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ABSTRACT

Security analysts have the task of inspecting cybersecurity alarms

to �lter false positives and identify their severity: triage. The prob-

lem with this process is that it is complicated and time-consuming,

limiting the depth and speed of investigations. Whereas other pro-

posed optimizations and automations appear to be very promising,

rapid advancements in the development of Large Language Models

(LLMs) opened up new possibilities to speed up parts of the triage

process that previously required human judgment. This research

aims to identify ways in which LLMs can optimize triage, evaluate

the performance of these techniques and o�er a comparison be-

tween di�erent LLMs including GPT-4, Aya, Code Llama, Gemma,

Llama 3, Mistral and Phi-3. The study shows that GPT-4 is the

most capable model, while Llama 3 and Mistral achieve competi-

tively similar results. The �ndings in this study are expected to help

security teams make informed implementation decisions when op-

timizing the triage process. The data and scripts used are available

in the GitHub repository (https://github.com/PascalNB/llm-triage-

automation).
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1 INTRODUCTION

The 2023 Cost of a Data Breach Report by IBM Security [15] con-

cludes that the average cost of a security breach in 2023 was 4.45M

USD, marking an increase of 2.3% since 2022 and a 15.3% increase

compared to 2020. Only 1 in 3 breaches are identi�ed by an organi-

zation’s security team. However, organizations with high levels of

incident response planning saved 1.49M USD on average, highlight-

ing the pressing need for security investments in training, thread

detection and response technologies.

One such investment is the use of Security Operation Centers

(SOCs), which respond to security incidents in real-time. They con-

sist of security analysts that investigate data from various sources

such as Security Information and Event Management (SIEM) sys-

tems. The SIEM systems collect log data from a large number of
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sources such as network devices and applications within the organi-

zation’s system. Based on rules, patterns and conditions, anomalies

and suspicious activities are identi�ed and alarms are created.

The number of alarms is immense, ranging from hundreds to

thousands per day, of which a large portion are false positives or

low priority. The volume and complexity of the alarms causes SOCs

to miss serious attacks and inadvertently contributes to mistakes

in the analysis. Besides that, it leads to security teams experiencing

fatigue, and it contributes to internal friction and turnover [32].

Since the SOCs cannot respond to every single alarm, identifying

the severity of alarms is an important step in the incident response

work�ow. This process, triage, involves understanding the impact of

an alarm, correlating it with other alarms and identifying potential

future goals of adversaries to conclude its severity. By prioritizing

alarms, SOCs can focus their resources on high-severity alarms

�rst, thus mitigating damages and reducing costs.

There are many proposed and implemented techniques to opti-

mize triage and the SOCwork�ow. For example, Security Orchestra-

tion, Automation, and Response (SOAR) platforms have streamlined

parts of the process by automating routine tasks, but many steps of

triage still require human judgment to make adequate decisions [9].

Consequentially, the triage process is prone to human error. This,

in combination with the volume and complexity of alarms, presses

the need for the automation of triage.

The �eld of Arti�cial Intelligence (AI) has the potential to sig-

ni�cantly impact the automation of triage. It involves the use of

machines to perform tasks that mimic human actions such as rea-

soning, problem-solving and learning [33]. Machine Learning (ML)

allows systems to solve problems by analyzing patterns in data and

making predictions and decisions without explicit programming

[34]. One sub�eld of ML is Natural Language Processing (NLP). NLP

involves using computational approaches to process and transcribe

natural-language texts with further goals such as translation, sum-

marization, sentiment assessment or generation of texts. It plays a

growing role in streamlining and automating business operations,

and increasing productivity [14].

Large Language Models (LLMs) are a major advancement in the

�eld of NLP. These models have been trained on immense amounts

of natural-language data and are capable of understanding and

generating texts to perform a wide range of tasks [13]. They are

designed to be applied in any domain or industry, erasing the need

to create or train a domain-speci�c ML model. Their ability to

identify contextual relationships and recognize complex patterns

[6] in a short amount of time makes LLMs the perfect entrypoint to

automate triage and thus optimize the incident response work�ow.

This research aims to explore the potential of LLMs in optimizing

the triage process, establish ways to evaluate the performance of
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LLMs in cybersecurity, and present a comparison of di�erentmodels

when automating triage steps. To pursue this goal, the following

research questions (RQ) provide the basis of this research:

RQ1: How can LLMs be integrated into the existing incident re-

sponse work�ow to streamline the triage process?

RQ2: What suitable evaluation metrics should be used to assess

the performance of LLMs in cybersecurity triage?

RQ3: How do di�erent LLMs compare in performance when opti-

mizing the cybersecurity triage process?

This research is organized as follows:

Firstly, section 2 discusses literature about existing optimizations

and identify tasks that can be optimized with LLMs. Secondly, sec-

tion 3 determines which evaluation metrics are suitable to judge the

performance of LLMs. Then, section 4 establishes the methodology

set and evaluation framework. After that, section 5 discusses the

results, implications and limitations of the study. Lastly, section 6

summarizes the key �ndings of this research.

