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With the rise of technology in the modern era, many pet owners and animal

caretakers in general need effective and accurate activity detection. Addi-

tionally, people with elderly parents or grandparents at home want to know

what their family member is doing, and if they are fine. Traditional methods

of activity detection with cameras have their drawbacks, however, since

cameras can be affected by only what is visible by the naked eye. Therefore,

this study performs activity classification using Micro-Doppler Signature

(MDS) generated from FMCW radars, comparing the differences between

six different classification models for six different activity classes, which

resulted in accuracies from 84% to 93% when trained and validated on a

dataset of 886 Micro-Doppler Signature spectrogram images with a 20%

validation split. The study goes further and proposes an architecture for a

Siamese model for the identification of the subjects performing the action

with an F1-score of 84% for similar pairs and 81% for dissimilar pairs. The

study then concludes by adding how this work can be built upon in the

future. This study is one of the first for animal activity classification and

identification using MDS images.
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Intermediate Frequency Signal, image classification, deep learning, activ-

ity detection, data analysis, CNN, Bidirectional LSTM, Transfer Learning,
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1 INTRODUCTION
As technology in the world develops, the demand for effective, effi-

cient and accurate systems to detect the activity and well-being of

humans and animals alike has skyrocketed. There are multiple rea-

sons for this increase in demand. One use is tracking the movement

and vital signs of a pet to ensure it is healthy. Tracking how certain

people move, especially those of age, to watch over them and detect

if they had a random fall, for example, is also important. These

systems can also detect suspicious human activity to safeguard the

people of the world [15, 32]. It also becomes important to identify

the subject who took the action. For example, if you have multiple

pets, you would want to know which pet is currently eating. Like-

wise, you might need to identify the elderly person who fell so you

can call them an ambulance remotely. As for suspicious activities,

you would want to ensure that only the person responsible suffers

the consequences.

Although there are some common methodologies for activity

detection of humans and animals for personal and social well-being,

they have some drawbacks. For example, in the case of using video

cameras for surveillance footage, it could be the case that the objects

visible on the screen for analysis are affected by various conditions

such as lighting, the position of the camera or even the quality of

the video output. When using deep neural networks like in [32], it
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is quite likely that the computer will struggle to comprehend the

figures and activity, given these conditions. Additionally, various

wearable devices could be required for the subject to get more in-

depth information of vital signs and activity, which may cause them

discomfort, physically and mentally.

To address this issue, we propose employing sensors with the pur-

pose to acquire Frequency Modulated Continuous Wave (FMCW)

radar [1, 16, 42]. These sensors emit FMCW waves, which can then

be analyzed to produce an intermediate frequency (IF), commonly

referred to as a beat signal. This beat signal contains crucial phys-

iological data such as heart rate, respiration rate, and movement

patterns without requiring direct contact with the subject [24]. This

data can be instrumental in assessing the health of a pet or un-

derstanding the actions of both humans and animals. However, to

utilize this information effectively, it must first be processed into a

visual format.

To visualise the activity and movement, the IF signal must be

processed to obtain a Micro-Doppler Signature (MDS), in the form of

a spectrogram, As the name suggests, the Micro-Doppler Signature

would be unique to distinguish from the other signatures generated,

with respect to the subject’s activity [35].

In this paper, we analyze Micro-Doppler Signature images gen-

erated from a dataset containing activity data captured by FMCW

radar sensors. The dataset contains six unique activity classes, each

containing 72 MDS images. Each activity is also split into two sub-

jects performing the action. For image classifiers, the amount of

data present may not be enough, however.

For the provided dataset, the list of activities are as follows:

• Cat Eating

• Cat Jumping

• Cat Walking By

• Cat Walking Towards

• Cat Walking with Human

• Human Walking

The goal of this study is to leverage Deep-Learning (DL) models

for for two key tasks: (i) classification and (ii) identification. Firstly,
we seek to classify various activities observed in the dataset, using

DL image classifiers with the generated MDS spectrogram images.

Additionally, we aim to tackle the identification problem, determin-

ing which specific subject is performing each action. This introduc-

tory overview sets the stage for our exploration into the application

of DL models in understanding and distinguishing activities and

subjects within the dataset.

This goal is formalised using two research questions.

1.1 ResearchQuestion 1
This research question addresses the classification problem:

How can deep learning image classification models

be utilized to classify various actions carried out by

different humans or animals into 6 classes, given their
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respective Micro-Doppler Signatures, with a high rea-

sonable accuracy?

