
Understanding the application of Multi-Objective Evolutionary
Algorithms to the Inference of Fault Tree Models
BOGDAN COLT, A, University of Twente, The Netherlands
LISANDRO A. JIMENEZ-ROA, Formal Methods and Tools, University of Twente, The Netherlands
MARIËLLE STOELINGA, Formal Methods and Tools, University of Twente, The Netherlands

ABSTRACT
Fault Tree Analysis (FTA) is a recognized method in reliability engi-
neering and risk assessment that manages systems by providing a
structured depiction of how failures propagate and offering quanti-
tative and qualitative metrics. Several challenges associated with
FTA relate to model construction, which can be time-consuming
and error-prone. Several algorithms have been proposed to address
this for the automatic inference of Fault Trees.

Within the state-of-the-art algorithms is FT-MOEA, which utilizes
multi-objective evolutionary algorithms to construct compact and
efficient Fault Tree structures from failure datasets. However, a
significant challenge FT-MOEA faces relates to scalability. The goal
of this research is to further focus on investigating the influence of
genetic operators on the convergence of the algorithm.

The paper proposes an extension to the algorithm’s implementa-
tion that analyzes each step of the evolution process by collecting
the metrics of each FT obtained and the genetic operators applied.
Moreover, the paper suggests some analysis metrics that describe
the performance and efficiency of genetic operators.

1 INTRODUCTION
Fault tree analysis (FTA) represents a systematic method in reli-
ability engineering and risk analysis used to model an overview
of a system and how it behaves in the event of failure. The main
advantage of FTA is that it enables modeling complex systems by
encoding and displaying logical relationships in a more intuitive
visualization and also calculating the system and subsystem failure
probabilities [1].

However, a major disadvantage of FTs is related to their construc-
tion, which domain experts generally conduct in amanual procedure,
which can result in a costly and time-consuming task. Moreover,
the presence of manual execution can manifest human bias, which
might result in the presence of inconsistencies and incompleteness
[2].
As this challenge has become the subject of ample research, it

has been referred to in literature in different ways. In this paper,
we refer to this as the automatic inference of Fault Tree models [6],
which means the process of automatically creating an FT model
from knowledge or data about a system.

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

This research focuses on a data-driven model, analyzing each
decision made inside an already established algorithm that uses
a failure data set to infer a Fault Tree that correctly encodes the
boolean logic that describes failure propagation through the system.

Approach. The research approach is collecting data about the in-
put and output of each generation of a multi-objective evolutionary
algorithm so that it can be presented systematically and analyzed.
This is done by storing all the information in a graph structure,
where each node contains information about a specific FT. Such a
data structure allows an easy way to trace back each step of the
evolution that a specific FT has passed through. Once the graph
structure is completed, the stored data can be converted to a table
structure and presented in a human-readable and systematic way.
Further, this data is analyzed using statistics to determine the impact
of each genetic operator.

Contributions. The primary contributions of the paper are as
follows:

(1) Designing and implementing an algorithm that uses a graph
structure and employs a Breadth-Search First traversal algo-
rithm to store and describe the evolution of the FTs.

(2) An extension to the FT-MOEA-CM’s implementation that
stores information about each generation of the evolution
and presents it systematically for further analysis.

(3) An analysis of the impact of each genetic operator on the
evolutionary process using proposed analysis metrics.

Paper outline. In Section 2, technical concepts required to under-
stand the paper are explained. Afterward, in Section 3, the research
questions are presented, followed by a methodology section (Sec-
tion 4) that shows the methods used during the research. Moreover,
Section 5 presents and interprets the findings, followed by Section
6, where methods to analyze the collected data in the future are
presented. In the end, Section 7 wraps up the paper.

Related Work. The literature discusses three main FT model infer-
ence approaches: data-driven, model-based, and knowledge-based
[3]. Data-driven approaches use failure datasets to infer FTs. Model-
basedmethods consist of converting already existingmodels, such as
UML activity diagrams [4], into FTs. Knowledge-based methods are
based on information provided by domain experts on components
and their relationships.
Evolutionary algorithms have shown promise in improving the

efficiency of automatic FT inference. Linard et al. [5] made the first
attempt in this direction. The paper introduces a Genetic Algorithm
for inferring FTs from failure data sets, using accuracy as its only
objective. However, since size and othermetrics were not considered,
the convergence was slow and the resulting FT could be too large.

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Bogdan Colt,a

To tackle this problem, the paper by Jimenez-Roa [6] proposes us-
ing an MOEA to infer FTs from failure data sets. The algorithm uses
multiple objectives simultaneously: MCS, accuracy, and size. The
NSGA-II sorting algorithm [7] and the Crowding-Distance [8] are
employed to determine the Pareto Front for additional metrics. As a
result, the algorithm leads to smaller FTs and faster convergence.
As already mentioned, this research focuses on data-driven FT

inference. In particular, we explore ways of improving the efficiency
of FT-MOEA [6], which employs multi-objective evolutionary algo-
rithms.
Despite the extensions on FT-MOEA and other automated FT

inference methods, scalability has remained a significant issue for
the algorithm’s performance. With the increased development of
modern systems, the continuously growing volumes of failure data
sets will continue to become a more significant issue for the current
algorithm over time.
Progress in this direction has been made through FT-MOEA-

CM [11], and SymLearn [12]. For FT-MOEA-CM, the authors have
worked on lowering the number of generations and the time the
algorithm takes to converge. The results have shown that by re-
placing a Minimal Cut Sets metric with a Confusion Matrix metric,
significant improvements in converging to the global optima can be
achieved more consistently.