2 OPTIMIZING TRIAGE USING LLMS

This section intends to answer RQ1: How can LLMs be integrated

into the existing incident response work�ow to streamline the triage

process? Firstly, a rundown of the triage process is given by provid-

ing examples of the steps taken when identifying the priority of

an alarm. Secondly, existing and proposed solutions of optimizing

triage are summarized. Then, a general use of LLMs is given using

a brief overview of the recent advances made in NLP, after which

examples of LLMs performing relevant tasks are provided. Lastly,

using these �ndings, possible automations in the triage process are

identi�ed.

2.1 Steps of Triage

The goal of triage is to follow a structured process to quickly assess

and prioritize security alarms. Although the steps of triage are not

set in stone and depend on the type of alarm, there are a number

of basic tasks that can be followed. Based on consultations with

security analysts, the following tasks can be identi�ed:

(1) Understanding the alarm: The security analyst intends

to understand the nature of the alarm. This includes the

origin of the alarm (e.g., in the cloud or on-premise) and

what time it was created. Besides this, the analyst reviews

any prior communications that suggest the possibility of

alarm creation, and assesses its relevance to the alarm in

question.

(2) Analyzing the context: The analyst looks through the

given alarm data and identi�es the a�ected entities and to

what extent they are a�ected. This includes users, data, sys-

tems and operations.

(3) Correlating the alarm: Based on the alarm context, the

analyst searches whether the alarm has been previously

encountered or if related alarms have occurred, either within

the a�ected network or a di�erent one.

(4) Identifying the position in the kill chain: To assess po-

tential consequences, the position of the alarm within the

kill chain is determined. A kill chain describes the stages of

a cyberattack, from initial reconnaissance to the �nal goal.

This is done by referencing the MITRE ATT&CK [42] or Cy-

ber Kill Chain [27] frameworks. This also depends on other

potentially correlated alarms.

(5) Prioritizing the alarm: The analyst concludes how severe

the alarm is and assigns a priority of high, medium, low or

no threat. The priority classi�cation determines how quickly

an alarm requires further analysis and response actions.

The overall process should ideally not take longer than 30 min-

utes, because high-priority alarms need to be handled as urgently

as possible. To meet this time constraint, it is essential to integrate

tools and processes to allow analysts to perform triage e�ciently.

2.2 Existing Triage Automations/Optimizations

One goal of triage is to correlate alarms, which entails identifying if

the alarms are related to determine their placement within the kill

chain. Ficke [12] optimizes this step by using alert trees. These trees

are data structures used to organize and visualize generated alerts.

The alerts are structured hierarchically, showing the relationships

between alerts and the sequence of events. The proposed solution

also eliminates redundancies in the graphs, thereby preventing the

graphs from reaching sizes consisting of thousands of nodes. Based

on academic datasets, the result is a system that quickly reconstructs

paths that give insight into multistep threats in a network, which

is an otherwise time-consuming task for human analysts.

Additionally, Serketzis et al. [41] propose a model that integrates

Cyber Threat Intelligence (CTI) into the process. CTI involves col-

lecting and analyzing information about potential and existing

threats. The model aims to enhance Digital Forensic Readiness

(DFR), which is the preparation of digital forensics through col-

lection and storage of data, to create relevant readily available

information. Three independent but interrelated modules form the

basis of the model:

• IoC Collection Module: Indicators of Compromise (IoC)

consist of indicators of malicious activity observed in net-

works or systems. The module aggregates IoC from many

internal and external sources of CTI to increase the collec-

tive knowledge. Data is evaluated and correlated to further

increase its value, after which it is kept in a database.

• Audit Log ProcessingModule: This module aims to gather,

validate and process audit log data generated by di�erent

parts within the organization. The data is stored in a dedi-

cated database, which handles retrieval requests from the

third module.

• Threat Identi�cationModule: This module cross-matches

the contents produced by the other modules and identi�es

threats. The evidence is stored in Intelligence Evidence Stor-

age Systems (IESSs), which act as an entry point for analysts

looking to preview potentially adverse incidents. Besides

identifying suspicious activity, the module provides poten-

tial instigating factors.

The resulting model is shown to have a high accuracy of 90.73%

when testing network data for malicious activity.

Besides that, Zhong et al. [48] approached the automation of

triage by tracing the operations of professional security analysts. As

junior analysts are typically responsible for conducting triage, this

approach e�ectively speeds up the process. Finite state machines
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were constructed based on the senior analysts’ patterns and were

used to achieve high-speed triage with a low number of false posi-

tives. However, limitations include a high number of false negatives

as well as a dependency on high-performing security analysts to

maximize the performance of the automated system. Extending this

approach, Lin [25] feeds contexts into a recurrent neural network

which detects matching traces and presents these to novice analysts

which in turn trains them in e�ective triage.

