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Fig. 1. Horse with long-tailed distribution

Recognizing symptoms of animal disease with machine learning can be im-
proved by balancing class distributions of animal activity, which frequently
are long-tailed. Uncertainty Sampling and Disagreement-based Sampling
strategies of active learning, as well as Density Weighting and a novel Prag-
matic Balance approach are evaluated on their resulting class distributions
in this research. This is done by applying them to a dataset of horse ac-
celerometer data. A combination of these approaches is shown to have a
significant effect in achieving a balanced training set, by finding more in-
stances of rare tail classes and reducing the amount of instances of common
head classes in the training set. Additionally, general model performance
increases noticeably with these methods.

Additional Key Words and Phrases: Active Learning, Animal Activity Recog-
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1 INTRODUCTION

Horses have been around humans for thousands of years. Since
early civilization, man has used domesticated horses for various
purposes [20]. The main concern for horse health is the colic, a
condition of the intestines that can be - if not treated - fatal [2].
An important symptom that indicates that a horse may have a
colic is frequent rolling. To detect this rolling, Animal Activity
Recognition (AAR) may be able to lend a helping hand. Wearable
Inertial Measurement Units (IMU) can be attached non-invasively
to collect motion data, which in turn can be labeled and fed to a
machine learning model. This model can then classify and monitor
horse activity to detect this grave affliction timely [14].

This may sound simple, but some problems arise in practise. Col-
lection of labeled data is considerably more expensive than the
collection of unlabeled data, as the process of labelling manually
requires a human to sit behind a screen for a long time. A modifica-
tion of LabelStudio, proposed by Kamminga et al., which attempts
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to speed up the labeling process of IMU data, still requires a hu-
man to look at the screen for the duration of the samples set to be
labeled [13].

Thus, because human-labeled samples are expensive, one would
want to use techniques that produce a well-performing model with
little labeled data. One such technique is active learning. In this par-
adigm, based on the eponymous education technique, an algorithm
determines the next sample(s) for the model to train on. This algo-
rithm takes into account model predictions on unlabeled samples,
or featural (dis)similarities between labeled and unlabeled samples.
Several different active learning strategy types exist, such as uncer-
tainty sampling (UNCS), disagreement-based sampling (DBS) and
information density sampling (IDS) [23].

Another problem that arises is the fact that collected data shows a
long-tailed distribution [12]. Some activity classes are very common
(head classes). Other classes (tail classes) occur rarely. Rolling is
such a class. If the training data follows the distribution in the
total collected data, the model is going to perform poorly when
classifying these tail classes [9]. Because active learning makes a
motivated selection of the unlabeled set, a more balanced labeled
set may be constructed, where tail classes are more common, and
head classes less so.

In this research, these methods of active learning, along with a
pragmatical take on active learning in the context of distribution
balancing, will be compared by applying them to a IMU dataset,
gathered from domesticated horses [12]. To find a suitable model to
apply these techniques to, first an established algorithm and a new
algorithm will be compared on resource usage and speed, as well as
performance. In the second part of this research one of these models
will be applied with several active learning strategies, in order to
find a model that can achieve a (more) balanced class distribution
while learning from a set of human-annotated samples.

2 PREVIOUS RELATED WORK

The field of active learning has been surveyed by Settles (2010) [23].
He identifies several types of strategies, such as uncertainty sam-
pling (UNCS), disagreement-based sampling (DBS, also known as
query-by-committee) and density-weighted sampling (DWS). UNCS
methods pick samples which the model is least confident about
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when sampling. DBS methods use a committee of models, and pick
the samples that the models disagree the most on. DWS methods
attempt to find samples that are more interesting to the model, as
sample in dense regions of the feature space are more likely to be
picked. In a paper from 2008, Settles and Craven show that DWS
can outperform these other strategies on accuracy [24]. Another
significant finding in this study is that DBS is resource-intensive, as
it trains several models at the same time. Spink et al. (2022) compare
several types of UNCS and DBS strategies applied to IMU data, but
find that only DBS methods provide a (small) advantage over ran-
dom sampling in terms of accuracy, where the advantage is more
pronounced at low amounts of labels [27]. This study did not cover
other methods of active learning.