2 BACKGROUND

2.1 Fault Tree Analysis
Fault Tree Analysis (FTA) is a popular method in reliability engi-
neering, which provides a representation of the decisions made in
a system and how failure propagates through it. A Fault Tree (FT),
Fig. 1, is formally defined as a 5-tuple of building blocks, which are
the following:

(1) Basic Events (BE). These events have a probability of happen-
ing and are the leaves of the FT.

(2) Gates. These represent the logical operations that are applied
to the BEs. For the scope of this research, only Or and And
gates are considered.

(3) Intermediate events (IE). These are the output of the Gates.
(4) Top event (TE). It is the event to which all the BEs lead, and

it is represented as the root of the FT.
(5) (FT) Element. It refers to a BE or a Gate.

Fig. 1. Inferred FT from Table 1 dataset

2.2 Multi-Objective Evolutionary Algorithms
Multi-Objective Evolutionary Algorithms (MOEAs) are evolutionary
algorithms that are based on the same idea of biological evolution
[13]. This means they start with a population that is continuously
subject to mutation operations, selection procedures, and fitness
functions. Fig. 2 depicts an example of an evolutionary algorithm,
FT-MOEA.

2.3 Failure Data Set
The failure data sets used as input for the MOEA consist of possible
combinations of values for each BE and the resulting Top Event.
Table 1 presents an example of a failure data set.

Table 1. Toy Input Failure Data Set

BE1 BE2 BE3 Top
1 1 1 1
1 0 1 1
0 1 1 1
1 1 0 1
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0

2.4 Mann-Whitney U Test
The Mann-Whitney U Test is a non-parametric test of the Null
Hypothesis. It is generally used to determine whether there is a
significant difference between the values of two sets. In the scope
of this research, this test is used to determine whether there is
a significant difference in the number of FTs passed to the next
generation for each genetic operator.

2.5 Pearson Correlation Coefficient
Pearson correlation coefficient calculates the linear correlation be-
tween two data sets. In the scope of this research, this coefficient
is used to measure the correlation between the number of genetic
operators applied along each generation and the metrics obtained
for each FT in the final generation.

2.6 Breadth-First Search Traversal Algorithm
Breadth-First Search (BFS) is an algorithm for searching a graph data
structure. It starts with the graph’s root and goes to all the nodes at
the current level before moving on to the next level. This algorithm
is used to traverse the data structure containing information about
each FT, as each generation will represent a level inside the graph.
The implementation will use this algorithm to generate all the data
sets about the overall evolutionary process.
The graph data structure is only used in the implementation to

reduce the program’s complexity. Modifying the data sets during
the run of FT-MOEA would become computationally expensive, as
a look-up algorithm would be needed for this. Also, the data stored
in the graph cannot be used directly for statistics computation, as it
needs to be aggregated from different graph nodes.

2



Understanding the application of Multi-Objective Evolutionary Algorithms to the Inference of Fault Tree Models TScIT 41, July 5, 2024, Enschede, The Netherlands

The advantage of such an approach is that it allows us to trace
back all the parents of an FT and the genetic operators applied to
see how an FT evolved over the generations. Another advantage of
using this algorithm is that it is possible to check the path from a
source node to a destination node. This means that the steps of how
one FT became another FT can be seen through the evolutionary
process.

3 PROBLEM STATEMENT
The convergence time of the current implementation of FT-MOEA
can increase fast, and scalability will become an issue when adding
new basic events to the failure data sets [6]. Accordingly, there is a
need for further research to address these issues.

An approach with the potential to aid scalability involves a thor-
ough analysis of the behavior of multi-objective evolutionary algo-
rithms (MOEAs). In the current implementation, genetic operators
are applied randomly, leaving it unclear whether applying them
differently increases the chance of finding the global optimum and
reaching convergence faster.
A detailed analysis of FT-MOEA-CM’s behavior can provide in-

sights into the difference in the efficiency of the genetic operators.
These insights could be applied in future research to enhance the
algorithm’s performance by guiding the application of genetic oper-
ators.

3.1 ResearchQuestions
The research questions of this study are:
RQ1. To what extent do the genetic operators impact the conver-

gence and the number of generations in multi-objective evo-
lutionary algorithms to infer Fault Tree models from failure
datasets?

RQ2. Considering there exists a pattern between genetic operators
and convergence of the multi-objective evolutionary algo-
rithms, which specific operators have the most impact and
which have the least?

4 METHODOLOGY

4.1 Inferring Fault Tree models via Multi-Objective
Evolutionary Algorithms

This section will describe the depicted steps in Fig. 2 that the FT-
MOEA follows to infer FT models.
Step 1. The initial population is used as the first generation by the

algorithm. The FT-MOEA is initialized with the two parent
fault FTs created from the failure data sets, wherein all the
events are connected to a single OR gate and another to an
AND gate.

Step 2. The mutation operations are used on the current generation
to create a new generation, which might have better or
worse characteristics. In FT-MOEA, the genetic operators
are applied randomly to the structure of the FTs.

Step 3. To decide whether the next generation exhibits better quali-
ties, a fitness function is used to assess the characteristics of
the individuals. A sorting algorithm is applied to FT-MOEA.

Step 4. The selection procedure represents a method to select which
members of the current generation will move on to the next
one by selecting the non-dominated individuals.

Step 5. This process will occur multiple times until the convergence
criteria are met, and the last generation will contain the
inferred FT.

The genetic operators used by the algorithm are the following:
• Disconnect BE. A basic event is disconnected from the tree.
• Connect BE. Connect to a gate a disconnected basic event.
• Change Gate Type. Take a random gate and change it to the
other type.

