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The scheduling of teaching assistants (TAs) is a complex task, similar to
the Nurse Rostering Problem. The TA scheduling problem involves finding
the best way to assign TAs to different time slots. A feasible schedule must
adhere to all the strict constraints, while an optimal schedule maximizes the
flexible constraints. This paper discusses the methodology and implemen-
tation of an algorithm that produces an optimized schedule using Z3 and
Google OR-Tools. It also evaluates the strengths and shortcomings of these
libraries. Additionally, the paper explores research on preference modeling
and potential methods for gathering preferences, which are informed by
discussions and polls among TAs.
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1 INTRODUCTION
Institutions rely on employee scheduling for adequate staffing and
efficient resource utilization. The same applies within the context of
our university, with teaching assistants (TAs) for various modules.
This process involves assigning TAs to sessions based on availability,
expertise, and preferences. Traditionally, people have performed
TA scheduling manually, a time-consuming method prone to sub-
optimal results, taking up to 50 hours per module. During module 2
(Software Systems), we realized that it would be possible to schedule
TAs algorithmically and did so using Python. While this algorithm
produced feasible results, it did not produce optimal ones.
In recent years, constraint programming has emerged as a pow-

erful tool for solving complex scheduling problems. This method
involves defining a set of constraints and using a solver to find solu-
tions that satisfy these constraints. Constraint programming is well-
suited for scheduling issues that affect numerous hard constraints
(e.g., availability, maximumworking hours) and soft constraints (e.g.,
preferences, balanced workloads) [6]. By automating the scheduling
process, institutions can ensure a fairer distribution of tasks and
improve overall satisfaction among TAs while significantly reducing
the time required for module planning.
The TA scheduling problem shares many similarities with the

Nurse Rostering Problem (NRP), which has been extensively studied
in operations research. The NRP involves assigning nurses to shifts
while satisfying various hard and soft constraints. Hard constraints
include requirements such as each shift needing a minimum num-
ber of nurses, while soft constraints involve preferences and other
factors that improve the overall schedule quality [10]. Researchers
have employed various methodologies to tackle the NRP, including
constraint programming approaches, which have shown promising
results in balancing constraints and optimizing schedules [6].
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Tools like the Z3 solver [11], developed by Microsoft Research,
and Google OR-Tools [5] have been instrumental in solving schedul-
ing problems, such as NRP or the job-shop scheduling problem. This
research aims to provide a comprehensive solution to the TA sched-
uling problem by leveraging the strengths of different constraint-
solving techniques and incorporating preference modeling.
A significant challenge in solving the TA scheduling problem

arises from its inherent computational complexity. The problem is
NP-hard because it is an optimization problem with an exponential
search space of O𝑛𝑚 , where 𝑛 is the number of TAs and𝑚 is the
number of sessions; this means that even with a relatively small
number of TAs and sessions, the number of possible assignments
is vast. For instance, with just 3 TAs and three sessions, the search
space already involves 33 = 27 possible arrangements, as illustrated
in Figure 1. As the number of TAs and sessions increases, the com-
plexity grows exponentially, making it challenging to find optimal
solutions within a reasonable timeframe.

Contributions. In this paper, we will address the following ques-
tions: How can we leverage constraint-solving techniques to opti-
mize scheduling the TAs? How can preferences of TAs and teachers
be accurately modeled and integrated into a constraint-based sched-
uling system?

2 PRELIMINARIES

2.1 Constraint Programming
Constraint programming is a paradigm for solving combinatorial
problems that involve finding values for problem variables within
given constraints. These constraints define the conditions that so-
lutions must satisfy. The strength of constraint programming lies
in its ability to handle complex constraints and provide feasible
solutions efficiently [12]. In TA scheduling, constraints can be di-
vided into hard constraints, which must be strictly satisfied, and
soft constraints, which are desirable but not mandatory. The goal
is to find solutions that meet all hard constraints and optimize the
satisfaction of soft constraints.