The main starting point of this research has been the disserta-
tion of JW. Kamminga: Hiding in the Deep: Online Animal Activity
Recognition using Motion Sensors and Machine Learning, in which
the authors contribute in several ways to the field of AAR [14]. One
such contribution is the comparison of several machine learning
algorithms, such as k-NN, Naive Bayes and Support Vector Ma-
chines (SVM). It identified that although the tested SVM algorithm
scored the highest on performance statistics, such as the F-score,
the Naive Bayes algorithm did not lag far behind, with 200 times
faster execution and significantly less memory usage. Some recent
algorithms were not tested, such as the Random Forest algorithm,
which consists of many different decision trees, and the LSTM al-
gorithm, which is a type of Recurrent Neural Network designed to
capture long-term trends in data. Huveneers (2021) recommended
an LSTM, along with a variant (MLSTM-FCN), to be used on AAR
IMU data, as they performed well on accuracy and Fy-score, where
the MLSTM-FCN was also much faster during training [11]. One
study booked particularly good results applying a Random Forest
model to sheep IMU data (accuracy > 98%), but did not compare this
performance to other algorithms [15].

Van Wynsberghe has contributed significantly to the field of Sus-
tainability and Al, separating the concerns of Al for Sustainability
and Sustainability of Al, in her 2021 opinion paper [28]. She calls
on Al developers and researchers to track environmental impact
and to minimize this impact. Sustainability is an important value,
and finding ways to cut on resource demands in machine learning
is one way to contribute to this.

Some investigation has been done on how to deal with imbal-
anced class distributions in data. For example, Buda et al. (2018)
use oversampling and undersampling, techniques that discard some
data in order to generate a dataset with a (more) balanced class
distribution [4]. The idea here is that a more balanced class distri-
bution in the training set would lead to a model that better predicts
classes in the tail of the class distribution. Kamminga et al. object
to this method in their future research section, as data would be
disregarded that is otherwise perfectly useful.

This research also taps into the topic of Open Set Recognition
(OSR) or Open World Recognition, areas of machine learning that
take into consideration the presence of unseen and unknown classes
in the data. These fields have been surveyed by Geng et al. (2020)
and Mahdavi et al. (2021) [8, 18]. Geng et al. identify active learn-
ing in combination with OSR as a future research option. Some
research in this area already exists, such as this study by Luo et
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al., where two active learning (UNCS) strategies are compared on
classification of plankton, in an OSR setting [17]. Similarly, Liu and
Huang propose a strategy making use of active learning to explore
an open set [16]. Both studies focus on performance statistics, and
no mention is made of the resulting balancing in the training set.
Also related to this research are the topics of Anomaly Detection
and Out-Of-Distribution (OOD) detection, as treated in Hogeweg et
al. (2024) [10]. These approached attempt to detect samples that are
not of known classes and classify them as such.

3 PROBLEM STATEMENT

Although active learning strategies have often been compared to the
traditional random sampling methods (for a performance compari-
son on similar data, see: Spink et al. (2022) [27]), such comparisons
have focused on performance metrics like the F;-score and accuracy,
rather than the resulting class distribution in the labeled data and
its balance. This gap in existing literature gives rise to the research
question below. To answer this research question, a base model is
needed that trains and inferences quickly, in order to test the active
learning strategies, which is what the first sub-question is for. The
second sub-question then returns to the main question and builds
upon the answers to the first sub-question.

3.1 Research question

How do human-in-the-loop learning methodologies affect the class
distributions of human-annotated IMU data with long-tailed source
data?

3.2 Sub-question 1

How do machine learning algorithms compare on speed and re-
source usage during training and inference, when applied to IMU
data?

3.3 Sub-question 2

How do strategies of active learning and auxiliary approaches affect
the class distribution of human-annotated IMU data in a long-tailed
dataset?