• Create BE. Randomly creates a basic event under an existing
gate.

• Create Gate. Randomly creates an And or Or gate under an
existing gate.

• Delete BE. Randomly deletes a basic event.
• Delete Gate. Deletes a gate and its children from the tree.
• Move BE. Randomly takes one basic event and moves it under
a different gate.

• Cross-over. Randomly choose two FTs in the offspring gener-
ation and exchange an element between them.

• Change gate. Randomly select a gate and change it to its
opposite type.

Initialize FT-MOEA Create parent FTs

Apply genetic operatorsCompute metrics

Sort individuals Convergence met?

Inferred Fault Tree

no

yes

Fig. 2. Flow diagram describing the FT-MOEA process to infer FTs from a
failure data set.

4.2 Experiment setup
The current implementation of FT-MOEA-CM will be used as the
basis for the experiments to determine the performance and impact
of genetic operators. The algorithm is configured to use the follow-
ing performance metrics: Matthews correlation coef., Specificity,
Negative predictive value, Precision, Diagnostic odds ratio, FT Size,
Accuracy. The enumerated metrics are used since they are the most
informative [11].

Case Studies. The algorithm is evaluated on 3 FTs stemming from
various application areas. The CSD [14] dataset was obtained from
a Container Seal Design. The Data-driven Fault Tree (DDFT) [15]

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Bogdan Colt,a

was obtained from time series data. The COVID-19 FT [16] is used
in infection risk management. Table 2 outlines for each case study
the number of unique Basic Events (w), the number of total Basic
Events (W), the number of Or gates (#Or), the number of And gates
(#And) and the number of rows in the dataset (2𝑤 ).

Table 2. The data sets used during testing and their associated relevant
information

Case Study w W #Or #And O(2𝑤 )
CSD [14] 6 6 2 2 64
DDFT [15] 8 8 1 3 256

COVID-19 [16] 9 21 3 9 512
The number of: unique BEs(w), total BEs(W), And gates(#And), Or gates(#Or)
and complexity(O(2𝑤 ))

Implementation. An extension of the FT-MOEA-CM’s implemen-
tation was designed to register every FT created in each generation,
its metrics, and the operators applied. The implementation is avail-
able online 1 and complemented by some Jupyter Notebooks. These
notebooks are used to create the plots from the Data Frames ob-
tained after running the algorithm. Also, inside the repository, the
data sets generated five times for each case study can be found.

Generation of Failure Data Set. Since access to real-life failure
data is typically very limited, we evaluate each algorithm step on
synthetic failure data sets generated from realistic reliability models,
see Table 2. The already generated failure data sets from the FT-
MOEA-CM repository were used for this. In the original research,
these data sets were generated using the Monte Carlo method by
evaluating all the unique combinations of BEs. This ensures the
completeness of the failure data set [11].

The experiment will commence by testing the algorithm by run-
ning it with different operators each time and then comparing the
input and output for each generation of the FT-MOEA. Table 3 de-
picts how the data collected from each generation will be stored
and presented systematically.
In the implementation of the algorithm, the data will be stored

in the form of a directed graph. Fig. 3 presents an example of how
the data about each generation will be modeled as a data structure,
where the node stores the FT, its metrics, and the operators used to
obtain the FT as attributes.

4.3 Genetic operators Evaluation Metrics
Four metrics are proposed to test the effectiveness of the genetic
operators and compare them with each other:

• The number of successful FTs obtained each generation after
applying a genetic operator

• The mean improvement of metrics for successful FTs after
applying a genetic operator

• Mann-Whitney U Test
• Pearson Correlation Coefficient

1https://github.com/bogdanColta/ft_moea_cm_analysis

Fig. 3. Directed graph that stores the information about each FT of every
generation

A successful FT means an FT that has passed to the next gener-
ation. Also, the improvement of metrics refers to the difference in
metrics between the parent FT and the child FT.

Normalization of Successful FTs and Definition Adjustments. The
number of successful FTs will be normalized based on the size of
the population. This is done since two genetic operators can result
in the same FT, and in the context of the experiment, these two
FTs are treated as two different entities. To avoid having different
population sizes between generations when comparing the genetic
operators, the ratio will be calculated using the population size of
the algorithm. Also, an FT that is the same as the parent FT after
applying a genetic operator and passes to the next generation is not
considered a successful FT.

Fig. 4 depicts this research’s methodology.

5 RESULTS
During the experiment, the data about the case studies mentioned
in Table 2 has been collected five times per case study since the
algorithm applies genetic operators in a stochastic way.

The implemented extension of FT-MOEA-CM collects data about
each algorithm step by storing it inside a graph structure. This is
done whenever a new FT is generated using a genetic operator. A
new node containing the FT is added to the graph structure in that
situation. The metrics and operators used to obtain the FT are added
attributes of the respective node.
Also, when a node is added, an edge is drawn from the node

representing the parent FT to the newly created node with the
child FT. Applying this structure to the graph makes it possible to
register all the evolutionary steps that every FT has followed until
the algorithm has reached convergence.
When the algorithm converges, the extension generates data

sets that describe the evolutionary steps and metrics of all the FTs.
The data sets are created to provide a more human-readable and
systematic way to present the data that is stored in the graph data
structure. By creating these data sets, the data can be further used
to statistically analyze the relationship between the application of
genetic operators and the algorithm’s convergence.