The following sub-research questions would need to be answered,

to answer the main question:

(1) Given the lack of data, which data augmentation techniques

would be feasible to produce more data and prevent over-

fitting?

(2) From current literature, how are models trained to handle the

image classification of Micro-Doppler Signatures?

(3) How can transfer learning techniques be utilized for this

purpose to adapt models already trained on larger datasets?

1.2 ResearchQuestion 2
This research question addresses the identification problem:

How can deep learning models be utilized to identify

specific animals given their respective Micro-Doppler

Signatures?

The following sub-research questions would be answered, to answer

the main one:

(1) How can the high intra-class variance be reduced?

(2) How can the subject-specific features be extracted?

2 LITERATURE REVIEW
Multiple reviewed papers [20, 9, 5, 19, 23, 7, 21, 8, 22] show the

most popular image classifiers with the model architecture and

parameters used. Image classifiers have evolved from basic linear

classifiers to complex deep learning models. Classifiers like Support

Vector Machines (SVM) and k-Nearest Neighbors (k-NN) have been

used for simple tasks, but Convolutional Neural Networks (CNNs)

and Recurrent Neural Networks (RNNs) like (bi-directional) Long

short-term memory models (LSTMs) have revolutionized this field

of computer vision (CV), offering superior performance.

Moving more towards the specialised domain, there exists litera-

ture regarding image classification of spectrograms, hyperspectral

images and Micro-Doppler radar data which contained ideal model

parameters and results for proposed models [2, 3, 27, 43, 14, 37, 36,

6, 28, 29, 10, 25, 41]. Development in this specific domain lacks re-

search with regards to activity; most spectrogram image classifiers

are for Unmanned aerial vehicle (UAV) drones or audio samples.

Hence, transfer learning (TL), which is a technique where knowl-

edge from a task or a model is used to enhance performance for a

new but related idea, is a breakthrough to classifying MDS images

for activity, which can also be done with images [12, 44, 33, 34, 39].

The knowledge obtained from hyperspectral and spectrogram image

classification would be key for this purpose. Additionally, training a

model from scratch may be too computationally expensive, so using

a model with pre-trained weights would be crucial.

For the identification problem, literature exists with respect to

person identification, with the main idea in [11] being preventing

terrorist attacks and identifying illegal intrusions. There has been

more person identification literature as well, such as [18, 4, 38, 31]

with similar ideas of using CNNs and other DL methods to identify

the person. To solve this problem in the past, techniques like Siamese

networks [13] or Contrastive Learning [40] have proven to perform

significantly well. However, there has not been significant research

about animal identification using MDS.

To avoid over-fitting ML and DL models despite not having

enough data, augmentation techniques need to be applied before in-

putting it into the model, so that it can learn more potential configu-

rations of the same classes, hence avoidingmisclassifying something

it has not seen before [30]. For images, standard flipping, rotating

or colour scale changes are usually done to alter the image. How-

ever, spectrogram images contain vital information; they cannot

be treated just like any other image for augmentation. Hence, only

certain image augments with restricted possibilities and parameters

can be done [26, 17].

3 IMPLEMENTATION
Tables of the full model architectures are in section 6, the appendices

of the paper. All models were developed in Python using tensor-
flow.keras.

3.1 Dataset
Some pre-processing of the dataset needed to be performed be-

fore jumping into the deep learning models for classification and

identification. For each of the six classes of activities, two subjects

were present. The humans were given the name "FirstHuman" and

"SecondHuman". The cats were named "Bert" and "Turbo."

For each of these subjects, raw binary signal files were provided,

which, after performing a series of signal processing algorithms,

could extract the Micro-Doppler signature. However, every binary

file had a different time range in which the phase-shifts of the

activity were detected.

Along with these raw signal files, Comma-Separated Values (CSV)

files representing the spectrogram were present, where the time

range was already accounted for. Therefore, the MDS images were

generated by using a simple script involving the matplotlib.pyplot
library and saved for each activity and subject. There are approxi-

mately 37 images per activity per subject collected.

For the augmentation of the data, or simply expanding the data

size, many image manipulation techniques like rotation or zooming

would not work as they would distort important information from

the images. Keeping this in mind, flipping from left to right is the

only image manipulation technique which would work, as it would

still capture the important phase shifts but just at a different time on

the x-axis. Flipping up to down would duplicate data meaninglessly,

as the images are symmetric in the x-axis. Just performing the

horizontal flipping doubles the dataset size, resulting in the data

distribution found in section 6, the appendix.