4 METHODOLOGY

The setup of both experiments will be detailed in this section. Some
theory behind the experiments will also be laid out. Experiment
1 attempts to answer research sub-question 1, and contributes to
some set-up decisions for Experiment 2, which attempts to answer
research sub-question 2.

4.1 Experiment 1

In order to field a fast and well-performing model for Experiment 2,
two algorithms have been compared by measuring execution times
and taking performance statistics. The Naive Bayes algorithm was
chosen as Kamminga et al. identified it as a very fast and reasonably
accurate algorithm [14]. Furthermore, a Random Forest algorithm
was tested as it was not accounted for in the comparison of Kam-
minga et al., while it was proven to be accurate in Kleantheous et
al. [14, 15].
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Maximum

75th percentile

Median

25th percentile

Minimum

Mean

Kurtosis

Skewness

Mean low pass filtered signal
Mean rectified high pass signal

Table 1. Extracted features

4.1.1 Data processing. The data used consists of about 2.5 hours of
recorded IMU data. This data was processed into frames of 2 seconds,
resulting in 5264 frames. These frames describe 7 different activi-
ties: walking, trotting, scratch-biting, head-shake, grazing, running,
standing. The activity class distribution is very much long-tailed;
scratch-biting occurs just on one frame, while the horse is walking
on 2142 frames. Features were extracted from the threedimensional
acceleration component (the length of the x, y and z acceleration
vectors combined) according to the statistical summary provided
by Kamminga et al. [14]. Some features have been removed, as they
would provide no information, such as the zero-crossing rate. (The
threedimensional acceleration component is always positive, so no
zero-crossings occur.) The features used are shown in Table 1. A
more detailed explanation is available in Kamminga et al.

1250 samples (25%) were used as validation data, while 3750 sam-
ples were used as training data [14]. Both algorithms that were tested
were taken from the Python library scikit-learn [21]. The Naive
Bayes algorithm was supplied by the naive_bayes.GaussianNB

module. The Random Forest algorithm was taken from the ensemble.

RandomForestClassifier module.

4.1.2  Measuring methods. Both the training time and the inference
time were measured. Since a fast model that predicts inaccurately is
useless, accuracy and F;-score were also measured on the 1250 test
samples. The Fi-score was taken 'weighted’, which indicates that
the F;-score was calculated for every label and then averaged with
more frequent labels being weighted proportionately higher. The
"micro’ F1-score would be the same as the accuracy in this context,
and ‘macro’ Fi-score would weigh the performance on rare classes
disproportionately [22].

Timing measurements were taken using the in-built Python func-
tion time.perf_counter_ns(), which uses a clock with the highest
resolution available for a short period of time. Previously used alter-
natives like Scalene and PyRAPL provide more information about
memory and CPU usage or energy usage, but are unable to capture
information in the tiny amounts of time the model takes to train or
inference, or work on Linux only [1, 3, 5, 6]. Still, timing measure-
ments are meaningful, as execution time generally correlates with
with resource and energy usage [19].
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Strategy Score

U(0.9999, 1)
1-P(y*|x)

1= P(y;lx) + P(y;|x)
- 2% P(xi) log P(x;)

% P(i) log 5

Random Sampling

Lowest Confidence Sampling (LCS)

Margin of Confidence Sampling (MCS)

Confidence Entropy Sampling (CES)

Maximum Disagreement Sampling (MDS)

Table 2. Active learning base strategies

4.2 Experiment 2

4.2.1 Active learning base strategies. In experiment 2, several strate-
gies of active learning are used to select samples for the model, and
are evaluated on their effectiveness in balancing the class distri-
bution. The model is trained with a base number of samples, after
which it predicts the rest of the sample set. This sample set is sim-
ilar to the sample set of experiment 1, but is taken from another
horse, is based on a window of 1 second (200 measurements), and
contains more rare classes, as seen in Figure 5. The sample(s) with
the highest score given to them by the active learning algorithm
is picked to be included in the training set for the model. After a
batch of samples is added to the training set, the model is trained
again with the training set. A small batch size is more expensive, as
the model will be trained more often for the same amount of total
samples added. It does mitigate some problems that arise with larger
batches, such as high overlap between the samples in a batch [23].
With the retrained model, the remaining samples are evaluated, and
the active learning strategy is again used to determine the most
interesting sample(s).