2.2 SAT-SMT Solvers
SAT (Satisfiability) and SMT (Satisfiability Modulo Theories) solvers
are tools used in constraint programming to solve logical formu-
las. SAT solvers determine if an assignment of variables exists that
makes a given Boolean formula ‘true.‘ SMT solvers extend SAT
solvers by incorporating additional theories such as arithmetic, bit-
vectors, arrays, and uninterpreted functions. The Z3 solver, devel-
oped by Microsoft Research, is one of the most efficient SMT solvers
available. It has been widely used in software verification and anal-
ysis applications due to its robust performance and versatility [2].
Despite its strengths, Z3 struggles with large-scale scheduling

problems due to the exponential growth of the solution space with
the number of variables and constraints. This limitation necessitates
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Fig. 1. Search space of TA assignment

exploring alternative approaches, such as Google OR-Tools, which
can provide feasible solutions within a specified time frame using
constraint programming and optimization techniques [7].

2.3 Scheduling Algorithms
Scheduling algorithms are designed to allocate resources to tasks
over time. In TA scheduling, the resources are TAs, and the tasks
are teaching sessions. Practical scheduling algorithms must account
for the availability, preferences, and expertise of TAs while ensuring
that all sessions are adequately staffed. Various algorithms have
been developed to tackle scheduling problems, ranging from simple
heuristic methods to more complex optimization techniques [9].

Heuristic methods (IE greedy algorithms) provide quick solutions
but may not yield optimal results. Optimization techniques, includ-
ing constraint programming and integer linear programming, aim
to find the best solution by exploring the entire solution space. How-
ever, these techniques can be computationally intensive, especially
for large problems. Hybrid approaches combining different methods
can balance solution quality and computational efficiency [8].

3 METHODOLOGY

3.1 Overview
This chapter outlines the methodology we used to address the TA
scheduling problem. It begins with a detailed description of the prob-
lem formulation. The chapter also discusses the data preparation,
the design of the experiments, and the evaluation metrics used to
assess the proposed solution’s performance.

3.2 Problem Formulation
We define the TA scheduling problem as follows:

• Input Variables
– TA names: A list of strings representing the names of the
TAs (in our example 60 of them)

ta: List[str]
– Time Slots: A list of strings representing different time
slots in which sessions occur, for example, "1 General Tool
Installation", representing the first session.

ts: List[str]
– TA preferences: In Excel, each TA marks a session as 0,
-1, or 1, so this is a dictionary that translates a TA for a

specific session into their preference.
preference[ta, ts]: Dict[(str, str), int]

– Date and time slots per session: Dictionaries that con-
vert a timeslot into their corresponding start and end time
(represented by python datetime)

start_time[ta, ts]: Dict[(str, str), time]
end_time[ta, ts]: Dict[str, str), time]

– Number of needed TAs per session: Maps each session
string to the amount of TAs needed for that session

needed_tas[ts]: Dict[str, int]
– Number of rooms per session: Maps each session string
to the number of rooms used for that session

needed_rooms[ts]: Dict[str, int]
• SMT Variables:
– Whether or not a TA is assigned to a session, either True
or False, one per session per TA, so in our case with 60 TAs
and 110 sessions, we would make 60 · 110 = 6600 of these.:

Boolean(f’assigned_{ta}_{ts}’)
– Difference between the number of hours each TA is as-
signed. This variable represents, for each TA (ta1), the total
number of hours they work subtracted from the number
of hours every other TA works. For 60 TAs, this is 602 or
3600 variables:

Int(0, 200, f’diff_{ta1}_{ta2}’)
– Room that each TA is assigned to for each session. For
each TA assigned to a session, this variable is set between
1 and 3 to see if they go to rooms 1, 2, or 3. There are also
60 · 110 = 6600 of these variables. :

Int(0, 3, f’room_{ta}_{ts}’)
– Homeroom of each TA. Unlike the previous variable, which
is per session, there is one homeroom per TA, and we try
to ensure each TA spends as much time in their homeroom
as possible:

Int(0, num_rooms - 1, f’homeroom_{ta}’)
• Constraints:
– Hard Constraints:

∗ Each session must have the needed number of TAs sched-
uled

∗ TAs must not be scheduled for overlapping sessions.
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∗ No TA is scheduled for a session they are unavailable
for.

∗ TAs must be balanced across rooms
– Soft Constraints:

∗ Maximize TA preferences for each session.
∗ Balance the TA workload
∗ Maximize the amount of time a TA spends in their home-
room.

• Objective: To find a schedule that satisfies all hard constraints
and optimizes the satisfaction of soft constraints.

