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A Fault Tree (FT) is a graphical model used in risk management to analyze
systems. Graph entropy is a complexitymeasure that quantifies the structural
information of graphical models. Given the limited availability of large, real-
world Fault Trees, creating more realistic randomly generated Fault Trees is
important for developing and testing dedicated quantitative analysis tools
for Fault Trees. This study explores the applicability of graph entropy in
capturing the structural complexity of Fault Trees, by comparing randomly
generated Fault Trees and real-life Fault Trees from the FFORT dataset,
which includes a diverse range of real-world fault trees and other risk models
sourced from scientific literature and industrial reports. It is intended as a
starting point for enhancing the methods of random Fault Trees. To analyze
this, the graph entropy of the in-degree and out-degree distributions was
computed and compared across multiple graph sizes. The results in this paper
show that real-world Fault Trees show higher entropy values as the graph
scale increases, suggesting real-world graphs become structurally more
predictable, whereas random Fault Trees show lower entropy values and
these tend to stabilize at higher graph sizes. The findings display differences
between structures and suggest that current methods of generating Fault
Trees do not fully mimic the predictability of real-world Fault Trees. This
research highlights the need for improved algorithms for generating Fault
Trees.

Additional Key Words and Phrases: Fault Tree, Graph Entropy, Random
Graph.

1 Introduction
Risk analysis is crucial to guarantee the safe and reliable operation
of critical systems. One of the most used techniques for risk model-
ing in complex systems is fault tree analysis. A Fault Tree (FT) is
a graphical model that represents the various pathways through
which failures can propagate within a system, ultimately leading
to a critical system-level failure. There is currently a demand for
specialized tools for quantitative analysis because of the size and
complexity of fault trees. Creating such tools is an important topic
of ongoing research [11].
A significant limitation in this field is the small amount of large,
real-world FT available for public research. This challenge leaves
researchers relying on randomly generated fault trees to test their
quantitative analysis tools [6]. Not all randomly generated FTs can
reflect the information contained in real-world FTs. The difference
between random FTs and real-world FTs is under-researched, mak-
ing it unclear to what extent random FTs are suitable for testing
analysis tools. Thus, to further improve the quality of quantitative
analysis tools it is important to realize random FTs.
Graph entropy associates a probability distribution with the ele-
ments of a graph and computes the entropy of this distribution
using information theoretic formulas like Shannon entropy. The
measures capture the amount of information needed to describe
the structure of a graphical model. In reality, graph models rarely
exhibit properties of random graphs. Therefore, the question arises
if we can use graph entropy metrics in the study of random FTs to
determine whether this given graph resembles the structure of FTs
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seen in real-life scenarios.
This research aims to investigate the applicability of graph entropy
measures in capturing the structural complexity of FTs. The goal
is to compare randomly generated FTs with real-world FTs and
identify key differences that can improve the realism of randomly
generated FTs. The results gained from this analysis are intended
as a starting point for creating more advanced algorithms for gen-
erating random FTs. By computing and comparing these values,
differences between the sets have been highlighted.

2 ResearchQuestions
(1) What is the difference between the generated FTs graph en-

tropy values and the values of the real-world FTs?
a. How are the in-entropy values (𝐼𝑑− (𝐺)) and out-entropy

values (𝐼𝑑+ (𝐺)) related to the size (|𝐸 (𝐺) |) and order (|𝑉 (𝐺) |)
of the graph ?

b. What is the difference in the degree distributions of vertices
between the real-world FTs and random FTs ?

(2) How effective is graph entropy at measuring the similarity
between the structural complexities of randomly generated
FTs and those of real-world FTs?

3 Preliminaries

3.1 Fault Trees
A FT is a directed acyclic graph (DAG) consisting of two types
of nodes: events and gates. An event is an occurrence within the
system, typically the failure of a (sub) system down to an individual
component. The event at the top of the tree is called the top event
and represents the system failure being analyzed in the FT. A gate
represents how failures in subsystems can combine and cause a
system failure [8]. Most commonly used gates in fault trees are
AND gates, e.g G2 and G3 in Figure 1, and OR gates, e.g gate G1
and System in Figure 1. FDEP gates in FTs model the functional
dependencies of a system. If the first child of a FDEP gate fails, called
trigger, all other children fail with a certain probability. This type
of gate is handled differently from the rest, when translating FTs
to directed graphs and is discussed more in section 4. While more
types of gates exist, this paper focuses on the structure of FTs as
directed graphs and does not differentiate other gates based on their
functionality.