Finally, it is worth noting that a high level of automation can

have adverse e�ects on the overall performance of security analysts

when performing triage because of the following reasons:

• Understanding and conducting full-time monitoring of the

automation can increase workload [19].

• The level of trust in automation can lead to over-reliance or

negligence [22].

Hence, it is crucial to maintain a level of human interaction when

automating the steps of triage, and to prioritize user-friendliness of

integrated tools.

The limitation of all the previously proposed automations is

that they do not involve NLP. Triage requires understanding and

interpreting content surrounding the alarm, such as logs, announce-

ments and other forms of natural or unstructured language, which

are challenging to automate through conventional methods. How-

ever, LLMs can be the entry point to �nd solutions to automate

such tasks.

2.3 General Usage of LLMs

LLMs make use of Natural Language Understanding (NLU) and

Natural Language Generation (NLG). NLU aims to comprehend

meaning and intent in natural language, while NLG focuses on

generating original human-like texts. To achieve NLU and NLG,

language models make use of so-called encoders and decoders. The

purpose of encoders is to turn input texts into �xed-size vectors

that act as abstract representations. Language models then utilize

decoders to transform such representations into a generated target

output. This approachworkswell on tasks that map input sequences

to output sequences (sec2sec), such as language translation [8, 43].

In 2014, Bahdanau et al. [4] introduced the concept of attention

which rids the encoders of creating �xed-length vectors. It allows

language models to focus on the most relevant parts of texts and

enabling operations on much longer input sequences. Based on this,

Vaswani et al. [46] developed the transformer architecture in 2017,

setting the precedent for modern LLMs. Transformers are superior

in quality, more parallelizable, and take less time to train.

Early well-known examples of such transformer-based models

are BERT (Bidirectional Encoder Representations from Transform-

ers) [11], and GPT (Generative Pre-trained Transformer) [36]:

• BERT was speci�cally designed as a pre-trained model to

be easily �ne-tuned for a wide range of tasks such as an-

swering questions and natural language inference, without

the need of task-speci�c architecture. In the cybersecurity

domain, BERT models have been �ne-tuned to detect mali-

cious software [38] and phishing emails [23], in addition to

performing general cybersecurity tasks [5].

• GPT is pre-trained on a large amount of unlabeled data and

designed to generate coherent context-speci�c text. It works

by generating continuations based on the input text through

probabilistic guesses. Like BERT, it requires �ne-tuning to

adapt the model to speci�c tasks.

The disadvantage of these models is that they are relatively

small and require �ne-tuning to be applied to domain-speci�c tasks.

Fine-tuning using domain-speci�c data is not only resource and

time-intensive, but the resulting models have limited applicability

and can potentially include bias. Another disadvantage is the phe-

nomenon of catastrophic forgetting where existing models forget

their original knowledge after being trained on new data.

The introduction of much larger general models such as GPT-

4 [2] and Llama 3 [28] intends to eliminate these problems. The

broad availability and applicability of these large general models

allows organizations to easily integrate them to optimize general

and speci�c tasks. These models are relatively new and currently

have limited research available on their use, but there are some

notable examples.

Nori et al. [29] have used GPT-4 to assess its performance on

medical tests without �ne-tuning. The result shows that the model

passed the tests without specialized instructions, even surpassing

other models that are �ne-tuned on medical knowledge. This shows

that the signi�cance of �ne-tuning decreases when general models

increase in size and capabilities.

In the cybersecurity domain, research on general models is

sparse, but applications of �ne-tuned LLMs still provide valuable

insights into their potential for optimizing triage. For example,

Karlsen et al. [20] propose a system that uses LLMs to perform log

analysis. Where previous methods of analysis relied on rule-based

or statistical approaches, LLMs are able to learn complex patterns

and relationships within log data without requiring manual feature

engineering. The study focuses on �ne-tuning models such as BERT

and GPT-2 [37] through self-supervised learning where the LLMs

automatically label data by identifying relations. Larger models like

GPT-4 and Llama 2 [45] were not used due to their high parameter

counts, leading to increased computational requirements during

the �ne-tuning process.

To instruct LLMs to perform tasks, prompts are used. They con-

sist of textual inputs that the model interprets and uses to gener-

ate contextually relevant responses. Prompts are split into system

prompts and user prompts. System prompts act as prede�ned inputs

that guide the model’s behavior and control the context of a task.

User prompts are usually provided by end-users and describe the

speci�c task. They are diverse in form and content. Creating good

prompts is essential to achieve high-quality LLM outputs. Short

and simple prompts might lack su�cient context, leading to incom-

plete and inaccurate results. On the other hand, excessively long

and complex prompts might introduce redundant information that

confuses the model. Therefore, balancing the sizes and complexi-

ties of prompts is crucial to obtain relevant, accurate and coherent

outputs.