3.3 Implementation of constraints
• TA Number: The goal with this constraint is to ensure that
the number of TAs assigned to a session is the amount needed.
There is, however, the risk that there are not enough avail-
able TAs; because of this, two ways to represent this is with
either a soft constraint, minimizing the difference between
the amount of TAs assigned and needed, or defining a vari-
able (required) and using hard constraints to ensure that the
assigned number of TAs is equal to the required amount:
∀𝑡𝑠 required_tas[𝑡𝑠] = min(available, needed_tas[𝑡𝑠 − 1])
∀𝑡𝑠 assigned[𝑡𝑠] = required[𝑡𝑠]

• Overlap: To ensure no overlapping sessions, we keep track
of each session’s start and end times. As such, we add the
hard constraint that if there is an overlap for each pair of
sessions, then a TA can only be assigned to one of the two.
∀𝑡𝑠1,𝑡𝑠2 (start[𝑡𝑠1] < end[𝑡𝑠2]) ∧ (start[𝑡𝑠2] < end[𝑡𝑠1]) ⇒
∀𝑡𝑎,

∑[assigned[(𝑡𝑎, 𝑡𝑠1)], assigned[(𝑡𝑎, 𝑡𝑠2)]] ≤ 1
• Availability: If a TA is not available, it should not be possible
to assign them to a session: preference_score[(𝑡𝑎, 𝑡𝑠)] ==

−1 ⇒ assigned[(𝑡𝑎, 𝑡𝑠)] = 0
• Room Balancing: To ensure TAs are balanced across rooms,
we ensure the number of TAs in the room with the lowest
amount of TAs is at most one less than the roomwith themost
TAs; this number is also equal to

⌊
needed_tas[ts]

needed_rooms[ts]

⌋
which

means the constraint can be written as:

∀𝑡𝑠needed_rooms[ts] > 0 ⇒
∀𝑟 ∈𝑟𝑜𝑜𝑚𝑠 𝑥∈{1..needed_rooms[ts]}∑︁

count(𝑟 == 𝑥) ≥
⌊

needed_tas[ts]
needed_rooms[ts]

⌋
• Maximizing TA Preferences: Our algorithm offers two im-
plementations. The first method involves removing TA pref-
erences from the logical solver’s equation. Instead, it marks
TAs as unavailable if more than enough TAs prefer a session.
The second method counts the number of sessions given to a
TA they prefer and then maximizes the sum of these sessions.

∀𝑡𝑎 preference_score[𝑡𝑎] =
ts∑︁

slot

assigned[slot] · preference[𝑡𝑎, slot]

Maximize
ta∑︁
a

preference_score[a]

• Balance TA workload: From both a management and a
fairness perspective, it makes sense to want TAs to have as
similar workload as possible. To do this, we want to ensure
that the sum of the differences between the TA hours is as
low as possible.

∀𝑡𝑎1,𝑡𝑎2 diff[(𝑡𝑎1, 𝑡𝑎2)] =�� 𝑡𝑠∑︁
𝑠𝑒𝑠𝑠𝑖𝑜𝑛

assigned(𝑡𝑎1, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛) · duration(𝑠𝑒𝑠𝑠𝑖𝑜𝑛)

−
𝑡𝑠∑︁

𝑠𝑒𝑠𝑠𝑖𝑜𝑛

assigned(𝑡𝑎2, 𝑠𝑒𝑠𝑠𝑖𝑜𝑛) · duration(𝑠𝑒𝑠𝑠𝑖𝑜𝑛)
��

Minimize
𝑡𝑎∑︁

𝑡𝑎1,𝑡𝑎2
diff[(𝑡𝑎1, 𝑡𝑎2)]

• Maximize homeroom time: We had to keep track of how
long each TA is in their homeroom to maximize that amount.

∀𝑡𝑎time_in_homeroom[𝑡𝑎] =
𝑡𝑎,𝑡𝑠∑︁

duration[𝑡𝑠] ∗ is_assigned_to_homeroom[𝑡𝑎, 𝑡𝑠]

Maximize
𝑡𝑎∑︁

time_in_homeroom[𝑡𝑎]

4 PREFERENCE MODELLING
One difficult situation for TAs with many available sessions is the
inability to say how much they want a session accurately. This
was another critical point of interest, as it allowed us to explore
alternative methods of receiving our input on the preference score.