4

https://github.com/bogdanColta/ft_moea_cm_analysis


Understanding the application of Multi-Objective Evolutionary Algorithms to the Inference of Fault Tree Models TScIT 41, July 5, 2024, Enschede, The Netherlands

Gen Tree Parent Tree Metrics Parent Metrics Operators Pass
0 2 0 [0.8958841587409293, 0.216796875, ...] [0.6355945555932525, 0.18359375, ...] Delete BE 1
0 3 0 [0.8958841587409293, 0.185546875, ...] [0.7966048033906593, 0.185546875, ...] Change Gate 0
0 4 0 [0.9062957428668363, 0.169921875, ...] [0.6355945555932525, 0.169921875, ...] Cross Over 1

Table 3. Example table of how the data about generations will be collected

Case Study Analysis data to collect The Monte Carlo Method The failure data set FT-MOEA

Collect operator dataInferred TreeAggregation of operator dataAnalysis of operator data

Fig. 4. General Methodology

5.1 P-dataset
Description. To store the metrics of the FTs that are part of the

final generation, the extension of the algorithm will generate a
performance dataset (P-dataset). This dataset contains two columns:
the structure of the FT and a list containing the seven metrics. The
number of rows in the data set is the same as the population size, and
the FTs are ordered according to the Pareto sorting. Table 4 shows
an example of 3 rows from the dataset. The generated datasets can
be accessed online.

Implementation and algorithm. This dataset is created by going
through the graph and reading the data stored on the last level,
representing the last generation. The function’s implementation
uses a Breadth-First search algorithm that visits every node on a
level-by-level basis.

Complexity. The time and space complexity of the algorithm is:
𝑂 (𝑔 ∗ 𝑠) and 𝑂 (𝑠) where g is the number of generations, and s is the
population size.

5.2 D-dataset
Description. The decision dataset (D-dataset) is a generated dataset

that stores all the evolutionary steps that an FT went through at
each generation. This dataset contains two columns: the structure
of the FT and a list that contains multiple lists for each generation.
The list that describes the FT in that generation comprises three
elements: the structure of the FT in that generation, the index of
the generation, and a list of genetic operators that resulted in the
creation of the FT. The list of genetic operators can also contain a
descriptor that tells that the FT passed from the previous generation
without being mutated after the Pareto sorting. The number of rows
in the dataset is the same as the population size, and the FTs are
ordered according to Pareto sorting. Table 5 shows an example of
3 rows from the dataset. The generated datasets can be accessed
online.

Implementation and Algorithm. The dataset is created by going
through the graph starting from the last level or generation. The
implementation of the function employs a Bottom-Up Breadth-First
Search algorithm. Such an approach is used since the graph already
has a structure similar to a Tree. Besides this, since a node’s children
are all on the same level in our structure, and each node also stores
its parent, a Bottom-Up approach is suitable for this case. The imple-
mentation works by starting with one node from the last generation
and then visiting the current node’s parent until the graph’s root is
reached. This is done for every node representing an FT from the
last generation.

Complexity. The time and space complexity of the algorithm is
𝑂 (𝑔 ∗ 𝑠) and 𝑂 (𝑠), where g is the number of generations and s is the
population size.

5.3 Tensor
Description. The extension of the algorithm also generates a ten-

sor to represent the complex data structures derived from the graph
analysis. The tensor used in this research is a multi-dimensional
array designed to store the metrics of the FTs across different gen-
erations. More specifically, it captures the following dimensions:

• Position within generation: This dimension captures the po-
sition or index of a particular FT within a given generation.
It ranges from 1 to the population size.

• Metrics: This dimension encompasses the various perfor-
mance metrics associated with each FT. Each metric provides
a different aspect of the FT’s performance.

• Generation: This dimension represents the sequential gener-
ations in the evolutionary process. It ranges from the initial
to the final generation, where convergence occurs.

Mathematically, the tensor can be represented as:

𝑇 [𝑃] [𝑀] [𝐺]

where:

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Bogdan Colt,a

Table 4. Example of the data stored in the P-dataset

FT Metrics: spec npv prec mcc acc s dor
AND(OR(BE6, BE5), OR(BE2, BE3, BE4)) [0.0, 0.0, 0.0, 0.0, 0.0, 8, 1.0]

AND(OR(BE6, BE5), OR(BE4, AND(BE5, BE6, BE1), BE2, BE3)) [0.0, 0.0, 0.0, 0.0, 0.0, 12, 1.0]
OR(AND(BE6, AND(BE5)), BE3) [0.0, 0.4, 0.0, 0.4522774424948339, 0.2857142857142857, 6, 0.0]

Table 5. Example of the data stored in the D-dataset

FT Evolution

AND(OR(BE3, BE4), BE5, BE6) [[AND(OR(BE3, BE4), BE5, BE6), 30, [previous_generation,
delete_gate]], ..., [AND(BE6, OR(BE5, BE1, BE3)), 0,
[change_gate_type]]]

AND(OR(BE1, BE2, BE3, AND(BE5, BE6, BE4)), OR(BE5, BE6, BE3)) [[AND(OR(BE1, BE2, BE3, AND(BE5, BE6, BE4)), OR(BE5, BE6,
BE3)), 30, [previous_generation, create_be, move_be, connect_be],
..., [OR(BE2, AND(BE5, BE1, BE6)), 0, [move_be]]]]

OR(AND(OR(BE4, BE6), BE5), BE3) [[OR(AND(OR(BE4, BE6), BE5), BE3), 30, [previous_generation]], ...,
[OR(BE3, AND(BE5, AND(BE2, BE4, BE6))), 0, [create_gate]]]

• P is the index of the FT within the generation.
• M is the name of the metric
• G is the index of the generation

Table 6 presents an example of some of the FTs in the tensor’s
space.