3.2 Graph Entropy
The entropy of a graph is interpreted as its structural information
content and serves as a complexity measure [3]. These measures
associate a probability distribution with the elements of a graph and
compute the entropy of this distribution using information-theoretic
formulas like Shannon entropy. In his work, Dehmer provides a
generalized formula for graph entropy [2].
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Fig. 1. Example FT

Fig. 2. FT from Figure 1 as a directed graph

Consider a graph𝐺 = (𝑉 , 𝐸) with𝑉 as the set of vertices and 𝐸 as
the set of edges. Let 𝑓 be an arbitrary information functional. The
entropy of 𝐺 with 𝑉 = {𝑣1, 𝑣2 . . . , 𝑣𝑛} is defined as follows:

𝐼𝑓 (𝐺) = −
𝑛∑︁
𝑖=1

𝑓 (𝑣𝑖 )∑𝑛
𝑗=1 𝑓 (𝑣 𝑗 )

log
(

𝑓 (𝑣𝑖 )∑𝑛
𝑗=1 𝑓 (𝑣 𝑗 )

)
where 𝑛 = |𝑉 | denotes the number of vertices, and 𝑣𝑖 represents an
individual vertex in 𝑉 .

In this paper, we apply this formula specifically to the in-degree
and out-degree of vertices. The in-degree 𝑑− (𝑣𝑖 ) of a vertex is the
number of edges that point to that vertex, starting from other ver-
tices. The out-degree 𝑑+ (𝑣𝑖 ) of a vertex is the number of edges that
originate at the given vertex and point to other vertices. For exam-
ple, in Figure 2 the out-degree of G2 is 1, and the in-degree of G2 is
3.
Note that

𝑛∑︁
𝑖=1

𝑑− (𝑣𝑖 ) =
𝑛∑︁
𝑖=1

𝑑+ (𝑣𝑖 ) =𝑚

where𝑚 = |𝐸 (𝐺) | represents the total number of edges in 𝐺 .
Therefore, the normalized sequence of degrees in a graph[

𝑑+ (𝑣1)
𝑚

,
𝑑+ (𝑣2)
𝑚

, . . . ,
𝑑+ (𝑣𝑛)
𝑚

]
is a probability distribution as its elements sum to 1. For 𝑓 equal to
the in-degree, the entropy formula becomes:

𝐼𝑑− (𝐺) = −
𝑛∑︁
𝑖=1

𝑑− (𝑣𝑖 )
𝑚

log2
(
𝑑− (𝑣𝑖 )
𝑚

)
and similarly for out-degree entropy:

𝐼𝑑+ (𝐺) = −
𝑛∑︁
𝑖=1

𝑑+ (𝑣𝑖 )
𝑚

log2
(
𝑑+ (𝑣𝑖 )
𝑚

)
Due to log2 0 not being defined, the convention 0 log2 0 = 0 was
used to compute the in-degree and out-degree entropy. This ensures
that vertices with degree 0 do not contribute to the sum of the en-
tropy.

Example For the DAG in Figure 2, has in-degree sequence [2, 2,
3, 0, 2, 0, 0, 0]. Substituting in the in-degree formula:

𝐼𝑑− (𝐺) = −
(
2
9 log2

2
9 +

2
9 log2

2
9 +

3
9 log2

3
9 +

2
9 log2

2
9

)
≈ 1.968 bits

It is important to note that the value of degree entropy is maxi-
mized for a fixed𝑚 when the sequence of degrees is uniform, each
vertex having the same degree.

4 Methodology
This section will detail the steps and tools used to complete the
research.

4.1 Tools
For conducting the experiments Python was used, mainly for its
wide choice of easy-to-use libraries. To easily read and manipulate
data in directed graphs, the module graph.py 1 was used. One modi-
fied version of a script from the paper [1] project artifact was used
for reading and parsing fault tree files to our data structure. For
creating the plots, the libraries maplotlib [5] and numpy [4] were
used.

4.2 Fault Tree Instance

4.2.1 Real-World FT instances The real-world FT instances used in
the experiments were taken from the dataset known as FFORT [9].
FFORT is a collection comprising various riskmodels including Fault
Trees, Attack Trees, and BDMPs sourced from scientific literature
and open industrial reports. Additionally, some FT instances were
found in literature. This is the collection of real-world FTs used for
the comparison:
• 98 FT instances from the FFORT dataset
• 3 industrial FT models for components of a lock used in water
navigation

1Module for working with directed and undirected multigraphs. Version: 29-01-2015
by P. Bonsma. Version: 01-02-2017, P. Bos, T. Bontekoe
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• 3 FT models of wet-pipe fire sprinkler systems used in Australian
shopping centers [7]

The order of the graphs in the set ranges from 11 to 414 vertices.
Instances with comparable orders were grouped to represent the
real-world FT set. The data sets obtained contain graphs with ap-
proximately order 10, 15, 25, 35, 45, 100, 150, 200, 250, 300.