2.4 Using LLMs to Optimize Triage

When applying LLMs to speci�c tasks, it is important to keep the

tasks short and simple to ensure the results are consistent and

easily testable. Referring to the triage steps in 2.1, all tasks that

involve natural language or unstructured textual data have the
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potential to be automated using LLMs. Since the optimizations are

ideally applicable across all kinds of alarms, the following possible

automations are identi�ed:

• Detecting if an email is an announcement: This means

letting the LLM process the entire email and concluding

if it contains any information regarding actions that could

trigger alarm generation.

• Detecting if an announcement is related to an alarm:

This involves feeding both an announcement and alarm data

into the LLM and determining whether a correlation exists,

meaning the alarm was triggered by an action that was an-

nounced beforehand.

• Correlating an alarm with other alarms and identify-

ing if there are relationships: Based on the alarm data,

potentially related alarms are collected, after which the LLM

concludes if they are in fact correlated.

• Determining the position of an alarm in the kill chain:

Based on the MITRE ATT&CK framework, alarms have a

position in the kill chain. An LLM can use alarm data and

correlated alarms to identify this position.

• Determining the priority of an alarm as high, medium,

low or no threat: This last step is to use the answers of the

previous tasks to determine if the alarm should be treated as

high, medium, low or no priority.

In summary, incorporating LLMs into the incident response

work�ow by automating these steps will allow for a more e�cient

triage process. By automatically detecting if an alarmwas generated

due to a previously announced action, it can be concluded whether

the alarm is benign and if it poses no actual threat. This will reduce

the number of false positives that an analyst has to investigate.

Besides that, automatically correlating alarms and concluding

the kill chain position and priority will reduce the workload of an

analyst. This will streamline the triage process and thus prevent

overloading alarm queues.

3 EVALUATION OF LLMS IN CYBERSECURITY

TRIAGE

This section intends to answer RQ2:What suitable evaluationmetrics

should be used to assess the performance of LLMs in cybersecurity

triage? Firstly, existing evaluation metrics for LLMs are identi�ed.

Finally, the most suitable metrics are determined to establish a

testing framework for LLMs in the context of cybersecurity triage-

related tasks.

3.1 Existing LLM Evaluation Metrics

Due to the inherent ambiguity of human language, it is challenging

to evaluate the output of an LLM. Outputs of LLMs are not numeri-

cal in nature, but evaluation algorithms should produce a numerical

score. This necessitates the use of sophisticated evaluation metrics.

3.1.1 Statistical-based evaluation. Besides simple human evalua-

tion techniques like expert reviews and crowdsourcing, there are

some notable automated metrics to measure LLM performance:

• The BLEU [35] score is speci�cally designed to test machine

translation by matching output texts with reference texts.

• The ROUGE [24] score is used to evaluate text summaries

by comparing model outputs with expected outputs.

These evaluation scores are purely statistical and thus reliable, but

do not consider the nuances of semantics. They demonstrate a low

correlation with human judgments, particularly in tasks related to

creativity and diversity [26].

3.1.2 NLP-based evaluation. NLP-based evaluation techniques are

more accurate but less reliable due to factors such as randomness,

bias, and its inherent dependency on training data. Metrics such

as BERTScore [47] and BLEURT [40] use descriptive LLMs such

as BERT to provide a score by comparing generated and reference

texts while taking semantics into account.

Besides that, Liu et al. [26] propose G-EVAL, a framework that

uses generative LLMs such as GPT-4 or GPT-3 [7] to evaluate LLM

outputs. First, evaluation steps are generated based on a given task

and evaluation criteria. Then, the steps are used to assess an LLMs

output and a score ranging from 1 to 5 is given. The resulting score

takes semantics into account, and the resulting evaluation is more

correlated with human judgment. However, it is unreliable due

to the arbitrary nature of LLM output, and it is biased towards

LLM-generated texts compared to human-written texts.

Similarly, Kim et al. [21] introduce Prometheus, an LLM-based

evaluator. Proprietary LLMs, such as used in G-EVAL, do not fully

disclose internal operations, limiting fair evaluations. Furthermore,

they might force version updates, impacting the consistency and

replicability of evaluations. Lastly, �nancial constraints can make

their use challenging. Because of this, Prometheus uses an open-

source LMM that is �ne-grained for evaluation and on par with the

evaluation performance of GPT-4.

3.1.3 Score-based evaluation. The assigned automations in the

triage process are task-speci�c and only require tests on the cor-

rectness of the LLM’s answer. Answers are classi�ed as true positive,

false positive, true negative and false negative, depending on the

data’s actual classi�cation and the model’s prediction. Using these

four classi�cations, di�erent suitable task-speci�c evaluation met-

rics can be constructed:

• Accuracy: The ratio of correct predictions to the total num-

ber of answers. It gives an overall indication of the model’s

ability to make correct predictions, but can be misleading if

the testing or real-world data is imbalanced.