Implementation and algorithm. The tensor is created by going
through the graph, starting with the first two nodes representing
the initial population of two FTs. The function’s implementation
also uses the Breadth-First Search algorithm by visiting all the nodes
in the same generation level-by-level. For each metric stored in a
node, a new entry is created for the tensor along with the value of
that specific metric.

Complexity. The algorithm’s space and time complexity of gener-
ating the tensor is𝑂 (𝑔 ∗𝑚 ∗𝑠) where g is the number of generations,
m is the number of metrics used, and s is the population size.

Usage. The tensor allows for various analyses. Examining how
specific metrics evolve across generations can provide insights into
the algorithm’s convergence behavior. Moreover, individual FTs’
performance can be tracked across different generations. By corre-
lating metric changes with the results from the P- and D-datasets,
the effectiveness of different genetic operators can be assessed.

5.4 Number of successful FTs per genetic operator
This metric has been calculated to see the difference between the
genetic operators regarding howmany FTs they created have passed
to the next generation. Fig. 5 represents the plots for the mean,
median, and 95% uncertainty bounds of the data collected across
the five times run of the algorithm for the COVID-19 case study.

Conclusion. As can be seen from the plot, there are differences
between the genetic operators. Still, it does not provide enough
evidence to conclude which operators are more useful and which

Fig. 5. Number of successful FTs per operator for the COVID-19 case study

are less. Despite this, this metric still offers some valuable insights.
From the plots, it is revealed the following phenomena:

• From the 10 and onward generation, the Change Gate Type
operator becomes less useful than in the first generations.

• From the 20 and onward generation, the Create Gate operator
produces noticeably less successful FTs.

• From the 30 and onward generation, the Connect BE operator
also produces less successful FTs.

• The Disconnect BE and Delete BE produce more successful
FTs than the other operators, but not by a lot. Also, both

6



Understanding the application of Multi-Objective Evolutionary Algorithms to the Inference of Fault Tree Models TScIT 41, July 5, 2024, Enschede, The Netherlands

Table 6. Example of the tensor data

FT Position in the generation Metric Name Generation Value
OR(BE5, BE1, AND(BE3, BE2)) 0 npv 0 0.400000
OR(BE6, BE5, BE2, AND(BE3)) 3 mcc 0 0.741801
AND(BE4, BE1, BE3) 4 acc 1 0.285714
OR(BE6, BE5, BE4, BE2, BE1) 7 prec 1 0.000000

operators are responsible for removing BEs from the FTs,
meaning they are expected to perform similarly.

As explained above, a similar trend can be noticed in the other
case studies, see Appendix A.

5.5 The mean difference in metrics for successful FTs per
genetic operator

The metric is calculated to observe the difference between the ge-
netic operators in the change of metrics of an FT after mutation.
After analyzing the given metric, the data did not exhibit any pat-
tern between multiple runs of the same case study. Even for a single
run, the data was too inconsistent across multiple generations as
the uncertainty bounds for the mean were very large, reflecting
significant variability in the data, see Appendix B. This variability
may be the result of the algorithm’s stochastic nature.

5.6 Survival rate after applying a genetic operator per
generation

This metric is similar to the one described in Section 5.4 with the
difference that the number of successful FTs is not normalized based
on the population size. The metric for each genetic operator is
calculated as the ratio of the number of successful FTs created by
the genetic operator to the total number of fault trees created by that
operator. This difference is important as we want to compare genetic
operators between each other in the context of each generation and
not within the context of the overall evolutionary process.

Mann-Whitney U Test. The data for each genetic operator were
collected as data sets containing the survival rate per generation.
These data sets were then used to perform a pairwise comparison be-
tween each operator using the Mann-Whitney U Test. The following
setup was used to perform the U Test:

• Null Hypothesis (H0): The two operators have no significant
difference in the survival rates.

• Alternative Hypothesis (H1): There is a significant difference
in the survival rates between the two operators.

• The significance level used is 𝛼 = 0.05. If the obtained p-value
from the U Test is ≥ 𝛼 , H0 is accepted. Else, H1 is accepted,
and H0 is rejected.

Score system. After performing the pairwise U Test between each
operator, if the Null Hypothesis is rejected, there is a significant
difference between the two genetic operators. In this case, the mean
value of the data sets will contribute to the score of both operators.
The difference between the means will be added to the operator’s
score. Thus, the operator with the highermeanwill increase its score,
and the operator with a lower mean will decrease its score. Even
though the U Tests are performed in the context of each generation,

the calculated score is the mean of all generations, which means
that it describes the genetic operator in the context of the overall
evolutionary process.

Results. Table 7 represents the mean scores and 95% uncertainty
bounds obtained for the data collected across the five times run of
the algorithm for the COVID-19 case study. The table shows the
genetic operators sorted according to the mean score.

Conclusion. As can be seen in the table, there are differences
between the genetic operators. This analysis reveals that Disconnect
BE, Delete BE, Cross-Over, Create BE, and Delete Gate are the most
successful operators. This score only describes the efficiency of a
genetic operator for its overall use across all generations of evolution.
So, it cannot be fully concluded for which generation a genetic
operator has shown a good score. Even though there are four genetic
operators with a low overall score, it can be seen in Section 5.4 that
these genetic operators still have an impact in the first generations
and then become less useful very early in the evolution, leading to
a low overall score. A similar pattern can be noticed for the other
case studies, see Appendix C.