3.2 Classification
Before jumping right into classification, a copy of the current dataset

was made for the task wherein all the images of the same activity

were grouped together regardless of the subject, resulting in 148

images in each class, except for Cat Walking Towards, with 146.

For all the classification models, the data with flipped and original

images were loaded and the image dataset from directory function

from tensorflow.keras.preprocessing was used with a 20% validation

split and a seed of 123 with shuffle on, to ensure consistency in

2



Human/Animal Activity Recognition Data Analysis - Classification and Identification TScIT 41, July 5, 2024, Enschede, The Netherlands

the dataset for evaluation, yet, ensuring the same training data.

Additionally, all the images are shaped to (128,128) and kept in RGB

or RGBA.

After a review of the existing literature regarding image classifiers

of spectrogram images, some models were shortlisted to be trained

on the dataset in section 3.1.

The following models were trained from scratch:

(1) A Deep CNN Model

(2) A Bi-directional LSTM (Bi-LSTM)

(3) A D-CNN/Bi-LSTM Hybrid Model

As mentioned in section 2, Transfer learning can utilize pre-

trained model weights from larger datasets, and some additional

layers can be added to the model to then learn the detail about the

relevant dataset [14]. Collecting a high amount of data is trickier

for animal activity because the (human) data collectors might ob-

serve but not comprehend some unpredictable behaviour, which

may result in a lower amount of data and/or a longer time necessary

to collect data. Therefore, TL is a great option for this dataset. Ad-

ditionally, it significantly reduce training time and computational

resources and are powerful as feature extractors. The following

models were trained using Transfer Learning:

(1) Transfer learning using A ResNet50 Model

(2) Transfer learning using An InceptionV3 Model

(3) Transfer learning using A MobileNetV2 Model

During training, these models are initialised with weights from the

imagenet dataset, and the top layer for these models are not included.

These models were imported from tensorflow.keras.applications.
The models which were trained from scratch will be presented

below.

3.2.1 Deep-CNN Model. For this model’s architecture, [10] was

used as inspiration to create an activity classification model, since

it also involves Micro-Doppler Signature image classification. This

model was trained from scratch, but slight changes were made

while implementing the model to enhance the results catered to the

provided dataset. For example, the dataset was kept as RGB images

as they are instead of converting it to grey-scale to avoid loss of

important information which colours can show in spectrograms.

One less layer was also used to reduce the model complexity a little

since not much data was available in comparison to other studies;

a complex model could result in overfitting by learning more than

necessary about the training data. The final model architecture can

be seen in Table 2. The model was compiled using the Stochastic

Gradient Descent (SGD) optimizer with a learning rate of 0.001,

sparse_categorical_crossentropy loss for 75 epochs. The changes

made to this model compared to [10] could potentially alter the

optimal parameters for the model in that study, but it is important

to adjust the model in accordance to the dataset being used in this

study. Specifically, the subject in this study involve animals, and

a lower volume of data is available, both of which need adjusted

parameters.

3.2.2 Bi-LSTM Model. LSTM stands for Long Short-Term Memory,

and these networks are used to retain information and context in

the network for longer. Bidirectional refers to the capability of pro-

cessing the input data in both forward and backward directions,

allowing the network to have access to both past (previous inputs)

and future (later inputs) context when making predictions. To make

this classifier model, inspiration was taken from [41], where Xcep-

tion performed the best for feature extraction. Weights in the base

feature extraction model were used from imagenet and the top layer

was not included. A GlobalAveragePooling was then added. The

in-built Xception pre-processing function was used and the images

were reshaped into (32, 128, 128, 3) where 32 is the batch size, 3

represents RGB images and 128 represent the height and width of

the images. Features were extracted for the train and test data and

the labels were one-hot encoded. The output shape is (samples, time

steps, features). The model extracts 2048 features with 1 time step,

and the number of samples are 709 for the train set and 177 for the

validation set. The Bi-LSTM decoder is inspired by the one used in

[41], except for the input shape and the output number of classes.