• Precision: The ratio of correct answers compared to all

answers that were �agged positive by the LLM. A high pre-

cision indicates a low false positive rate.

• Recall: The ratio of correct predictions to the total number

of actual positives in the test data. A high recall indicates a

low false negative rate.

• F1-score: A harmonic mean of precision and recall. As a

metric, it represents a balance between precision and recall,

capturing the performance using both metrics.

3.1.4 E�iciency-based evaluation. Besides answer-based evalua-

tion techniques, the following additional metrics can be identi�ed

to assess the e�ciency of an LLM when performing a task:

• Median time: The median amount of time it takes for the

LLM to provide a response. While not as important as the
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previous metrics, it provides an insight into the responsive-

ness of the model. This is applicable in cases where quick

responses are critical, such as in the incident response work-

�ow. The median time is preferred over the mean time to

mitigate the e�ect of outliers.

• Output Token Count: The number of tokens in the output

produced by the LLM. It provides an insight into both the

computational and �nancial costs of processing a prompt.

It is particularly useful when comparing di�erent models,

because some models may generate unnecessarily verbose

responses. However, it has no signi�cant use when all models

are prompted to adhere to a speci�c output format such as a

single value or in JSON.

From this, a cost-e�ciency metric can be introduced that eval-

uates the model’s performance relative to the cost incurred. For

example, a model with a high performance score should not be

preferred if the token costs make integrating the model �nancially

infeasible.

3.1.5 Reliability-based evaluation. In addition to performance met-

rics, it is important to verify the reliability of models by ensuring

that they consistently produce outputs in the expected formats.

The following performance metrics are suitable to measure these

characteristics:

• Consistency: Evaluates whether the model provides consis-

tent output for the same inputs. LLMs generally incorporate

a degree of randomness to prevent training over�tting and

ensure the diversity of results. However, this might not be

bene�cial when consistent outputs are crucial. Moreover, a

low consistency could decrease the reliability and replicabil-

ity of the evaluation.

• Error rate: The rate of incorrect responses. For example,

the rate of outputs that do not follow an explicit format.

3.2 Applying Evaluation Metrics to Triage

In the triage process, a large number of false positives would cause

the alarm queue to be �lled up, resulting in limited time for analysts

to conduct thorough investigations. On the other hand, a large

number of false negatives would result in critical alarms being

missed. Therefore, it is important to balance these metrics when

evaluating LLMs. In the context of tasks that require consistent

and strictly formatted outputs, the F1-score will provide a suitable

performance score that balances these concerns.

When dealing with tasks that have de�nitive right or wrong

answers, accuracy is the most appropriate measure to assess per-

formance. This is also the case for multiclass classi�cations that are

relatively balanced. For instance, the task of identifying the MITRE

ATT&CK tactic or technique associated with an alarm or action

can be evaluated through accuracy.

For all tasks, the error rate is an important metric. It assesses

the general usability of a model, because models are challenging

to evaluate and impossible to implement within an organization

when they frequently produce unusable responses. Additionally,

the consistency of a model is important because it ensures that an

evaluation re�ects the real-world implementation.

Incorporating these metrics into an evaluation framework pro-

vides a suitable procedure to assess the performance of LLMs in

cybersecurity triage.

4 COMPARING LLMS IN CYBERSECURITY

TRIAGE

This section intends to answer RQ3: How do di�erent LLMs compare

in performance when optimizing the cybersecurity triage process?

The automation steps in section 2.4 are combined with the evalua-

tion metrics as described in section 3.2 to perform a comparison

between various LLMs acros di�erent tasks. Firstly, an overview of

the experiment setup is given. After that, the comparison results

are provided.

4.1 Comparison Framework and Setup

The �rst LLM included in the comparison is GPT-4. The other

models selected are openly available and accessible through the

Ollama [30] library. The Ollama language model platform is chosen

for its ease of use and its simplicity to deploy the most recent

state-of-the-art models. It is capable of running a local server that

receives API calls, enabling the execution of operations on models

from external applications like a Jupyter Notebook.

Most models are released as a collection of multiple variants,

each with a di�erent parameter count. A model with a large num-

ber of parameters is expected to perform better, but requires more

computational resources in contrast to a small model. Due to com-

putational limits, only models with parameter counts of up to 14

billion have been selected. The selected models are Aya 23 [3], Code

Llama [39], Gemma [44], Llama 3, Mistral [18] and Phi-3 [1]. The

di�erent models and their sizes and characteristics are given in

Table 1. The Ollama models use a 4-bit quantization as is provided

by default.

The evaluation framework is written in Python and contained

within a Jupyter Notebook. This supports transparency and replica-

bility of the experiment because the code can be executed on other

future LLMs to assess and compare their performances.

For each task, prompts of di�erent lengths are constructed to

assess the impact of prompt size on the model’s performance. Com-

plex tasks are not possible to execute with short prompts due to

the lack of su�cient information.