4.1 Binary Preference Scoring
In the binary preference model, TAs label each session as "willing"
or "unwilling." This simplified approach streamlines preference col-
lection, especially when only basic information about availability
is required. For instance, a TA would assign a "1" (willing) or "0"
(unwilling) to each session.

While this model is advantageous for management due to its
simplicity and the ease of analyzing availability, it has significant
drawbacks for the TAs. The binarymodel limits TAs from expressing
varying degrees of choice for different sessions. This limitation can
lead to lower overall satisfaction among TAs, as they cannot indicate
which sessions they prefer more strongly. As a result, TAs might
feel that their individual preferences are not adequately considered,
potentially leading to dissatisfaction and decreased morale.

4.2 Fixed-Preference Scoring
In the fixed-preference scoring model, TA preferences are repre-
sented as discrete values. Each TA assigns scores to sessions based
on their preferences. The goal is to maximize the sum of scores
while satisfying all constraints. This model is one that TAs are used
to, as it is how it has been done in many modules, including the one
this algorithm is based on (Module 2: Software Systems). The way
this model works is that for each session, a TA chooses to leave the
slot as "1", "0", "-1," or blank, which roughly equates to "preferred,"
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"don’t mind," "unpreferred," and "unavailable." In this way, assigning
a TA to a session they have left blank is impossible.

4.3 Budget-Based Preference Modelling
The budget-based preference model allows TAs to allocate a budget
of preference points across sessions. Our experiences as TAs and
discussions with fellow TAs inspired this approach. We polled the
TA community to understand the importance of different soft con-
straints, revealing the need for a more flexible preference system.
The poll was conducted by giving a list of soft constraints and ask-
ing TAs to rate each one on a scale of importance, with one being
least important and five being most important. The poll results in 2
showed that TAs had widely varying opinions on the importance
of each constraint, with all averages in the range 2.8 to 3.8 (with
the notable outlier of lowering standard deviation having the most
5s), most questions have nearly as many ‘low preference‘ as ‘high
preference,‘ indicating that there is no way to definitively say which
constraint should be prioritized over another since choosing that is
equally helpful to one TA as it is damaging to another. The budget-
based model enables a better balance between TA satisfaction and
scheduling constraints by giving TAs a budget (for example, with
110 sessions, we could theoretically give 110 ’points’ to each TA).
For each session, TAs can allocate any positive integer as their pref-
erence as long as their total preferences do not exceed their budget.
This method simplifies the algorithm by providing a clear metric to
maximize (the number of points given) while allowing for greater
flexibility in expressing preferences.

5 EXPERIMENTAL SETUP

5.1 Data Collection
The experiments’ data is collected from the TA scheduling spread-
sheet of Module 2: Software Systems. The dataset includes TA avail-
ability, preferences, and sessions. Synthetic data was randomly gen-
erated for the budget-based system to simulate various preferences.

5.2 Tools and Software
• Z3 Solver: Used for encoding and solving the constraint
satisfaction problem.

• Google OR-Tools: Used for optimization and constraint-
solving, providing a practical implementation framework.

• Python: Scripting and interfacing with solvers and tools.
• Microsoft Excel: Used for data analysis

5.3 Implementation Details
• Encoding the Problem: The information is taken from the
Excel file where the TA preferences were given and is ana-
lyzed with pandas data frames to extract the necessary infor-
mation to encode the variables and constraints properly.

• Solving Strategy: The constraints are written in Z3 and
SAT-SMT, and algorithms are written incrementally, adding
additional constraints between each version.

• Evaluation Metrics: Performance is evaluated based on the
quality of schedules, computational time, and TA satisfaction.
Metrics include the number of constraint violations, the total
preference score, and the workload balance among TAs.

6 RESULTS

6.1 Iteration 1: Initial comparison statistics
This section presents the experiment results. Table 1 highlights the
first experiment’s results, which helped us understand the direction
of our research. The number of TAs assigned to a session and the
duration of a session are both static numbers. This means that the
average should always be 85.57. This result showed that Z3 produced
an unfeasible result after running for 6 hours. After strengthening
the constraints to provide a more rigid search space for Z3, the
program ran for over 48 hours without terminating, showing us
that a library that allowed for a maximum time to be set (such as
OR-Tools, which we limited to 5 minutes) would provide better
results. The other highlighted cells in this table show the rest of
the critical information, such as the best-performing method for
each measure taken. As seen, OR-Tools have outperformed manual
scheduling in nearly every category except for minimums. Another
way to visualize the disparity between the assigned TA hours would
be with graph 3, which shows that the results generated by Z3 are
the least balanced since the number of hours has many peaks and
valleys that the other two don’t. Furthermore, while the OR-Tools
and manual methods are relatively close to the mean, it’s easy to tell
that the OR-Tools line is more consistent than manual scheduling.
Another interesting note about Z3 is that it is biased toward the
variables it encounters first. This can be seen in the graph, as the
general trend of the Z3 line is sloping downwards, showing that Z3
prefers to give sessions to TAs who are alphabetically first.