There were more optimization layers like dropout added, however,

to avoid the model overfitting, by selecting random neurons to not

be active during some training cycles, ensuring the model does not

learn too quickly. Batch Normalization was also added to ensure

the training is not too slow and the layer inputs are re-centered

and re-scaled, stabilizing the training process and improving the

model’s ability to generalise, hence avoiding overfitting. Table 3

shows the architecture of this model. The SGD optimizer was used

with a learning rate of 0.005 at 110 epochs.

3.2.3 DCNN/Bi-LSTM Hybrid Model. This classifier model had the

same D-CNN architecture as the first classifier model. To integrate

the Bidirectional LSTM aspect into this model, a Bidirectional LSTM

layer was added before the classification Dense layer, but not before

a reshaping layer to be compatible with the Bi-LSTM. This model

helps to examine what difference an extra layer makes to a model,

and further, checks what impact can the performance have with

a Bi-LSTM aspect to a D-CNN model for the specific dataset used.

Table 4 shows the model architecture used. This model was compiled

and trained using the SGD optimizer with a learning rate of 0.001

for 120 epochs.

The models which were trained using Transfer Learning will be

presented below.

3.2.4 ResNet-50 Model. Deep Neural Networks (DNNs) often learn

the most complex information when the model has more layers.

However, adding too many layers can be a problem, since gradients

may uncontrollably diminish or explode. To counter this, ResNet

models are used. To put it simply, they have "skip connections"

which skips some layers when necessary. Given the complexity

of Micro-Doppler Signatures, a ResNet model can help keep the

gradient stable while the complex features of the spectrogram are

still learned. Using transfer learning as well, a large volume of data

would not be necessary as the weights from imagenet’s dataset are

pre-loaded. The base model is not set to trainable for this model

for computational complexity reasons. The classification part of the

model is very short, only having one dense layer and then the final

output layer, which is where the model learns some details about

the MDS. Table 5 formally shows the classifier structure. SGD with

a 0.01 learning rate was used for model compilation, and it was run

for 40 epochs.
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3.2.5 InceptionV3Model. In the case of InceptionV3, the basemodel

is set to trainable, as the performance when the model was not

trainable was poor with severe overfitting. The classification part

of the model is, once again, very short, only having one dense

layer and then the final output layer. However, this model used

more optimization layers like Dropout. The model also uses L2

Regularisation, which is where a penalty equal to the sum of the

squared values of the weights multiplied by the factor is added

to the loss function. The penalty is useful to prevent overfitting.

Table 6 formally shows the classifier structure. SGD with a 0.001

learning rate was used for model compilation, and it was run for

37 epochs. Additionally however, to improve the performance and

reduce the overfitting, a learning rate scheduler was used, reducing

the learning rate by a factor of 0.01 every 10 epochs, and a callback

to reduce the learning rate on validation loss plateau by 0.1 with a

patience of 5 epochs was also used.

3.2.6 MobileNetV2 Model. MobileNetV2 is a lot more lightweight

than the other two pre-trained models. Structure-wise, it has been

trained in a similar way to the ResNet50 model, but due to the

lightweightedness, optimizations were made. One such optimiza-

tion was the kernel initializer, set to normal, which means that

the model initializes weights with values drawn from a truncated

normal distribution. Table 7 shows the structure of the model. The

model was trained for 40 epochs with a callback to reduce the learn-

ing rate on plateau of validation loss by a 0.1 factor with a patience

of 5 epochs. SGD was again preferred as the optimizer, with a learn-

ing rate of 0.001 and a momentum of 0.9. SGD has the momentum

property to help the model learn better and jump out of anyminimas

it falls into while training. A batch size of 16 was used here, whereas

the other models used the default value of 32. This was done due

to the model being lightweight, so that the model can generalise

better.

3.3 Identification
The identification of a specific subject carrying out the action is a

trickier problem to tackle because, although Micro-Doppler Signa-

tures can be unique to both the subject and activity, the differences,

including phase shift variations, are often minor, which makes it

difficult to distinguish subjects, even for sophisticated deep learning

methods [13]. Hence, the classes "Bert" and "Turbo" have a high intra-

class variance [13]. To tackle this, a Siamese-like network needed

to be employed. It was then considered to only use the data from

actions which are similar to each other, making it easier to extract

information about the cat’s activities more accurately and efficiently.

Therefore, the actions "Cat Walking By," "Cat Walking Towards" and

"Cat Walking with Human" were used for this purpose.