4.2.2 Random FT instances Initially, a set of 128 random FT in-
stances was used from the [1] project’s artifact. These instances
have sizes ranging from approximately 220 vertices to 270. Due to
the differences between the graph sizes of the real-world instance
sets, these were not enough to perform a comparison. A Python pro-
gram was created to generate random instances for this experiment.
As this paper focuses on fault trees as directed graphs, the algorithm
outputs randomly generated rooted directed acyclic graphs (DAG).
The function has 4 parameters: the size of the resulting graph, the
maximum possible number of children for the root vertex, the maxi-
mum possible number of children for the rest of the vertices, and the
maximum possible out-degree. The algorithm iterates over the depth
levels and vertices of the graph starting with the root, generates a
number depending on the range given in the parameters, and creates
the same amount of children vertices for this given vertex. After the
first loop, it iterates again and creates a randomly generated number
of edges between neighboring levels without creating cycles. The
graphs generated by this algorithm are stored in DOT format. To
find adequate parameters values for the generation algorithm, the
same metrics where computed for the real-world sets. Following the
graph size of the real-world FTs groups, 1000 random graphs with
the same number of vertices were generated using as parameters
the values observed in the their real-world counterparts.

4.3 Converting real-world Fault Trees to Directed Graphs
The graphs from the set of real-world FTs are structured in standard
Galileo Format [10]. The authors of [1] have created a program that
defines a grammar based on the Galileo Format, parses the FT files
and creates a mapping, with gates as keys and their children (BE or
gates) as values. For this research, the programwasmodified to build
a graph object using the graph.py module. For BEs and gates, vertex
objects are created. Afterward, edge objects are created according
to the mappings in the dictionary, with the key gate as the tail, and
each value element as the head of the edge. Gates of type FDEP are
treated differently from the other types of gates. These have as the
first element in the mapping their trigger event, followed by states
failures can propagate to next. Therefore, an edge connecting the
trigger event is added to the fdep vertex. The rest of the states left
in the values of the mapping are treated the same as the other types
of gate.

4.4 Calculating Degree Entropy
For calculating the in-degree entropy and out-degree entropy a
fairly simple Python program was written following the entropy
formula. A pseudocode of the calculation can be seen in Algorithm
1.

Algorithm 1 Calculate In-Degree Entropy of a Graph
1: procedure InDegreeEntropy(𝐺𝑟𝑎𝑝ℎ)
2: 𝑚 ← length of 𝐺𝑟𝑎𝑝ℎ.𝑒𝑑𝑔𝑒𝑠
3: 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ← 0
4: for 𝑣𝑒𝑟𝑡𝑒𝑥 in 𝐺𝑟𝑎𝑝ℎ.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do
5: 𝑑𝑒𝑔𝑟𝑒𝑒_𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ← 𝑣𝑒𝑟𝑡𝑒𝑥 .𝑖𝑛_𝑑𝑒𝑔𝑟𝑒𝑒/𝑚
6: if 𝑑𝑒𝑔𝑟𝑒𝑒_𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 > 0 then
7: 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 ← 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 − (𝑑𝑒𝑔𝑟𝑒𝑒_𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ×

log2 (𝑑𝑒𝑔𝑟𝑒𝑒_𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛))
8: end if
9: end for
10: end procedure

Similarly, the algorithm for the out-entropy has the same logic.
Furthermore, the sequences of degrees computed were used to plot
the degree distributions of vertices. The average entropy was com-
puted to plot the relation between the size of the graphs and the
degree entropy values per order group of graphs.

5 Results

5.1 Comparison of Entropy Values
This section will present and discuss the results for each research
question. The code used for this research can be found at : https://gitlab
.utwente.nl/s2811731/graph-entropy-on-fault-trees.
Figures 3, 4, 5, and 6 present the average in-degree and out-degree
entropy values across the real world and randomly generated FT
instances with various graph orders and sizes. The entropy curves in
the figures resemble logarithmic growth, showing a rapid increase at
first, then gradually slowing down. In Fig 4 and Fig 6, it is observed
that the out-entropy value on randomly generated graphs stabilizes
approximately 5-6 bits after a size of approximately 150-200 edges.
The same pattern is observed for the in-entropy. On the other hand,
real-world FTs entropy values continue to increase with size. Fur-
thermore, in Fig. 3 and Fig. 5, a higher magnitude is observed in
the in-degree and out-degree entropy values as the graph grows.
Overall, real-world FTs exhibit higher in-degree and out-degree
entropy values on big graphs. This indicates that the sequence of
degrees in real-world FTs more uniform.