The base strategy is random sampling, in which the score is
just a random number between 0.9999 and 1. The next strategy is
Lowest Confidence Sampling (LCS), in which the score increases as
the probability of the most probable label decreases. The formula is
shown in Table 2. Here all formulae for the base strategies are shown.
P(y*|x) stands for the probability assigned to the most probable
label (y*). For Margin of Confidence Sampling, the score increases
as the probabilities of the two most probable labels are closer to
one another. Samples with the smallest margin are thus considered
the most interesting. In Confidence Entropy Sampling (CES), the
measure of entropy is used to determine whether a sample is of
interest to the model [25]. A uniform distribution over the labels
would be considered the most interesting, and would receive a score
of 1. In Maximum Disagreement Sampling, two or more models are
trained with the same training set. The relative entropy (or Kullback-
Leibler divergence) between their probability distributions is used
as score. In this experiment, a Random Forest model and a Naive
Bayes model are used.

4.2.2  Density weighting. Additionally, methods where a score mod-
ifier is applied to the base score (from the active learning strategy)
are tested. One such modifier is the density weighting score as pro-
posed in Settles and Craven [24]. The base score is multiplied with
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Require: sample_pool
training_samples « initial samples from sample_pool
fit model with training_samples
for i = 1 to iterations do
scores « predict scores for sample_pool
move samples from sample_pool to training_samples
based on scores
fit model with updated training_samples
end for

Fig. 2. Simplified Active Learning Loop

a density score as shown below:

U B
(% Z sim(x, xu))
u=1
A similarity score is given to all pairs of samples, and for every
sample the similarity scores of its pairs is averaged. (In the formula,
these pair scores are sim(x, x, ), and U is the number of all samples
except x.) The similarity score that was used in this experiment (as
Settles and Craven advise [24]) is the cosine similarity, defined as:
Simgos (x, Xy) = * -
R E P AT
Here the dot product of the samples’ feature vectors is divided by
the product of their magnitudes. This resulting density score (to
a factor f) is then multiplied with the existing score. This density
weighting approach was intended to find samples that were in dense
contested area of the feature space, so it is expected to select more
of the common classes. This is why negative -values will also be
tested. This score will be referred to as DW” in the rest of the paper,
with the f-value specified in the superscript.

4.2.3 Pragmatic balancing. Lastly, a pragmatic approach will be
tested, where the base score determined by the active learning
strategy is multiplied with a factor that depends on the existing
distribution of classes in the training set. This score is formulated

as follows:
Csamplelabel

(1- )’
n
Here, c is the number of occurrences of the sample’s label in the
training set. The label of the sample is assumed to be the label that
the model predicts, as the actual label is not known in an active
learning scenario. n stands for the total number of samples in that
set. A power y is applied to tune the influence of this Pragmatic
Balance score. This score will be referred to as PBY in the rest of
this paper, with the y-factor specified in the superscript.

4.2.4  Evaluation scoring. To evaluate the experiment, the relative
frequencies of the classes will be measured, and to get a sense of the
performance of the trained model, it is tested with the remaining
data. The class distribution balance can be represented in a single
number using the normalized Shannon-Wiener index [14, 26]. This
measure calculates the Shannon entropy as in CES for the relative
frequencies, and balances it by dividing it by the logarithm of the
number of classes. The resulting metric thus ranges between 0 (one
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class takes all) and 1 (uniformly balanced). The elaborate formula is
stated below:

H _ -3 (Flog F)
logk logk
Here k is the number of classes, and c; the amount of samples for
the class, and n the total amount of samples. To get a grasp of
the performance of the model, the model will be tested with the

unseen samples, from which (as described in Experiment 1 (4.1.2))
the accuracy and (weighted) Fy-score.