The concept of the implemented network was inspired from [13],

however re-using the actual model architecture from this literature

would not result in ideal performances for this specific purpose.

This is because the literature used 108,000 spectrogram images just

for training purposes, meanwhile the dataset for Bert and Turbo

used to train and validate this model is a mere 221.

The first step is to create pairs of these images, since the model

accepts two images and finds out the difference between the two.

The images are first loaded with their respective labels, Bert or

Turbo. From the loaded 221 images, 438 pairs were made. These

pairs were labelled on the basis of similarity; two images with of

the same cat are categorised as a positive pair and two images with

different cats are a negative pair. The positive pairs are made by

pairing up images sequentially. For example, the pair (Bert1, Bert2)

would bemadewith the label 1. Then the pair (Bert2, Bert3) would be

made, and so on. Meanwhile, the negative pairs are made by pairing

the same indices with each other, and then making a pair of the

reverse combination. For example, the pair (Bert1, Turbo1) would be

labelled with 0, and the pair (Turbo1, Bert1) will also be made with

label 0. Making separate pairs for the reverse combinations ensures

symmetric learning, so the model does not favor one order over

the other, leading to a balanced learning process where both orders

contribute equally to improving themodel’s distinction performance.

This pairing strategy results in the number of pairs being almost

double of the initial dataset, while also ensuring that the number

of positive and negative pairs are similar, avoiding class imbalance.

At the same time, every image (except for the first and last images

of both Bert and Turbo) is part of two pairs per label. This method

also makes image pairs with the same activity only, ensuring that

the model is trained mainly on the differences between the subjects

(same or different) and not on the differences arising from different

activities. The pairs were split with a 20% validation ratio and a seed

of 42.

It is important to note that the Siamese data does not use the

flipped images, just the original ones which is done to avoid the

possibility of pairing an original and flipped image together, which

can induce bias in the model.

Moving on to the model architecture, the base network comprises

of a 4-layer system, which is explained in more detail in Table 8.

Two instances of this base model are created so that they can

share weights and learn together. One base network takes the first

image of a specific pair as input and the other takes the second image

of the pair. A lambda layer then calculates the Euclidean distance

between these two images, which indicates the similarity of the two

images. A basic contrastive loss function is used to minimize the

distance between similar pairs and maximize the distance between

dissimilar pairs. The formula for this loss function is given as:

𝐿(𝑦,𝑦) = 1

𝑁

𝑁∑︁
𝑖=1

[
𝑦𝑖 · 𝑦2𝑖 + (1 − 𝑦𝑖 ) ·max(1 − 𝑦𝑖 , 0)2

]
(1)

where:

• 𝑦𝑖 : The true label for the 𝑖-th pair. It is 1 if the pair is similar

(positive pair) and 0 if the pair is dissimilar (negative pair).

• 𝑦𝑖 : The predicted distance (or dissimilarity) between the two

elements of the 𝑖-th pair.

• 𝑁 : The total number of pairs.

The term 𝑦𝑖 · 𝑦2𝑖 in the equation aims to minimize 𝑦𝑖 , the predicted

Euclidean distance, for similar pairs (𝑦𝑖 = 1). Ideally, 𝑦𝑖 should be as

small as possible, approaching zero, which signifies high similarity

between the pair. On the other hand, the term (1−𝑦𝑖 ) ·max(margin−
𝑦𝑖 , 0)2 penalizes dissimilar pairs (𝑦𝑖 = 0) where 𝑦𝑖 , the predicted

distance, is less than 1. The penalty increases as 𝑦𝑖 approaches zero,

ensuring dissimilar pairs are adequately separated by at least the

specified margin.
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The overall loss is the mean of these contributions across all

pairs, encouraging the model to reduce the distance for similar pairs

and increase it for dissimilar pairs beyond the specified margin.

The main model is then instantiated with the base models and the

lambda layer, with the inputs being the two images of the pair and

the output being the distance. The Adam optimizer with the default

learning rate of 0.001 is used. The model is trained for 20 epochs

with a batch size of 16.

The identification metrics require some pre-processing opposed

to the classification models, since the output here is the Euclidean

distance and not a class prediction yet. Therefore, a prediction func-

tion is created which take both the images as input and return

the distance, which is then thresholded to 0.5 since it is a binary

classification, whether the image pair is similar or dissimilar, to be

precise.