The data used in this study consists of 20 cybersecurity announce-

ment emails provided by Northwave Cyber Security. The emails

are manually analyzed to determine what possible alarms could be

generated as a consequence of the announced actions, after which

the MITRE ATT&CK tactics are identi�ed. For example, an email

announcing that a certain person will add accounts as admins to

local and production servers is assigned the following tactics: 1)

privilege escalation: accounts are given higher permissions on a

system; 2) persistence: maintaining high-level access by modify-

ing permission groups ensures persistence; 3) initial access: logins

through valid accounts could indicate initial access.

Additionally, 20 non-announcement emails are randomly taken

from the Enron email dataset [10] to construct a joined dataset of

40 labeled emails. The code of the framework and the used data and

prompts are available on GitHub (https://github.com/PascalNB/llm-

triage-automation).
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Table 1: Selected models and their characteristics. The parameter count of GPT-4 is made italic because it is an estimation.

Model Parameters Description

GPT-4 1760B Developed by OpenAI as their fourth generation in their GPT series. It is estimated to have

1.76 trillion parameters.

Phi-3 14B A lightweight open model developed by Microsoft tailored to logic reasoning.

Code Llama 13B A �ne-tuned Llama model by Meta and designed for generating and discussing code.

Aya 23 8B A multilingual model developed by Cohere that supports 23 languages.

Llama 3 8B A capable pre-trained model developed by Meta and the third in their Llama series.

Gemma 7B Part of a family of lightweight models developed by Google DeepMind.

Mistral 7B A versatile model developed by Mistral AI.

Phi-3 3.8B The smallest model variant in the Phi-3 series.

Gemma 2B The smallest model variant of the Gemma model family.

Using this data, the following tasks are evaluated:

(1) Announcement Detection: The LLM has to determine

whether a given email is a cybersecurity announcement.

The task is executed using three separate system prompts:

(a) A long prompt that explains the task, gives examples of

security actions and requests a JSON output. (b) A medium-

sized prompt that explains the task and brie�y gives some

examples of security actions. (c) A short prompt that brie�y

explains the task.

All three prompts request the model to output its answer in

JSON with a single key is_announcement. Finally, the F1-

score, median time and error rate are recorded as evaluation

metrics.

(2) Tactic Detection: The LLM has to determine what the

MITRE ATT&CK tactic is of the alarms that could be gen-

erated as a result of the activity that is expressed in an an-

nouncement. These tactics are: Reconnaissance, Resource

Development, Initial Access, Execution, Persistence, Privi-

lege Escalation, Defense Evasion, Credential Access, Discov-

ery, Lateral Movement, Collection, Command and Control,

Ex�ltration, and Impact. The task is executed using two dif-

ferent system prompts: (a) A long prompt that explains the

context, gives a list of the existing tactics and requests the

model to predict the tactic of potentially generated alarms.

(b) A medium-sized prompt that explains the context, gives

a list of the existing tactics and requests the model to give

the tactic of the action expressed in the announcement.

Both prompts request the model to output its answer in JSON

with a single key tactic. The resulting evaluation metrics

are accuracy, median time and error rate.

Besides requesting a JSON response, both OpenAI and Ollama

models can be formally instructed to exclusively output JSON, en-

suring that their outputs adhere to the correct format. However, this

does not cover which keys should be included in the �nal response,

as those should be included in the prompt itself. A response that

lacks the requested keys will be considered an error and a�ects the

model’s error rate.

Finally, all evaluations are conducted within the Jupyter Note-

book running with an AMD Ryzen 7 4800H CPU and an NVIDIA

GeForce RTX 2060 GPU.

5 RESULTS AND DISCUSSION

This section will give an overview of the results and highlight the

key �ndings on the performance of LLMs in cybersecurity tasks,

as well as identify the limitations of this study. The results show

that models like GPT-4, Llama 3, Mistral and Phi-3 3.8B excelled

in detecting cybersecurity announcements, particularly with long

prompts. GPT-4 also demonstrated the highest accuracy in identi-

fying MITRE ATT&CK tactics.

The task of detecting cybersecurity announcements was per-

formed using the three prompt sizes on all ninemodels. An overview

of the results is presented in Table 2.

For the long prompt, GPT-4, Code Llama, Llama 3, Mistral and

Phi-3 3.8B scored equally high with an F1-score of 1. GPT-4 also

scored high with the medium prompt with an F1-score of 0.95,

which Phi-3 3.8B and Llama 3 closely followed with scores of 0.927

and 0.9 respectively. Llama 3 scored the highest on the task with

the short prompt with a score of 0.837.

The task of detecting the MITRE ATT&CK tactic of potential

alarms following an email announcement was performed using the

two prompt sizes on all nine models. An overview of the results is

presented in Table 3.

GPT-4 showed the highest accuracy for both the long andmedium-

sized prompts with scores of 0.85 and 0.8 respectively. Mistral was

generally the second-best model with accuracies of 0.7 and 0.6.