Hporm =

5 EXPERIMENTS

In this section the execution and results of the experiments will be
detailed, followed by a brief discussion. Both experiments were per-
formed on the author’s laptop (HP Victus 15-falxxx, Intel i7-13700H,
integrated Iris Xe Graphics (other GPU was not used, Windows 11
(64 bit)) with the charger plugged in.

5.1 Experiment 1

During Experiment 1, a Naive Bayes model and a Random Forest
model were compared on the inference and training speed. The
Random Forest model first proved to be way slower, so it was re-
duced to just 5 decision trees, instead of the initial 100. This made
it significantly faster, at the loss of little accuracy. The experiment
was performed 500 times, to prevent fluke results and since the
experiment was cheap to run. The mean and median accuracy for
the Random Forest algorithm was 0.982. The mean and median F;-
score was also 0.982. The Naive Bayes model was correct less often,
with a mean and median accuracy of 0.963, and a mean and median
Fi-score of 0.962. The spread of these results is displayed in Figure 3.
This improved performance of the Random Forest model comes at
the cost of some training time, as is visible in Figure 4. (The middle
line is the median, while the whiskers are placed at the 25y, and
754 percentiles.) The Random Forest model takes longer to train,
at around 0.05 seconds on average, while the Naive Bayes model
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takes under 10 milliseconds. The inference times are very similar
however with medians of 1.426 ms (Random Forest) and 1.681 ms
(Naive Bayes).

5.1.1 Discussion. This experiment was deemed of lesser impor-
tance, so the comparison is not very thorough and can be expanded
upon in many different ways. The data was taken from only one
subject. Kamminga et al. highlights that this way of taking samples
makes the model look better than it would perform in a realistic
scenario. Using data from multiple subjects would make the model
more able to classify samples from previously unseen subjects. It
also unlocks a larger dataset. Using more efficient implementations
(outside Python) of the models and tuning these to make optimal use
of the system (the GPU and many CPU cores were not used during
the experiment) to increase performance or decrease resource usage
may be possible. During the experiment it was also found that many
resource usage measurement libraries were limited or unavailable
outside of Linux systems. Thus, a test on a Linux system could pro-
vide more insight into energy usage and the like. Moreover, Scalene
was unable to measure the execution times in the experiment, as
the functions were run too quickly. If the program could be slowed
down (less powerful system, larger dataset, more features), this tool
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could be used to assess memory and processor usage. Using more
and different datasets could also help with generalizing the conclu-
sions. An LSTM was also not tested, so this forms a possibility to
extend the experiment.

5.2 Experiment 2

For every strategy, the experiment was run 10 times, as it was not
too costly in terms of time, while averaging multiple results prevents
outliers from misrepresenting the usual performance. The batch
size for the active learning strategy was 1, so the entire dataset
was reconsidered after every sample. The active learning loop was
stopped after the training set contained 1000 samples. The model
that was trained on these 1000 samples was evaluated on the remain-
ing samples The resulting average class distributions are displayed
in Figures 5 and 6. Multiplying the values by 1000 returns the av-
erage absolute frequencies, as there are 1000 samples in the total
training set each time.

Random sampling functions as a reference, as it preserves the
relative distribution found in the dataset. It scores an Hyorm of 0.586.
The accuracy of 0.935 and the F;-score of 0.931 are also used as
reference. These values can be read from Table 3. MDS and MCS
seem to provide no better distribution, and perform worse on the
remaining samples. LCS and CES (Figure 5 however do affect the
distribution significantly. On average, out of the 1000 samples se-
lected, around 160 samples of the head class (Walking) are selected
less. Moreover, these strategies manage to find more samples in the
middle and tail classes. Very noticeable are the plusses in Running
(£50-60%), Scratch-biting (+500%) and Head-shake (+£900-1000%).
This is particularly impressive given that the full dataset of 13838
samples contains 96 instances of Scratch-biting (+44% found) and
just 49 of Head-shake (+77% found). The two algorithms also man-
age to find more samples of most rarest classes, such as Fighting,
Rolling and Shaking. Their balance scores are 0.704 (CES) and 0.716
(LCS). This is accompanied by a higher accuracy and F;-score to
boot.