6.2 Iteration 2: Preference score
The algorithm ensured that TAs only got their preferred sessions if
another TA with a higher preference score could not get that session.
This was done in a purely pythonic way, simply by checking:

# Check if there are more TAs with the highest
# preference than needed
if len([ta for ta in TAs if

preference_score[(ta, slot)] == 3])
>= needed_tas[i - 1]:

for ta in TAs:
if preference_score[(ta, slot)] != 3:

availability[(ta, slot)] = False
# Check if there are more TAs with at least a medium
# preference score than needed
elif len([ta for ta in TAs if

preference_score[(ta, slot)] >= 2])
>= needed_tas[i - 1]:

print(f"Session {slot} is using TAs with medium
preference")
for ta in TAs:

if preference_score[(ta, slot)] < 2:
availability[(ta, slot)] = False

else:
print(f"Session {slot} is using TAs with low

preference")

However, to push the limits of the optimizer, we decided to at-
tempt to formulate this as another optimization problem within the
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Fig. 2. TA Responses, with column charts dictating how many TAs responded to each option and a line chart indicating the average

Average Deviation Median Min Max Range Time Taken
Manual 85.57 17.91 84 32 141 109 5 hours

Z3 82.17 58.43 8 4 220 216 6 hours
OR-Tools 85.57 12.09 87 26 118 92 5 minutes

Table 1. Comparison of Different Methods with Highlighting. Red highlights indicate infeasibility, and green highlights indicate the best value across the
three methods. Average (mean hours assigned), Deviation (standard deviation, lower is better), Median (middle value, should be close to average), Minimum
(fewest hours assigned, higher is better), Maximum (most hours assigned, lower is better), Range (spread of hours, lower is better), IQR (interquartile range,
lower is better). Highlighted values indicate the best performance.

Fig. 3. Graph: TA number vs Assigned hours

same solver. To do this, we wanted to maximize TAs’ "preference
score," which is the sum of their preferences for each assigned ses-
sion. So, if two sessions were assigned, where one had a preference
of 1, and the other had a preference of -1, they would score 0.
We quickly realized that this system had a flaw. Many people

were getting sessions they didn’t want (preference score -1). This is
because the algorithm now has two goals: maximize the score and
achieve balance (minimize the sum of differences). To this end, if
the algorithm encounters two sets of TAs, one with 0 and 0 and the
other with -1 and 1, it would pick whichever contributes better to
the balancing. As such, We also tried weighing it a bit differently;
We left one as "give one point" and 0 as "give 0 points" but changed
-1 to -2 and -10000 to see the effects it would have on the sessions
given and the deviation. The results are in Table 2.

As expected, when -1s were given a score of -2, far fewer -1s
were assigned, going from 100 to 9, and when the weight was essen-
tially set to infinity, it went all the way down to 0 sessions. But the
fascinating information here is the standard deviation, which was
significantly lower than the previous method. This was a paradigm
shift for us; until then, we had assumed that since the algorithm’s
maximum time remained constant, adding more variables would
lead to a less optimized result. We had not considered the trade-
off in flexibility; having more variables allows sessions previously
removed by hard constraints to be viewed as possible sessions to
achieve the algorithm goals. These new variables allowed us to cre-
ate a schedule with a standard deviation of 4 while giving as few
TAs as possible sessions they would not want.
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Deviation Min Max #1s assigned #0s assigned #-1s assigned

Equal weight 5.38 68 111 1027 234 100
Weighted (1, 0, -2) 4.00 70 101 1256 96 9
Weighted (1, 0, −∞) 7.34 70 118 1263 98 0

Table 2. TA preference assignment with different weighting methods

6.3 Iteration 3: Room Allocation
Another constraint that has yet to be discussed is the room allocation
of TAs. Reflecting on how to implement this, we realized it could be
disconnected from the rest of the algorithm. As such, we decided to
implement this within the current algorithm and separately as its
algorithm. Since this does not give the algorithm more flexibility
like in Scenario 2, the results in Table 3 make sense for the reason
mentioned earlier: the algorithm is given more variables to assign
in the same amount of time, increasing complexity and thereby
decreasing the solution quality it’s able to produce.