Llama 3 followed this with scores of 0.6 and 0.65. All models per-

formed error-free results, which is why error rates are excluded

from the table.

Firstly, it is important to note that GPT-4 is the only model not

operating within the same system as the other models. Changes in

median times could be attributed to increased network tra�c, server

requests or timeouts, but the exact causes are unknown. Hence,

time-based metrics should generally only be compared amongst

models within the same system. However, the median times still

give an indication of expected evaluation durations when incorpo-

rating GPT-4 to perform similar tasks.

For all tasks of the conducted experiment, the median times of

most models remained consistent regardless of prompt size. This

suggests that prompt size does not have a signi�cant impact on the

evaluation time. Therefore, the choice of best prompt is dependent

only on the resulting performance score.

Considering the simple task of detecting announcements, only

Llama 3, Mistral and Phi-3 3.8B showed relatively consistent high
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Table 2: F1-scores, median evaluation times in seconds and error rates of eachmodel for di�erent prompt sizes when performing

announcement detection. The best statistics are highlighted in bold and the next-best statistics are underlined. The parameter

count of GPT-4 is made italic because it is an estimation. The median times of GPT-4 are made italic because it is the only

model operating within a di�erent system. Error rates of 0 are excluded.

Model Parameters
Long prompt Medium prompt Short prompt

F1-score Median time Error rate F1-score Median time Error rate F1-score Median time Error rate

GPT-4 1760B 1.000 8.456 - 0.950 7.541 - 0.621 10.940 -

Phi-3 14B 0.842 3.946 0.025 0.452 2.952 0.150 0.600 2.974 0.750

Code Llama 13B 1.000 3.426 - 0.706 3.389 - 0.529 3.315 -

Aya 23 8B 0.844 1.513 - 0.809 1.421 - 0.516 1.394 -

Llama 3 8B 1.000 0.656 - 0.900 0.619 - 0.837 0.623 -

Gemma 7B 0.710 1.787 - 0.710 1.687 - 0.684 1.680 -

Mistral 7B 1.000 0.487 - 0.895 0.411 - 0.743 0.405 -

Phi-3 3.8B 1.000 0.355 - 0.927 0.375 - 0.706 0.875 -

Gemma 2B 0.788 0.194 - 0.333 0.192 - 0.667 0.192 -

Table 3: Accuracies, median evaluation times in seconds and error rates of each model for di�erent prompt sizes when

identifying MITRE ATT&CK tactics of potential alarms following an announcement. The best statistics are highlighted in

bold and the next-best statistics are underlined. The parameter count of GPT-4 is made italic because it is an estimation. The

median times of GPT-4 are made italic because it is the only model operating within a di�erent system.

Model Paremeters
Long prompt Medium prompt

Accuracy Median time Accuracy Median time

GPT-4 1760B 0.850 3.543 0.800 1.765

Phi-3 14B 0.400 4.433 0.400 3.957

Code Llama 13B 0.450 3.793 0.550 3.823

Aya 23 8B 0.350 2.024 0.350 1.956

Llama 3 8B 0.600 0.789 0.650 0.775

Gemma 7B 0.500 1.990 0.550 1.985

Mistral 7B 0.700 0.464 0.600 0.504

Phi-3 3.8B 0.400 0.900 0.300 0.890

Gemma 2B 0.250 0.212 0.300 0.217

scores across all three prompt sizes. Although GPT-4 had the best

scores for long and medium-sized prompts, it fell behind on the

short prompt. In general, not only did smaller models operate faster

than larger models, but Llama 3 and Mistral produced overall better

results across all tasks and prompts than bigger models like Code

Llama and Phi-3 14B. Consequently, Llama 3, Mistral and Phi-3

3.8B are good choices when automating this simple task, as well

as GPT-4 if processing times and its proprietary nature are of no

concern when integrating a model into an organization.

Notably, Phi-3 14B is the only model that struggled to adhere to

the requested output format with error rates of 0.03, 0.15 and 0.75 for

long, medium and short prompts respectively. All errors can be at-

tributed to the model’s frequent inability to spell is_announcement

correctly. This makes the model unreliable for simple tasks such as

announcement detection.

On the task of detecting the MITRE ATT&CK tactic of poten-

tially generated alarms following a cybersecurity announcement,

only GPT-4 displayed a level of competence. Although Llama 3 and

Mistral had the second-best statistics, their accuracies can still be

considered insu�cient, because an incorrect categorization for at

least 30% of the time can have drastic e�ects within the incident

response work�ow. All other models demonstrated a low accuracy,

which highlights the di�culty in providing a comprehensive de-

scription of the task within a single prompt. Models like Llama 3

and Mistral should thus only be considered in cases where a short

evaluation time is critical or when an organization strives only to

use openly available models.