The regular density weighted (DW) approach looks to be of little
use without the use of another strategy. The relative frequency
in the head class (average frequency/1000) exceeds the bar plot’s
vertical limits at 0.9917. This approach It is not unexpected that the
samples in the head class, being the most common, also resemble
the collective of all samples more than other classes. The inverse
density weighted approach (DW~1) is more balanced however, and
manages to very effectively avoid picking Walking samples, at just
under 10%. It does have a tendency to gravitate towards the Grazing
class, even more than CES and LCS did. Combining LCS with DW™!
was therefore a logical avenue to achieve an even more balanced
class distribution. After trying out different § parameters, LCS DW™
was found to create the most balanced class distribution, with an
Hporm of 0.764.

The head classes are still not very balanced however, so PB may
be able to help here. On its own, it does balance the common classes
very well, but it is of little use finding tail class samples, as seen in
Figure 6. LCS DW > combined with PB?° proves an improvement
over LCS DW™>. It even finds all 49 samples of Head-shake at some
tests. It is probable that this class has a distinctive signature. The
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Hnorm sits at 0.778, nearly 0.2 points above random sampling. The PB
method has also been run with knowledge of the actual labels, which
results in finding all samples from the rare classes and increasing
the Hporm to 0.839. This is the highest possible balance score with
this dataset, as there are not enough samples for the rarer classes in
the total sample set to create a uniformly balanced training set. This
strategy is not realistic, but it is interesting that this 'balance’ (high
Hporm) does not contribute to a high performance, with accuracy
and F;-score below that of random sampling.

Out of curiosity, the effect of choosing the Naive Bayes model
instead of the Random Forest model has also been briefly examined
and the result is quite surprising; LCS with a Naive Bayes model

does worse than random sampling (see Figure 5 and Table 3), on the
balance score and on accuracy and F;-score.

5.2.1 Discussion. The final result discussed calls for further investi-
gation, but given the time constraints, the effect of using the Naive
Bayes model with other strategies has not been tested. The best
approach (LCS DW > PB%) also could be tuned more finely, as only
some integer values have been tested manually to find the optimal
P and y coefficients.

The correlation between performance and balance is not very
clear in the results. The high balance of LCS and its variants cor-
responds with increased accuracy and Fi-score, but the extreme
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Strategy Hunorm Accuracy remaining samples | Fi-score remaining samples | Strategy
Absolute | Relative | Absolute Relative Absolute Relative
Random 0.586 0 0.935 0 0.931 0 Random
MDS 0.575 -0.011 0.909 -0.026 0914 -0.017 MDS
MCS 0.589 +0.003 0.933 -0.002 0.928 -0.003 MCS
CES 0.704 +0.118 0.953 +0.018 0.949 +0.018 CES
LCS 0.716 +0.130 0.963 +0.028 0.960 +0.029 LCS
LCS (NB) | 0.554 -0.032 0.800 ~0.135 0.753 -0.178 LCS (NB)
DW 0.023 -0.563 0.450 -0.485 0.318 -0.613 DW
DW-T[ 0638 +0.052 0.880 -0.055 0.880 -0.051 DWI
LCSDW™3 0.764 +0.178 0.957 +0.022 0.953 +0.022 LCSDW™3
PB 0.763 +0.177 0.944 +0.009 0.941 +0.010 PB
LCSDW ™ PBX® | 0.779 +0.193 0.960 +0.025 0.957 +0.026 LCS DW > PBX
PB (actual labels) 0.839 +0.253 0.894 -0.041 0.919 -0.012 PB (actual labels)

Table 3. Balance and performance scores

balance of PB with the actual labels decreases performance. It is
likely that this is caused by the fact that performance is checked
on the remaining data, which in that case consists of the 5 most
common classes, while the model was trained on 11 classes. Given
a more representative test set, which would strengthen any conclu-
sions regarding performance, the performance may be different.