4 RESULTS AND DISCUSSION

4.1 Classification
The models mentioned in section 3.2 were trained on on the dataset

in section 3.1 according to the specifications for each model, and

the results are being discussed in this section. The full results can

be seen in section 6, which contains a table comparing the results of

each model (Table 9) and confusion matrices for each model (Figures

1, 2, 3, 4, 5, 6)

The first essential metric which evaluates the models and informs

us whether this model is suitable for the classification or not is

validation accuracy. This is the accuracy of the model based on the

validation data, so data that the model has not been trained on. As

section 3.1 states, this is 20% of the total data.

However, just accuracy is not a strong enough metric, since any

dataset could be imbalanced. Even though the training data used is

balanced well, it is good practice to use additional metrics in general,

since accuracy alone is not strong enough to depict what classes

the model is good at predicting. Therefore, the f1 score is also used,

which is the harmonic mean of precision and recall. The formulae

for all of these are given below:

F1 Score = 2 × Precision × Recall

Precision + Recall

(2)

where Precision measures the accuracy of a model in predicting

a specific class, while recall measures the proportion of actual in-

stances of a specific class that were correctly identified by the model.

An overall f1-score is also computed, which is a weighted average

of all the classes, where the weights denote the number of actual

instances for each class.

Table 9 in the appendices, section 6 shows the results of the

classification. It can be observed that the pre-trained models using

transfer learning performed better than the models trained from

scratch. Using the pre-trained weights was helpful for the com-

putational power as well, as these models did not need to run for

too many epochs before achieving satisfactory results. During the

training process, it was also observed that the metrics for ResNet50

and MobileNetV2 did not fluctuate much for the first few epochs.

This can be explained by the frozen layers; the base models were

not trainable, therefore, it took a few epochs for the new layers on

top to start learning.

Without techniques to combat overfitting like dropout, the Deep

CNN model and the hybrid model struggled; 4 dropout layers were

necessary to control the training process, ensuring the model was

not overfitting, which means that the model was not learning details

only specific to the training data, but details which it can generalise

for data it has not seen or trained with. In general, models trained

from scratch have to learn all features, and with the amount of data

available for this study, the models would be bound to overfit, which

can be seen by a huge difference between the train and validation

accuracies. The Bi-LSTM model had a pre-trained model (Xception)

for feature extraction, and it was a smaller model, so having too

many dropout layers was unnecessary. BatchNormalization was also

used to normalize layer outputs and ensure the training is stable.

The Bi-LSTM needed 2 layers to ensure the training process was

quick and still prevents overfitting by providing a regularisation

effect. ResNet has a natural combat to overfitting by using skip

connection, so it did not have any regularization technique, but

InceptionV3 and MobileNetV2, being deeper models, needed to

employ this for some layers. It adds a penalty to the loss depending

on the type of regularization used. L1 regularization adds the sum

of the absolute values of the weights to the loss function, while L2

regularization adds the sum of the squared values of the weights to

the loss function.

Though the gap between training and validation accuracies for

certain models may raise suspicions of overfitting, it is important

to consider the limited data volume used for training. Keeping this

in mind, the observed difference is not significant enough to defini-

tively label the model as overfitting.

InceptionV3 performed the best. The reason for this could be

that pre-trained weights were being used, but the model was also

initially unfrozen. This combination often results in an overfitting

model, but with a careful consideration of the hyper-parameters

(optimizer, learning rate and callbacks in this case) used, the model

can generalise properly..

The hybrid model did not perform too well with the given dataset,

compared to the individual DCNN and BiLSTM models. There are

a few reasons for this. Adding this extra BiLSTM layer increases

the model’s complexity, which makes it harder for the model to

converge during training. As the results show, it managed to learn

the least from the training set compared to the other models. With

a more complex model with different kinds of layers, more hyper-

parameter tuning needs to be done to achieve a better performance.

Additionally, it could be that the Reshape before passing the in-

formation to the BiLSTM layer could be a reason for the loss of

some vital information, which is why the results are not as high

as the hybrid model’s individual counterparts. Finally, a DCNN is

also suited better for extracting the features of images, which the

BiLSTM layer might have hindered.

To explain the differences in the F1-score for each class, the "Eat-

ing" activity was the only class the most images where the position

of the phase shifts were not quite centered, which might explain the

high scores. "WalkingTowards" also had the most distinguishable

pattern as observed by the human eye, which might also explain

how it achieved a 100% for one class. Some images in "Jumping" and

"WalkingBy" also had shared patterns which can explain the similar-

ities in metrics for some models, and also the confusion matrices for
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some models. Some misclassifications, as observed by the confusion

matrices, were also caused because of the "WalkingWithHuman"

class, which has aspects of both cats walking and humans walking.