Another noteworthy �nding is that the accuracy does not signif-

icantly di�er between prompt sizes. One reason for this could be

that the medium prompt is not of su�cient quality and the long

prompt is of equal quality but contains additional redundant in-

formation, resulting in equally low accuracies. However, GPT-4’s

ability to accurately perform the task is a counterexample to this,

which means that the other models are simply too small or require

more training or �ne-tuning. For example, smaller models might

not have been trained on the required MITRE ATT&CK data and

thus lack the knowledge to detect tactics. Although many papers

conclude that �ne-tuning yields higher performances, they do not

include recent LLMs such as GPT-4 as a comparison. Besides that,
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�ne-tuning is out of scope for this study, which focuses solely on

the performance of general LLMs.

5.1 Limitations

This study faces several limitations that impact the generalizability

of the �ndings. Firstly, the datasets of 40 emails for announcement

detection and 20 emails for tactic detection are small. These sizes

limit the robustness of the results, which might not accurately

re�ect real-world scenarios. To draw more de�nitive conclusions

about the models’ performances, larger and more diverse datasets

are needed.

Secondly, the absence of actual alarm data hindered the ability

to conduct an evaluation for other tasks that are critical in cyberse-

curity triage. This gap limits the scope of the assessment, because

organizations might still desire a comparison of LLMs when au-

tomating these tasks.

Besides that, hardware limitations restricted the study to rel-

atively small models, because larger and more powerful models

had substantial computational requirements. This means the study

might not re�ect the full potential of general LLMs. However, the

assessment of the included models is still valuable for research into

smaller LLMs and environments with limited resources.

Additionally, this research is only focused on general LLMs and

excludes �ne-tuned models which could yield higher performances

on speci�c tasks. Despite this, the results are still valuable to organi-

zations which do not have the resources to create custom �ne-tuned

models.

Lastly, there is no formal separation between triage and further

alarm analysis, because the only requirement in the process is

assigning a priority. The identi�ed steps of triage are based on

examples and consultations with security analysts, but might not

be applicable in all alarm contexts or SOC environments.

Despite limitations, this study still provides a baseline for under-

standing how LLMs can be used to automate tasks in cybersecurity

triage, an evaluation framework to assess and compare LLMs per-

formances, and an overall comparison of available general LLMs.

The insights in this study pave the way to future research with

other tasks, models and datasets, as well as guiding organizations

with practical implementations when optimizing triage.

5.2 Future Works

Avenues for further studies include using the given evaluation

and comparison framework to o�er more extensive comparisons

between LLMs. Studies could include LLMs that are speci�cally

�ne-tuned for cybersecurity or other large proprietary models, as

well as the larger counterparts of the already-included models like

Llama 3 and Mistral.

Additionally, future works can include alarm data to automate

and evaluate tasks such as alarm correlation, kill chain position

identi�cation and priority categorization. This results in a more

comprehensive assessment of LLMs’ capabilities in handling real-

world incidents.

Other research could also explore how triage automation a�ects

user interaction with incident response systems, if optimizations do

decrease the strain on security analysts, and ultimately if it results

in fewer security incidents and reduced costs and damages.

6 CONCLUSION

This study aimed to investigate the integration of LLMs to optimize

the cybersecurity triage process and o�er a comparison of various

LLMs through a systematic evaluation. Where proposed and exist-

ing optimizations show promising results, many steps in triage still

require analyzing and understanding natural language. A literature

review has shown that general LLMs are capable of pro�ciently

executing these steps. Although �ne-tuned models have been the

stat-of-the-art solution for speci�c tasks, recent general LLMs have

shown a comparable competence.

After identifying suitable performancemetrics, comparative anal-

ysis of di�erent LLMs revealed that GPT-4 consistently performed

at a high level when completing cybersecurity announcement detec-

tion and MITRE ATT&CK tactic classi�cation. Llama 3 and Mistral

showed a competitive performance on all tasks, while the 3.8B

parameter version of Phi-3 achieves good results on simple tasks.

Despite limitations on the amount and type of data used, this

research provides a comprehensive framework for evaluating LLMs

in cybersecurity triage. Further research is needed to analyze the

performance of LLMs in other parts of the triage process, and

establish a comparison including �ne-tuned or larger models.

DISCLAIMER ON THE USE OF AI

During the preparation of this work, the author used generative AI

tools such as ChatGPT [31], Llama 3, JetBrains Grazie [16] and code

completion in JetBrains PyCharm [17] for the following purposes:

• Find de�nitions of terms and concepts when conventional

tools and search engines are unsatisfactory.

• Check and correct the spelling of words and grammar of

sentences.

• Improve the readability of sentences and paragraphs through

rewording and restructuring.

• Use code completion functionality to speed up programming

tasks.

After using these tools/services, the authors reviewed and edited

the content as needed and take full responsibility for the content of

the work. The services were not used to produce scienti�c insights,

create �gures, draw conclusions or provide recommendations.
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