Operator Mean Score Lower B. Upper B.
Disconnect BE 0.40942 0.38603 0.43280
Delete BE 0.19492 0.14905 0.24080
Cross-Over 0.08972 0.07155 0.10789
Create BE 0.07299 0.03218 0.11381
Delete Gate 0.02914 -0.00841 0.06670
Move BE -0.07621 -0.10747 -0.04495

Connect BE -0.21484 -0.23395 -0.19572
Create Gate -0.2374 -0.24544 -0.22936

Change Gate Type -0.26775 -0.28913 -0.24637
Table 7. The scores obtained for each genetic operator for the COVID-19
case study

5.7 Pearson Correlation Coefficient
This metric is calculated to find the correlation between the genetic
operators used in each generation and the metrics of the final FTs
obtained. P- and D- datasets were used to calculate the coefficients.
Table 8 shows the mean and 95% uncertainty bounds of the data
collected across five times run of the algorithm for the COVID-19
case study.

Interpretation of results. The Pearson correlation coefficient can
have a value between the [−1, 1] interval. A value closer to -1 shows
a negative correlation between the variables, meaning that by de-
creasing one variable, the other one increases. A value closer to 1

7



TScIT 41, July 5, 2024, Enschede, The Netherlands Bogdan Colt,a

Table 8. The mean values and 95% uncertainty bounds for the Pearson correlation coefficient for three genetic operators (COVID-19 case study)

Operator spec npv prec mcc acc s dor

Change
Gate

0.015
[−0.078, 0.109]

-0.015,
[−0.111, 0.08]

-0.001,
[−0.094, 0.093]

-0.001,
[−0.086, 0.084]

-0.014,
[−0.104, 0.075]

0.056,
[−0.008, 0.121]

-0.026,
[−0.172, 0.12]

Create BE -0.276
[−0.344,−0.208]

-0.166
[−0.222,−0.111]

-0.244
[−0.31,−0.178]

-0.302
[−0.343,−0.262]

-0.259
[−0.298,−0.22]

0.467
[0.394, 0.541]

-0.126
[−0.184,−0.067]

Delete Gate 0.183
[0.117, 0.249]

-0.016
[−0.085, 0.051]

0.187
[0.13, 0.244]

0.141
[0.035, 0.247]

0.044
[−0.033, 0.122]

-0.174
[−0.216,−0.131]

0.061
[0.039, 0.083]

indicates a positive correlation between the variables, and by in-
creasing one variable, the other one also tends to increase. A value
closer to 0 shows no correlation between the variables. By applying
this test, a negative correlation is better as it shows that by applying
a genetic operator more, a specific metric can be decreased. The
same logic applies to a null or positive value, as it indicates that
there is no correlation or that the operator is increasing the value
of the metrics.

Conclusions. The following conclusions were drawn from the
calculated coefficients for the COVID-19 case study:

• There is a small negative correlation (≥ −0.2) between the
Create BE operator and the spec, npv, prec, mcc, acc metrics.

• The Delete Gate shows a small positive correlation (≥ 0.1) for
the spec and prec metrics. For the acc metric, it also shows
some positive correlation, but the uncertainty bounds are too
large to draw a certain conclusion.

The correlation coefficients do not draw other conclusions be-
cause either their values are too close to 0 or the uncertainty bounds
are too large due to the algorithm’s stochastic nature. All the test
results can be found inside the Jupyter notebooks provided.

Moreover, a pattern across different case studies cannot be noticed
since the conclusions are different for each. Appendix D presents
some coefficients from which conclusions can be drawn for other
case studies.

6 FUTURE WORK
Although this research has contributed to the further development
of the FT-MOEA-CM, multiple aspects of the algorithm still need to
be studied to find a correlation between the genetic operators and
the evolution of an FT.

Analyze new metrics for genetic operators comparison. This paper
has discussed the structure of the P-dataset, the D-dataset, and a
Tensor, which stores information about themetrics of the FTs in each
generation. These datasets are introduced with the scope of later
being used to study the correlation between the final metrics of the
FT and the genetic operators that were applied in each generation.

Guided genetic operators using Bayesian Optimization. Suppose
ongoing research in this direction reveals a stronger correlation
between specific genetic operators and the metrics of an FT. In that
case, further measures should be implemented to guide these genetic
operators accordingly. For this, Bayesian Optimizations could be

implemented to apply operators based on the current structure or
metrics of the FT.

7 CONCLUSION
This paper introduced an extension of the FT-MOEA-CM’s imple-
mentation, specifically designed to analyze the generations and
the genetic operators applied inside a multi-objective evolutionary
algorithm. The research focused on understanding the genetic oper-
ators’ influence on the algorithm’s convergence and which genetic
operators are more useful for finding the global optima and which
are less.
Multiple datasets that describe the algorithm’s evolution have

been proposed to address this issue. The D-dataset and the P-dataset
have been proposed to find a correlation between the genetic oper-
ators and each generation’s FT by applying a correlation coefficient.
Also, a tensor that describes a multi-linear relationship between
the FTs, generation, and each metric has been proposed. The tensor
provides a much clearer way to access and visualize how each FT
was mutated during each generation and which specific metrics
were affected.

Moreover, this research also mentions the introduction of four
analysis metrics: the number of successful FTs and the mean im-
provement of metrics for successful FTs after applying a genetic
operator, the Mann-Whitney U Test between the survival rates of
each operator, and the Pearson Correlation.