Figures 7, 8, 9, and 10 present the distributions of vertices based
on their in-degree and out-degree for a specific real-world FT, and
one comparable randomly generated graph, further highlighting
differences between their structures. The distribution based on in-
degree on real FTs, shown in Figure 7, is highly skewed, most vertices
having low in-degree values and few with higher in-degree values.
In contrast, Fig 9. shows a more even distribution of in-degrees
across vertices on random graphs. Note that vertices with degree
0 do not contribute to the value of the degree entropy, hence, they
are not relevant in this comparison. These results reinforce the
observations that FTs show predictability in their growth.
The out-degree distribution on real-world FTs, shown in Figure 8,
displays an even more pronounced skewness, with the majority of
vertices having an out-degree of one. Since gates in Fault Trees,
except FDEP, have only one out-degree, these results indicate that
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Fig. 3. Relation between (𝐼𝑑− ) and (𝐼𝑑+ ) and graph order (𝑛) on real-world
FTs

Fig. 4. Relation between (𝐼𝑑− ) and (𝐼𝑑+ ) and graph order (𝑛) on randomly
generated DAGs

occurrences of Basic Events with multiple out-degrees are rare in
real-world FTs.
These patterns are consistently observed across larger real-world
FT instances, implying that FTs become more predictable as their
size increases.

6 Conclusion
This paper has analyzed the entropy values of in-degree and out-
degree distributions for real-world FTs and randomly generated
FTs. It found that real-world FTs and randomly generated are in
terms of predictability in their structural complexity. Real FTs gen-
erally display higher entropy values and faster growth as graph
size increases, suggesting that their degree sequence becomes more
uniform and their growth is predictable. In-entropy and out-entropy
values on randomly generated graphs show a similar logarithmic
growth, however, they stabilize at the approximate value of m = 200
and are lower than their real counterparts indicating a high variety
of different in-degrees and out-degrees. The consistent patterns

Fig. 5. Relation between (𝐼𝑑− ) and (𝐼𝑑+ ) and graph size (𝑚) on real-world
FTs

Fig. 6. Relation between (𝐼𝑑− ) and (𝐼𝑑+ ) and graph size (𝑚) on randomly
generated DAGs

Fig. 7. Distribution of vertices based on their in-degree in real-world FTs
with 𝑛 = 200
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Fig. 8. Distribution of vertices based on their out-degree on real-world FTs
with 𝑛 = 200

Fig. 9. Distribution of vertices based on their in-degree on 4 randomly
generated DAGs with 𝑛 = 200

Fig. 10. Distribution of vertices based on their out-degree on 4 randomly
generated DAGs with 𝑛 = 200

observed in the real-world FT’s entropy values demonstrate that
graph entropy can be effective at differentiating random graphs
with higher variability in in-degrees and out-degrees from real FTs.

7 Future Work
The generation algorithm can be improved to include a target in-
degree and out-degree value of the resulting graph. The calculation
of the current entropy values can be done every iteration Differ-
ent weighted probabilities could be used to select the number of
new vertices and edges added to the graph, effectively steering the
entropy value to the desired range. Moreover, it can include more
structural constraints observed in real-world FTs, such as the ratio
of certain types of gates or the number of gates and basic events.
Future studies may look into other entropy-based metrics that cap-
ture different aspects of graph complexity. These measures could
provide a better understanding of real-world FTs structures.

Fig. 11. Example directed graph

Fig. 12. Example directed graph

8 Limitations
One significant limitation of this research is the small amount of big
real-world FTs in the dataset. This scarcity can impact the conclu-
sions drawn on the structural features of FTs. Furthermore, differen-
tiating specific FT structures can be difficult only with entropy. For
example, many graphs can have the same sequence of in-degrees
and out-degrees but be structurally significantly different. One such
example is shown in Figure 11 and Figure 12. Naturally, these 2
graphs will have the same in-degree and out-degree entropy values
and are interpreted the same. This is to show that entropy metrics
may not capture all the important structural differences in FTs.
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9 Appendix
During the preparation of this work the author(s) used ChatGPT to
refresh knowledge on usage of different python libraries likematplot,
numpy etc. After using this tool/service, the author(s) reviewed and
edited the content as needed and takes full responsibility for the
content of the work.
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