4.2 Identification
The evaluation of the Siamese network is inherently different com-

pared to the metrics of the classification network. For starters, the

classification networks take an image as input and predict the class

of the activity. This model takes a pair of images as input and pre-

dicts whether the images are similar or not. This would, for example,

be done by passing in two images of Bert and seeing if the model

correctly returns similar or incorrectly returns dissimilar, as the

output. The same concept of F1-score from section 4.1 is used for

the identification metrics too. The F1-score for dissimilar pairs is

84%, indicating a strong ability to correctly identify pairs of images

that are not similar. Meanwhile, the F1-score for similar pairs is 81%

which demonstrates that the model performs well in identifying

similar pairs as well. The results are formally shown by Table 10

and Figure 7 in section 6.

Perhaps, the scores would be higher if more animal MDS image

data was available, using the same concept from [13], but due to

the complications with collecting animal-based data, this remains

a question for the future. Additionally, due to a lack of hardware

resources, a model with a greater amount of pairs, where each image

is paired with every other image, creating𝑀 ∗ (𝑁 )2 pairs with labels,
could not be effectively tested, which is also somethingwhich should

be looked at in the future, where 𝑁 represents the total number of

images in the dataset per activity, and𝑀 represent the number of

activities.

5 CONCLUSION
With this study, we compared different image classifier models and

found that pre-trained models with Transfer Learning, especially

InceptionV3, outperformed models being trained from scratch. A

reason for this performance difference is the lack of volume of MDS

data for for animal activity, which is due to the fact that collecting

animal data is more tricky since their movements are unpredictable

and theymay not knowwhat they should do. For example, collecting

jumping data from a human and a cat is different, since humans

generally understand that they must jump, but cats need to be

trained to know what action should be performed.

Research Question 1 from section 1.1 was answered by firstly

creating more data by flipping left to right, which is the time scale,

so it does not affect the information about the activity. Supervised

models from previous literature were then reviewed and examined

on the dataset in this study with adjustments to layers and opti-

mizations due to a lack of data. Transfer Learning approaches using

commonmodels and the imagenet dataset’s weights were also exam-

ined to find that they slightly outperform the models trained from

scratch, because they have initial weights from a bigger dataset and

do not need data from the smaller dataset from this study for these

weights.

Research Question 2 from section 1.2 was answered by using

a supervised Siamese network with contrastive loss to determine

whether two images were alike or not. Initially, pairs of images were

created from the different images of Bert and Turbo, the two cats

to be identified. These were given labels for similar or dissimilar,

and a backbone network was created. The Siamese model contains

the backbone network with two inputs, each image from respective

pairs, and outputs a Euclidean distance showing similarity. The

model was then evaluated by setting the threshold of the output

distance to 0.5 since it is a binary classification of the two cats.

This study hopes to have provided a breakthrough into classifi-

cation of actions and identification of subjects using animal Micro-

Doppler Signature images. With a greater amount of animal data,

this can be looked into with more detail using the model architec-

tures from this study with adjustments to the model complexity

depending on the dataset size.

6 APPENDICES
During the preparation of this work, the author used the tool Chat-

GPT 4o and 3.5 to assist with some model architecture, and LATEXfor

this document. After using this tool/service, the author reviewed

and edited the content as needed and takes full responsibility for

the content of the work.

Activity Number of Images
Subject 1 Subject 2

Cat Eating 74 74

Cat Jumping 74 74

Cat Walking 74 74

Cat Walking Towards 74 72

Cat Walking with Human 74 74

Human Walking 74 74

Table 1. Activity and Number of Images for Each Subject after left to right
flips

Layer Type Parameters
Resize Image (128,128,3)

Conv2D 32 filters, (3,3) kernel, ReLU

MaxPooling2D (2,2)

Dropout 0.2

Conv2D 64 filters, (3,3) kernel, ReLU

MaxPooling2D (2,2)

Dropout 0.3

Conv2D 128 filters, (3,3) kernel, ReLU

MaxPooling2D (2,2)