It can be questioned whether the uniform balance is best for
model performance, as with LCS and CES (particularly LCS DW™>
PB?°), Head-shake samples are found often, while Scratch-biting and
Fighting samples are not found as much, absolutely and relatively.
It is therefore conceivable that more samples of the latter classes
are needed for the model to recognize these classes reliably, while
less are needed of the former.

A more rigorous statistical analysis would also be welcome, as
some strategies deviate more in their resulting distributions than
others. Some simplifications have also been made in this simulation.
The oracle in this experiment is always correct for example. In
reality, this is not always the case. [7] The oracle is also able to
classify any 1 second sample in basically no time. To make the best
use of a real oracle, it would not be ideal to have them label clips of 1
second at a time, because the time to switch between clips and other
overhead would be too high. The results presented are also hard
to compare to other studies, as most studies focus on performance
statistics, which were not the primary objective in this research,
and carry with them some methodological problems in this study,
as discussed previously.

6 CONCLUSIONS

In this research, it has been demonstrated that a Random Forest
model outperforms a Naive Bayes model in performance, while re-
taining similar inference times. Also shown is that active learning
techniques Confidence Entropy Sampling and Lowest Confidence
Sampling provide a more balanced class distribution while training
a machine learning model. This is shown to result in an improve-
ment in performance. Even more pronounced is their effect on the
frequency of less common and rare classes in the training set, whose
presence is increased greatly. The Inverse Density Weighted (DW ™,

4.2.2) approach and the newly proposed Pragmatic Balance approach
(4.2.3), which have also proven to be a fitting complement to these
base active learning strategies, with the inverse Density Weighted
score boosting the frequency of rare classes and the Pragmatic Bal-
ance score balancing head and less common classes. A combination
of these complements and the LCS base strategy (LCS DW > PB2?)
improves balance by 0.193, accuracy by 0.025 (2.5%.) and F;-score
by 0.026 (2.6%.). The class Rolling, which is important as a symptom
of colics, was found over 4 times as often as with random sampling.

6.1 Research directions

After all has been said and done, some directions for future research
can be identified, and will be briefly expounded below.

6.1.1 More extensive performance review. Experiment 1 was very
brief. As mentioned, an LSTM was also planned to be tested, but due
to to time constraints, this was abandoned. Comparing more models,
perhaps with diverse datasets and on more resource-constrained
(embedded) devices, would be interesting. It should then also be
considered how models make use of memory and CPU/GPU.

6.1.2  Model versus active learning algorithms. The final result dis-
cussed in Experiment 2 opens a new rabbit hole. How do different
active learning strategies combine with different model algorithms?
It would be very lucky if the combination of Random Forest and
Lowest Confidence Sampling is the best combination. Apart from al-
gorithm choice, other dimensions can be considered, such as choice
of model parameters (e.g. the amount of trees in Random Forest,
amount of neurons in Neural Networks) and choice of batch size or
number of active learning loop iterations.

6.1.3 Tuning of approaches. As mentioned in the discussion of
Experiment 2, the chosen parameters for the additional factors (DW,
4.2.2 and PB, 4.2.3) have not been decided through a rigorous process.
One could investigate more thoroughly the optimal parameters, and
assess the construction and combination of these factors, as there
may be a more mathematically sound or more effective way to
devise these.
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6.1.4 More data. As Kamminga et al. highlighted, using data of mul-
tiple subjects and perhaps even multiple species allows the model to
be used more generally [14]. The presence of more data also makes
some choices in this experiment infeasible, such as re-calibrating the
score after every sample. Successfully using these approaches with
a larger dataset and solving these scaling problems would therefore
go a long way towards a real serious implementation.
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The source code for both experiments has been made available and

can be checked at this link:
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