However, with an external algorithm, we could use the best algo-
rithm from the previous section and attempt to use it as the input for
the room allocation algorithm. By doing this, we were guaranteed
to receive the result of standard deviation four from Table 2.

The algorithm had two parts. First, it ensured a balance between
rooms. This was done by creating a constraint such that the number
of TAs per room must be greater than or equal to the number of
TAs needed (integer) divided by the number of rooms. This ensured
that no room had more than one TA more than any other.

We could then create an algorithm that maximizes the time a TA
spends in their homeroom by saying for each session that needs a
room allocated if a TA is assigned to that room and then maximizing
the value of ’total_time_in_homeroom.’ In this case, the best way
to compare results is by calculating entropy; which refers to the
imbalance in the allocation of sessions that TAs spend in their
respective homerooms. Where entropy is calculated as:

𝐻𝑇𝐴 = −
𝑛∑︁
𝑖=1

𝑝𝑖 log(𝑝𝑖 )

where 𝑝𝑖 is the proportion of time spent in room 𝑖 , calculated as:

𝐻𝑇𝐴 = −
( 3∑︁
𝑖=1

(
𝐾𝑖∑3
𝑗=1 𝐾𝑗

)
log

(
𝐾𝑖∑3
𝑗=1 𝐾𝑗

))
where 𝐾𝑖 represents the time spent in room 𝑖 . The overall entropy

is then calculated as the average of these values across all TAs:

∀𝑇𝐴 𝐻 =
1
𝑁

𝑁∑︁
𝑡𝑎=1

𝐻𝑇𝐴

Where 𝑁 is the total number of TAs. Using this calculation, we
are able to find the results presented in Table 3. As can be seen,
initially calculated as 0.4 with three rooms, the entropy dropped all
the way to 0.1 following optimization efforts to maximize the total
time TAs spend in their homerooms.

6.4 Scenario 2: Budget Based Preferences
For this experiment, we started by creating fictitious data, randomly
generated, where for each TA for each session, the TA had a 50%
chance they were available for the session. They would randomly
generate a number to set as their budget if available. This led to
values with extreme outliers, resulting in an overall lower standard
deviation. However, thismodel cannot be judged by the samemetrics
as the rest since it was not built similarly. While other algorithms
mainly focused on minimizing the difference between hours, this
one focused on maximizing a new parameter, happiness values.
Whether or not TAs would enjoy this system more is yet to be seen,
but it allows for a different approach, giving a more human-centric
algorithm rather than a mathematically balanced one. The results of
this experiment will enable us to explore new approaches to finding
what an optimized schedule truly means. It was interesting to see
how combining the objectives would change the deviation, and it
was able to come up with a significantly better deviation compared
to the loss in happiness, as seen in Table 4.

6.5 OR-Tools time constraint
The OR-Tools experiments had a time constraint of 5 minutes to
ensure termination in a reasonable amount of time. This decision
was made after tests showed that running the solver for a day did
not produce significantly better results. The results demonstrate
that OR-Tools provide equally good outcomes within 5 minutes, as
shown in Table 5. The results indicate that extending the time for
OR-Tools beyond 5 minutes yields diminishing returns, confirming
that a 5-minute constraint is practical and effective.

7 DISCUSSION
The results from our experiments offer significant insights into
the efficacy of different scheduling methodologies and preference
modeling approaches. This section discusses the implications of
our findings, compares our approach with existing methods, and
outlines potential areas for future work.

