions.

5.2 Feature-based Models

After analyzing and preparing the data, we first built the feature-
based models, as described in the Methodology. In total, we identi-
fied 94 features that provided relevant information for training the
models. This included statistical features! such as the mean, median,
min, and max, for each of the 3 axes. Then we explored most of these
features again, but in the frequency domain, by applying FFT to the

! Article containing the features that we used: https://towardsdatascience.com/feature-
engineering-on-time-series- data-transforming- signal-data- of-a- smartphone-
accelerometer-for-72cbe34b8a60
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Table 3. Accuracy scores for Medium Speed
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Model/Sensor Placement | Head Tube | Under Seat | Rear Frame | All sensors

KNN 0.4 0.64 0.36 0.43

Decision Tree 0.41 0.75 0.38 0.5

SVM 0.53 0.82 0.42 0.49

Logistic Regression 0.54 0.84 0.42 0.49

Table 4. Accuracy scores for different speeds Table 5. CNN Accuracy Scores
Model/Speed Slow speed | Medium speed | Fast speed Speed/Sensor Placement | Head Tube | Under Seat | Rear Frame
KNN 0.67 0.64 0.57 Slow speed 0.47 0.73 0.42
Decision Tree 0.74 0.75 0.71 Medium speed 0.54 0.84 0.4
SVM 0.75 0.82 0.77 Fast speed 0.42 0.61 0.49
Logistic Regression 0.76 0.84 0.78

data. For each speed, we also developed separate models using the
data from each sensor node separately, as well as from all 3 sensors
combined. For our features, we also experimented with using only
the accelerometer data, only the gyroscope data, and a combination
of both. However, in all the models, the gyroscope data resulted in
a much lower accuracy compared to the accelerometer data, there-
fore we only used the accelerometer data for extracting our features.

Table 3 presents the accuracy scores of each model for medium
speed and different sensors. As can be observed, the sensor placed
under the seat produces far better results in terms of accuracy for
each model. This was also the case for both the slow and fast speeds.
Therefore, we present in Table 4 the accuracy scores for the different
speeds using only the sensor under the seat. From these results, we
can observe that the medium speed generally produced the highest
accuracies. Also, the KNN performed the poorest for all speeds, with
around 60% accuracy. The Logistic Regression and SVM models per-
formed the best, being quite close to each other, while the Decision
Tree also performed well, with around 70% accuracy, and was close
to SVM and Logistic Regression, especially for low and high speeds.

5.3 Deep-learning Models

After implementing the feature-based models, we proceeded to
develop the deep-learning models to explore the feasibility of classi-
fying the weights using the raw data instead of manually extracting
relevant features.

5.3.1 CNN Model. For the CNN model, we developed a simple 1-
dimensional model. The model architecture summary is represented
in Figure 6. As in the feature-based approach, we developed separate
models for each speed and sensor. Also, we experimented with both
the accelerometer and gyroscope data, however using only gyro-
scope data again resulted in much poorer accuracy, while using only
the accelerometer data we achieved the best accuracy. Therefore,
we present the results from using only the accelerometer data. Table
5 presents the accuracy scores of the model for different speeds and
sensors. As with the feature-based approach, we can observe that
we obtain the highest accuracy when using the data from the sensor
under the seat. Also, the medium speed produced higher accuracies.

Layer (type)

convld 161 |

global max_pool
(

dropo

Fig. 6. CNN model

v MLPClassifier

MLPClassifier(hidden_layer sizes=(1@@, 5@), max_iter=1@28, random_state=42,§
solver="1lbfgs')

Fig. 7. MLP model

Table 6. MLP Accuracy Scores

Speed/Sensor Placement | Head Tube | Under Seat | Rear Frame
Slow speed 0.43 0.73 0.46
Medium speed 0.37 0.76 0.38
Fast speed 0.39 0.66 0.39

The highest obtained accuracy was 84%. We can also state that the
model performed poorly at the fast speed, achieving the highest
accuracy of 61%.

5.3.2  MLP Model. For the MLP model, we developed a simple MLP-
Classifier using the scikit-learn? package for Python. We experi-
mented with the model’s parameters and decided on the final version
represented in Figure 7. As with the CNN model, we used only the

Zhttps://scikit-learn.org/stable/modules/generated/sklearn.neural_network.
MLPClassifier.html
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Table 7. Accuracy scores for different number of classes

Model/Classes 2 3 4 5 6 7 8
SVM 0.80 | 0.82 | 0.70 | 0.60 | 0.5 | 0.35 | 0.38
Logistic Regression | 0.81 | 0.84 | 0.70 | 0.63 | 0.48 | 0.35 | 0.37
CNN 0.86 | 0.84 | 0.64 | 0.41 | 0.41 | 0.31 | 0.30
MLP 091 | 0.73 | 0.61 | 0.45 | 0.43 | 0.34 | 0.33

accelerometer data for training the model. Table 6 shows the accu-
racy scores of the model for different speeds and sensors. Here we
can observe that the under-seat sensor still achieves better accura-
cies, however, the difference between the speeds is smaller, with
the fast speed achieving the worst accuracies, and the best accuracy
still achieved by the medium speed, at 76%.