The first metric shows us that a pattern might exist across differ-
ent case studies but does not provide enough insight to conclude
which genetic operators are better. The second metric did not show
any noticeable insight, as the data was inconsistent across multi-
ple runs of the same case study. In most instances, the uncertainty
bounds of the calculated values were too large to reveal the presence
of a pattern. The Mann-Whitney U Test shows some insight into the
genetic operators’ differences. Still, the differences described only
relate to the overall genetic evolution, meaning that it cannot be
used to conclude for which generation a genetic operator shows a
more significant improvement. The last analysis metric proposed
is the Pearson correlation coefficient. This metric only shows re-
sults for specific cases and is unreliable due to the large uncertainty
bounds of the obtained values.

8



Understanding the application of Multi-Objective Evolutionary Algorithms to the Inference of Fault Tree Models TScIT 41, July 5, 2024, Enschede, The Netherlands

REFERENCES
[1] S. Kabir, An overview of fault tree analysis and its application in model based depend-

ability analysis, Expert Syst. Appl., vol. 77, pp. 114–135, 2017.
[2] J.-P. Signoret and A. Leroy, Automated fault tree building, Rel. Assessment Safety

Prod. Syst., pp. 423–426, 2021.
[3] S. L. Salem, G. Apostolakis, and D. Okrent, Computer-oriented approach to fault-tree

construction, California Univ., Tech. Rep. EPRI-NP-288, 1976.
[4] Charles Dickerson, Rosmira Roslan, Siyuan Ji, A Formal Transformation Method for

Automated Fault Tree Generation from a UML Activity Model, IEEE Transactions on
Reliability 67, 3 (2018), 1219–1236

[5] Linard A., Bucur D., Stoelinga M., Fault Trees from Data: Efficient Learning with
an Evolutionary Algorithm, Guan, N., Katoen, JP., Sun, J. (eds) Dependable Software
Engineering. Theories, Tools, and Applications. SETTA 2019. Lecture Notes in Computer
Science(), vol 11951. Springer, Cham.

[6] L. A. Jimenez-Roa, T. Heskes, T. Tinga and M. Stoelinga, Automatic Inference of
Fault Tree Models Via Multi-Objective Evolutionary Algorithms, IEEE Transactions on
Dependable and Secure Computing, vol. 20, no. 4, pp. 3317–3327, 1 July-Aug. 2023.

[7] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, vol. 6,
no. 2, pp. 182-197, April 2002

[8] Mart´ı, L., Segredo, E., Pi, N.S., Hart, E., Impact of selection methods on the diversity
of many-objective Pareto set approximations, In: KES. Procedia Computer Science, vol.
112, pp. 844–853. Elsevier (2017)

[9] Dorfhuber, F., Eisentraut, J., Kret´ınsk´y, J., Learning attack trees by genetic algo-
rithms, In: ICTAC. Lecture Notes in Computer Science, vol. 14446, pp. 55–73

[10] Nicu Rusnac, Matthias Volk, L. A. Jimenez-Roa, Improving the Performance of
Multi-Objective Evolutionary Algorithms for Fault Tree Inference, 7 July-Aug. 2023.

[11] Lisandro A. Jimenez-Roa, Nicolae Rusnac, Matthias Volk, and Marielle Stoelinga,
Fault Tree Inference using Multi-Objective Evolutionary Algorithms and Confusion
Matrix-based Metrics

[12] Lisandro A. Jimenez-Roa, Matthias Volk, and Marielle Stoelinga, Data-Driven
Inference of Fault Tree Models Exploiting Symmetry and Modularization Trapp, M.,
Saglietti, F., Spisländer, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2022.

[13] A.E. Eiben and J.E. Smith, Introduction to evolutionary computing. Springer. 25–48
pages.

[14] M. Stamatelatos, W. Vesely, J. B. Dugan, J. Fragola, J. Minarick, and J. Railsback,
Fault Tree Handbook with Aerospace Applications Office of safety and mission assur-
ance NASA headquarters, 2002.

[15] S. Lazarova-Molnar, P. Niloofar, and G. K. Barta, Data-driven fault tree modeling
for reliability assessment of cyber-physical systems in Proc. Winter Simul. Conf., 2020,
pp. 2719–2730.

[16] T. Bakeli et al., Covid-19 infection risk management during construction activities:
An approach based on fault tree analysis (FTA), J. Emerg. Manage., vol. 18, no. 7, pp.
161–176, 2020.

9



TScIT 41, July 5, 2024, Enschede, The Netherlands Bogdan Colt,a

APPENDICES
A APPENDIX A: PLOTS FOR THE NUMBER OF

SUCCESSFUL FTS PER GENETIC OPERATORS
In this Appendix, the analysis metric is plotted for each genetic
operator across multiple generations in Fig. 6 and 7, for the other
case studies mentioned in the paper. The data was collected five
times for the same case study, and the mean was plotted with 95%
uncertainty bounds along with the median.

Fig. 6. The number of successful FTs per genetic operators for the CSD case
study

Fig. 7. The number of successful FTs per genetic operators for the DDFT
case study

B APPENDIX B: PLOTS FOR THE MEAN DIFFERENCE IN
METRICS FOR SUCCESSFUL FTS PER GENETIC
OPERATOR

In this Appendix, the analysis metric is plotted for the accuracy of
the FT for each genetic operator across multiple generations for
the COVID-19 case study in Fig. 8. In Fig. 9, the 95% uncertainty
bounds and median are plotted for the Cross Over operator. It can
be observed that the uncertainty bounds are very large, and there
is a high variability between the mean difference even in the same
generation, which can be attributed to the algorithm’s stochastic
nature.