7.1 Comparison with Manual Scheduling
The comparison between our algorithmic approaches and manual
scheduling reveals several advantages of the automated methods.
Compared to the manual approach, the OR-Tools-based method
produced schedules with higher preference scores and better balance
among TAs. This suggests that algorithmic scheduling reduces the
effort required and enhances the overall satisfaction of TAs by better
aligning with their preferences, thereby aligning with the goal of
this research.
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Average Deviation Range IQR Time Avg entropy

Rooms integrated 85.57 20.87 113 25.5 5m 0.4
Rooms external (No homeroom) 85.57 4 31 3 >1s 0.4
Rooms external (Homeroom) 85.57 4 31 3 5m 0.1

Table 3. Comparison of Room Types

Average Deviation Median Min Max Range IQR Time Taken

No hour constraints, maximize budget Happiness Values: 87.333 (80%) 13.343 85.5 61 110 49 19 1 secondHour Values: 85.567 34.481 84 14 147 133 58.75

Hour constraints, max budget, equal weight Happiness Values: 82.35 (74.86%) 19.646 76 36 110 74 32 5 minutesHour Values: 85.567 21.989 94 18 108 90 14.25
Table 4. Comparison of Happiness and Hour Values under Different Constraints

Time Interval Average Std. Deviation Median Min Max Range IQR
5 minutes 85.5667 12.092 87 26 118 92 2.25
10 minutes 85.5667 12.058 87 26 118 92 1
30 minutes 85.5667 12.057 87 26 118 92 1
60 minutes 85.5667 12.057 87 26 118 92 1

Table 5. Results of OR-Tools with different time intervals

However, it is notable that manual scheduling occasionally re-
sulted in better minimum workload assignments, showing con-
straints must be placed carefully to ensure that the metric for work-
load balancing is adequately defined. Throughout the experiments,
we had the best results from keeping this metric as minimizing
standard deviation.

7.2 Effectiveness of Z3 Solver
While powerful, the Z3 solver faces significant scalability issues
with large-scale TA scheduling problems. The primary challenge is
the exponential growth in the scheduling problem’s search space,
dramatically increasing complexity and computational requirements
as the problem expands. In addition to this, the paper [1], which
talks about vZ, which is a part of the Z3 solver, has a figure (15) that
shows that even though the speed of the solver is better than other
solvers in the 2014 MaxSAT competition, the amount of time taken
still exponentially grows with the number of instances.

These factors limit Z3’s effectiveness in handling large-scale TA
scheduling problems, making it necessary to use solutions like OR-
Tools, which provide a time-limiting function for such applications.

7.3 Advantages of OR-Tools
Implementing OR-Tools proved to be the most effective approach,
providing feasible and optimal schedules within a reasonable time-
frame. OR-Tools, developed by Google, is a powerful open-source
software suite designed for solving combinatorial optimization prob-
lems. This makes sense, as according to both the OR site and the
results of the MiniZinc competition (an annual constraint program-
ming challenge) [13], OR-tools has won gold medals in all but one
category every year since 2018. The only category in which OR-tools
did not win gold was local search, as they weren’t in that category.

OR-Tools excels in handling large-scale scheduling problems due
to several key features. The CP-SAT solver efficiently handles con-
straint satisfaction problems by combining constraint programming
with Boolean satisfiability techniques. This solver is highly effective
for complex scheduling tasks due to its advanced features like lazy
clause generation and conflict-driven learning. Lazy clause genera-
tion allows the solver to delay the creation of certain constraints
until they are essential. This helps reduce the initial problem size and
focus computational resources on the most promising parts of the
search space. Conflict-driven learning, on the other hand, involves
the solver learning from conflicts encountered during the search,
avoiding similar disputes in the future. This significantly speeds up
the solving process by pruning large portions of the search space
that do not lead to feasible solutions [3].
Additionally, OR-Tools is designed to handle large datasets effi-

ciently. The solver uses advanced techniques to find high-quality
solutions within a limited time frame. Even when a problem in-
stance is too large to be solved optimally within the given time, OR-
Tools can produce a near-optimal solution quickly. This is achieved
through sophisticated heuristics and optimization algorithms that
focus on the most relevant parts of the problem first, ensuring that
the most critical constraints are satisfied early in the process. This
capability is handy for practical applications where solutions must
be generated promptly, even if they aren’t optimal [4].
Compared to Z3, which struggles with scalability due to the ex-

ponential growth of the search space, OR-Tools is better suited for
large-scale and complex scheduling problems. While Z3’s exponen-
tial solve time becomes inefficient with large datasets, OR-Tools’
CP-SAT solver is designed to manage these challenges through
techniques like lazy clause generation and conflict-driven learning.
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This allows OR-Tools to maintain high performance and scalability,
making it a better solution for large optimization problems.
These factors collectively highlight why OR-Tools is superior

for large-scale TA scheduling problems. It offers a robust, flexible
solution that outperforms Z3 in terms of scalability and efficiency.