Dropout 0.4

Flatten

Dense 128, ReLU

Dropout 0.5

Dense 6, Softmax

Total Trainable Parameters: 3,305,414
Table 2. Deep-CNN Model Architecture
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Layer Type Parameters
Resize Image (128,128,3)

Bidirectional LSTM 512 filters, return_sequences=True

Dropout 0.5

BatchNormalization

Bidirectional LSTM 256 filters

Dropout 0.5

BatchNormalization

Dense 256, ReLU

Dense 6, Softmax

Trainable Parameters: 13,249,286
Table 3. Bi-LSTM Model Architecture

Layer Type Parameters
Resize Image (128,128,3)

Conv2D 32 filters, (3,3) kernel, ReLU

MaxPooling2D (2,2)

Dropout 0.2

Conv2D 64 filters, (3,3) kernel, ReLU

MaxPooling2D (2,2)

Dropout 0.3

Conv2D 128 filters, (3,3) kernel, ReLU

MaxPooling2D (2,2)

Dropout 0.4

Flatten

Dense 128, ReLU

Reshape (-1, 128)

Bidirectional LSTM 64 filters, return_sequences=False

Dropout 0.5

Dense 6, Softmax

Total Trainable Parameters: 3,404,678
Table 4. D-CNN/Bi-LSTM Hybrid Model Architecture

Layer/Model Type Parameters
Resize Image (128,128,3)

Resnet50 imagenet weights, no top layer

The Base Model trainable = False

GlobalAveragePooling2D

Dense 512, ReLU

Dense 6, Softmax

Total parameters: 24,639,878
Trainable parameters: 1,052,166
Table 5. ResNet50 Model Architecture

Layer/Model Type Parameters
Resize Image (128,128,3)

InceptionV3 imagenet weights, no top layer

The Base Model trainable = True

GlobalAveragePooling2D

Dropout 0.4

Dense 1024, ReLU

Kernel Regularizer L2(0.01)

BatchNormalization

Dropout 0.5

Dense 6, Softmax

Total parameters: 23,911,206
Trainable parameters: 23,874,726
Table 6. InceptionV3 Model Architecture

Layer/Model Type Parameters
Resize Image (128,128,3)

MobileNetV2 imagenet weights, no top layer

The Base Model trainable = False

GlobalAveragePooling2D

Dropout 0.3

Dense 512, ReLU

Kernel Regularizer L1(0.01)

Kernel Initializer Normal

BatchNormalization

Dropout 0.3

Dense 6, Softmax

Total parameters: 2,918,982
Trainable parameters: 659,974

Table 7. MobileNetV2 Model Architecture

Layer/Model Type Parameters
Resize Image (128,128,3)

Conv2D 62 filters, (3,3), ReLU

MaxPooling2D (2,2)

Conv2D 128 filters, (3,3), ReLU

MaxPooling2D (2,2)

Conv2D 256 filters, (3,3), ReLU

MaxPooling2D (2,2)

Conv2D 512 filters, (3,3), ReLU

Flatten

Dense 512 filters, ReLU

Dense 256 filters, ReLU

Trainable parameters: 18,460,032
Table 8. Siamese Base Model Architecture
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Model F1-Score Accuracy
Eating HumanWalking Jumping WalkingBy WalkingTowards WalkingWithHuman Overall Train Validation

DCNN 96% 81% 82% 82% 88% 87% 87% 90% 87%
BiLSTM 97% 87% 82% 83% 88% 80% 86% 91% 86%
Hybrid 89% 89% 74% 75% 90% 93% 84% 86% 84%
Resnet 96% 91% 95% 88% 93% 86% 92% 96% 91%

Inception 97% 88% 92% 86% 95% 96% 93% 96% 93%
MobileNet 94% 81% 91% 89% 100% 80% 89% 92% 89%

Table 9. Classification Performance of Various Models

Class F1-score
Dissimilar pairs 84%

Similar pairs 81%

Weighted Average 83%
Table 10. identification Performance of the Proposed Siamese Network

Fig. 1. Deep-CNN Model Confusion Matrix

Fig. 2. BiLSTM Model Confusion Matrix

Fig. 3. Deep-CNN BiLSTM Hybrid Model Confusion Matrix

Fig. 4. ResNet50 Model Confusion Matrix

Fig. 5. Inception3 Model Confusion Matrix

Fig. 6. MobileNetV2 Model Confusion Matrix

Fig. 7. Siamese identification Confusion Matrix
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