Fig. 8. Mean difference between the accuracy of the child and parent FT
after applying a genetic operator for the COVID-19 case study

Fig. 9. Mean difference between the accuracy of the child and parent FT
after applying the cross-over operator for the COVID-19 case study along
with the 95% uncertainty bounds and median

10



Understanding the application of Multi-Objective Evolutionary Algorithms to the Inference of Fault Tree Models TScIT 41, July 5, 2024, Enschede, The Netherlands

C APPENDIX C: SCORES OF GENETIC OPERATORS
ACCORDING TO MANN-WHITNEY U COMPARISON

In this Appendix, the analysis metric is presented in Table 9 and
10 for the other case studies mentioned in the paper. The data was
collected five times per case study, and the mean was calculated
along with 95% uncertainty bounds.

Operator Mean Score Lower B. Upper B.
Disconnect BE 0.53216 0.50630 0.55802
Delete BE 0.47412 0.44462 0.50362
Cross Over 0.28496 0.24905 0.32087

Change Gate Type 0.02272 0.00686 0.03858
Delete Gate -0.01968 -0.03714 -0.00222
Create BE -0.04364 -0.06081 -0.02647
Create Gate -0.24022 -0.26133 -0.21911
Move BE -0.46846 -0.49723 -0.43968

Connect BE -0.54195 -0.56762 -0.51629
Table 9. The scores obtained for each genetic operator for the CSD case
study

Table 11. The mean values and 95% uncertainty bounds for the Pearson
correlation coefficient for three genetic operators (CSD case study)

Operator spec npv prec mcc acc s dor

Delete BE 0.151
[0.132, 0.17]

0.099
[0.072, 0.126]

0.114
[0.093, 0.135]

0.207
[0.182, 0.233]

0.167
[0.139, 0.195]

-0.466
[−0.484,−0.447]

0.046
[0.022, 0.069]

Create BE -0.075
[−0.09,−0.06]

-0.075
[−0.113,−0.037]

-0.071
[−0.088,−0.055]

-0.176
[−0.2,−0.153]

-0.119
[−0.16,−0.078]

0.552
[0.51, 0.594]

-0.025
[−0.061, 0.011]

Disconnect
BE

0.128
[0.085, 0.17]

0.105
[0.09, 0.12]

0.087
[0.045, 0.13]

0.184
[0.15, 0.219]

0.161
[0.132, 0.189]

-0.414
[−0.442,−0.385]

0.024
[0.007, 0.042]

Table 12. The mean values and 95% uncertainty bounds for the Pearson
correlation coefficient for three genetic operators (DDFT case study)

Operator spec npv prec mcc acc s dor

Delete Gate 0.258
[0.202, 0.314]

0.073
[0.03, 0.115]

0.259
[0.203, 0.315]

0.32
[0.287, 0.353]

0.207
[0.185, 0.229]

-0.33
[−0.438,−0.222]

0.191
[0.152, 0.231]

Create BE -0.037
[−0.068,−0.006]

-0.307
[−0.344,−0.271]

-0.01
[−0.04, 0.018]

-0.327
[−0.366,−0.289]

-0.348
[−0.395,−0.301]

0.512
[0.469, 0.555]

0.03
[−0.011, 0.072]

Delete BE -0.079
[−0.103,−0.056]

0.202
[0.157, 0.246]

-0.114
[−0.139,−0.089]

0.098
[0.042, 0.154]

0.17
[0.114, 0.225]

-0.24
[−0.33,−0.151]

-0.066
[−0.109,−0.023]

Operator Mean Score Lower B. Upper B.
Disconnect BE 0.32626 0.31218 0.34035
Cross Over 0.21060 0.19396 0.22724
Delete BE 0.20907 0.18668 0.23145
Create BE 0.04105 0.02611 0.05599
Delete Gate -0.08477 -0.10688 -0.06267
Create Gate -0.11638 -0.13454 -0.09823
Move BE -0.11847 -0.13000 -0.10694

Change Gate Type -0.22512 -0.24468 -0.20556
Connect BE -0.24223 -0.25593 -0.22853

Table 10. The scores obtained for each genetic operator for the DDFT case
study

D APPENDIX D: PEARSON CORRELATION
COEFFICIENT

In this Appendix, the Pearson correlation coefficient is presented in
Table 11 and 12 for the other case studies mentioned in the paper.
The data was collected five times per case study, and the mean was
calculated along with 95% uncertainty bounds.

11


	1 Introduction
	2 Background
	2.1 Fault Tree Analysis
	2.2 Multi-Objective Evolutionary Algorithms
	2.3 Failure Data Set
	2.4 Mann-Whitney U Test
	2.5 Pearson Correlation Coefficient
	2.6 Breadth-First Search Traversal Algorithm

	3 Problem Statement
	3.1 Research Questions

	4 Methodology
	4.1 Inferring Fault Tree models via Multi-Objective Evolutionary Algorithms
	4.2 Experiment setup
	4.3 Genetic operators Evaluation Metrics

	5 Results
	5.1 P-dataset
	5.2 D-dataset
	5.3 Tensor
	5.4 Number of successful FTs per genetic operator
	5.5 The mean difference in metrics for successful FTs per genetic operator
	5.6 Survival rate after applying a genetic operator per generation
	5.7 Pearson Correlation Coefficient

	6 Future Work
	7 Conclusion
	References
	A Appendix A: Plots for the number of successful FTs per genetic operators
	B Appendix B: Plots for the mean difference in metrics for successful FTs per genetic operator
	C Appendix C: Scores of genetic operators according to Mann-Whitney U comparison
	D Appendix D: Pearson correlation coefficient