7.4 Preference Modeling Techniques
Our study explored various preference modeling techniques, each
with its unique advantages and limitations. While simple and easy
to implement, the binary preference model lacks the granularity
needed to capture varying degrees of preference, potentially leading
to less satisfactory schedules for TAs. Fixed-preference scoring offers
more nuanced input but can still be limiting in complex scenarios
where TAs have high preferences for multiple sessions.

Inspired by our experiences and discussions with fellow TAs, the
budget-based preference model allows for a more flexible and de-
tailed representation of TA preferences. This model emerged as a
potential solution due to the diverse opinions gathered from our
poll on the importance of different soft constraints. Our simulations
showed promising results, indicating that this model could signif-
icantly improve TA satisfaction and scheduling quality by giving
each one a happiness score of over 80%, as we saw in Table 4.
While our initial research and simulations suggest the budget-

based model’s potential, further research and practical implemen-
tation are needed to evaluate its effectiveness fully. Future deploy-
ments should consider adopting this model to enhance scheduling
quality and better accommodate the varying preferences of TAs.

7.5 Implications for Practice
The findings have several practical implications for institutions look-
ing to improve their scheduling processes. Automated scheduling
tools like OR-Tools can lead to more satisfactory schedules, reduce
administrative burdens, and enhance TA morale. Adopting flexible
preference modeling techniques can further improve the alignment
between TA assignments and individual preferences. Furthermore,
consider whether a constraint adds or limits flexibility when con-
sidering the choice of constraints. As previously mentioned, when
we added the constraint of TA preferences, the standard deviation
decreased by about half, but the room constraint nearly doubled.
In cases like this, it’s advisable to check if it is possible to use the
solver for intermediate results; as we have demonstrated, solving
two more minor problems can be significantly less work than solv-
ing one large one. Finally, keep in mind the size of the space, as
more minor issues may be doable with various libraries, but for
larger ones, some, such as Z3, are very inefficient.

7.6 Future Work
While this study comprehensively analyzes TA scheduling optimiza-
tion, several areas warrant further investigation. Future work could
explore hybrid models that integrate human decision-making with
algorithmic optimization. Additionally, extending the research to
other types of scheduling problems, such as student or staff schedul-
ing or even non-academic scheduling, could provide broader insights
into the applicability of these methods. Lastly, user feedback and

satisfaction surveys could provide valuable data to refine further
and validate the proposed methodologies.

8 CONCLUSION
This research presents a thorough approach to optimizing teaching
assistant (TA) scheduling using constraint-solving techniques and
advanced preference modeling. Implementing SAT-SMT solvers,
particularly Google OR-Tools, has significantly improved efficiency
and satisfaction over manual methods.
The experiments highlight key findings. Z3, despite its power,

struggles with scalability, taking over 48 hours without producing
feasible results. In contrast, Google OR-Tools consistently generated
high-quality schedules within a 5-minute timeframe. The OR-Tools’
CP-SAT solver handled complex constraints effectively, resulting in
schedules with an average deviation of just 12.09 hours compared
to Z3’s 58.43 hours.

Various preference modeling techniques were explored, with the
budget-based preference model proving the most effective. This
model allowed TAs to distribute preference points, significantly
improving satisfaction scores. For example, weighting preferences
reduced the number of unpreferred (-1) sessions from 100 to 9.
Room allocation, handled separately, also improved outcomes.

The integrated approach nearly doubled the standard deviation,
highlighting the benefits of solving complex problems in stages.

Practical implications are significant: automated OR-Tools sched-
uling reduces administrative burdens and improves TA satisfaction
and workload balance. For instance, OR-Tools reduced the deviation
in workload hours to 4.00 compared to manual scheduling’s 17.91.

Future research should extend these methods to other scheduling
contexts and incorporate user feedback for further refinement. Inte-
grating machine learning could also enhance the personalization of
scheduling solutions.
In conclusion, leveraging advanced constraint-solving and pref-

erence modeling techniques optimizes TA scheduling, enhancing
efficiency, satisfaction, and workload balance, thus contributing to
a more effective educational environment.
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