5.4 Multi-class Classification

After developing all of our models based on a 3-class weight classi-
fication, we proceeded to train the models to classify the weights
into more classes. Based on the performance of the initial models,
we can state that we achieved the best results using the data from
the under-seat sensor at medium speed. Therefore, we used only
this data to train our models on multiple classes.

Table 7 reflects our obtained results. For the feature-based mod-
els, we present the results only from the best-performing models:
SVM and Logistic Regression. From the results, we see that the
accuracy drops significantly as we increase the number of classes.
After 4 classes, the models’ accuracies are too low (<60%) to consider
them effective, since such low accuracies are equivalent to simply
guessing the weight class. We can also notice that the feature-based
models (SVM and LR) are performing slightly better as we extend
the number of classes, while the deep-learning models are still per-
forming well for fewer classes (2 and 3), and then we observe a more
significant drop in accuracy.

6 DISCUSSION

In this section, we will discuss and explain our findings, based on
the results from the previous section.

Firstly, we can state that we found a relationship between the cy-
clist’s weight and the IMU sensor data collected from their rides.
Our results showed that the accelerometer data was more indicative
of the weight rather than the gyroscope data, which performed
much worse in terms of the accuracy of the models. Our findings
indicate that the optimal sensor placement and speed significantly
impact the performance of weight classification models. The sensor
placed under the seat consistently outperformed other sensors. The
medium speed slightly outperformed the slow and fast speeds most
of the time.

Secondly, we can say that it is possible to classify the weights using
both feature-based and deep-learning models. The models perform
relatively similarly well for classifying the weights into 3 classes.
The deep-learning models’ performance also indicates that it is pos-
sible to automatically learn features from raw sensor data, rather
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than manually engineer them.

Thirdly, as we increase the number of classes for the classifica-
tion task, the accuracy drops consistently and significantly, which
might show the limitations of our classification task. Perhaps, if we
want to determine more precisely the weight, a regression task of
prediction might be more suitable.

7 CONCLUSION

This research aimed to determine the extent to which the weight of
a cyclist can be inferred from IMU sensor data mounted on a bicycle.
We addressed this through a series of sub-questions that provided
valuable findings and helped answer the main research question.

Regarding the first subquestion, it can be concluded that we can
collect data relevant to the cyclist’s weight from the IMU sensors
through a controlled experiment. Our results indicated that placing
the sensor under the saddle provided consistently the highest accu-
racy of the classification models. Additionally, accelerometer data
proved more useful than gyroscope data, providing better accuracy
of the classification models. Also, the speed of the cyclist influenced
the performance of the models. We found the medium speed to
be overall the most effective for data collection. These variables
indicate the most effective setup for data collection, capturing data
that is most indicative of the cyclist’s weight.

Regarding the second subquestion, we showed that we can infer the
weight of the cyclist by manually extracting relevant features from
raw sensor data and training traditional machine learning models
(KNN, Decision Tree, SVM, and Logistic Regression) to classify the
weights into multiple classes. We also explored deep-learning clas-
sification models (CNN and MLP) and showed that they are capable
of capturing relevant features regarding the weight directly from
the raw sensor data. Both approaches demonstrated good feasibility
of weight inference, and are quite close in terms of accuracy of the
classification task.

To answer the third research question, we evaluated all the de-
veloped models in terms of their accuracy scores, as well as by
analyzing their precision, recall, and f1-scores. We found that, for
a 3-class classification task, the CNN and the Logistic Regression
models performed the best, achieving an accuracy of 84%.

Addressing the main research question, our study shows that it’s
feasible to classify the weights of a cyclist into more precise classes,
however, the accuracy of the classification consistently diminishes
as we increase the number of classes and the classification task
becomes more precise. Our results revealed that we can feasibly
classify the weights up to 4 classes. After that, the classification mod-
els become irrelevant, as their accuracy drops below 60%, which
is effectively the same as guessing the weight class, rather than
classifying it.

Nevertheless, these results already show great possibilities of infer-
ring the cyclist’s weight and should increase the concern over the
protection of their privacy.
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8 FUTURE WORK

Although our research shows promising results, there are still areas
of improvement for future work.

Firstly, increasing the amount of collected data and the environment
of the experiment to be even more controlled could always lead to
more interesting and relevant findings.

Secondly, in our research, we mentioned that the gyroscope data
did not provide relevant data, however, there is a possibility to
consider the data only from a turn of the bicycle. During the turn,
the gyroscope data should capture more relevant data as this is
when it will record more rotations. Additional research into the
possibilities of gyroscope data can greatly improve the performance
of the models.

Finally, instead of performing a classification task, further research
might consider a prediction task, such as regression, where the
models should predict the exact weights, rather than classifying
them. This can further improve the possibility and the extent of
inferring the weights.
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A BICYCLE SETUP

Below are images reflecting the bicycle setup that was used during
the data collection experiment.

Fig. 8. Head Tube sensor placement

Fig. 11. Rear frame sensor placement

Fig.9. Speedometer Placement
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