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Traditional network architectures have relied on special-purpose hardware
since the 1970s. Such an approach limits network adaptability and increases
set-up time. Software-Defined Networking (SDN) offers a solution by cen-
tralizing control over the network switches. One of the tools for modeling
networks is DyNetKAT, an extension of NetKAT. Both are network modeling
languages based on the Kleene algebra with tests, a mathematical frame-
work used to model and analyze the behavior of systems encoded as regular
expressions with tests.

DyNetKAT is catered specifically to model SDNs. However, it has limited
capabilities for tracing data races - unexpected network behavior caused
by communication delays between the central control point and and the
forwarding plane (the switches). The aim of the research is to create a tool
to solve this issue. By using vector clocks, the paper seeks to design and
develop a solution for automated data race detection.

This addition will expand the capabilities of DyNetKAT, improving the
stability of the networks modeled and validated with the Tracer developed
in this paper, by pointing out potential issues. Furthermore, the results have
the potential to facilitate a deeper discussion and examination of the root
causes of data races in SDNs.

Additional Key Words and Phrases: SDN (software defined networking),
vector clocks, (Dy)NetKAT, data races, control plane, data plane, network
modelling, traceability, dynamic reconfiguration, network behavior

1 INTRODUCTION

1.1 Common network setup
Traditional network devices have been called “the last bastion of
mainframe computing” [10]. Since the 1970s, network design prin-
ciples have remained fundamentally unchanged, maintaining their
core structure for nearly four decades. One of such fundamentals is
the handling of the data plane1 and control plane2. In a traditional
network, each switch autonomously manages its interpretation of
the control plane (Figure 1).

This architectural rigidity increases complexity in network main-
tainability due to the necessity of configuring each switch individu-
ally. As well as making it effectively impossible to reason precisely
about network behaviors, because of the large amount of individual
asynchronous components.

1.2 Software defined network
In response, the concept of software-defined networking (SDN) has
emerged. With the main differential being the separation of the
data and control planes and consolidation of the management over

1A distinct functional layer in networking responsible for the forwarding of data packets
between network devices.
2A distinct functional layer in networking responsible for network control including
policy enforcing and routing configuration.
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Fig. 1. Traditional network setup

the control plane in a centralized location (Figure 2). SDN archi-
tecture comprises a central controller and programmable switches
that communicate via standardized protocols. The former responds
to network events such as new connections from hosts, topology
changes, and shifts in traffic load by re-programming the switches
accordingly [1]. Such an approach enhances network controllability
and adaptability in real-time scenarios.

Fig. 2. Software-defined network setup

1.3 Modeling framework
The research necessitates a model to simulate a network and detect
possible data races in a repeatable, controlled environment.

1.3.1 NetKAT. A sound foundation is NetKAT, a domain-specific
language for specifying, programming, and reasoning about net-
work forwarding behavior based on Kleene algebra3 with tests4, it
provides a foundational structure and consistent reasoning princi-
ples [1]. However, NetKAT does not support dynamic reconfigura-
tion of the network, limiting each component to a constant set of
3A mathematical structure used to model and analyze the behavior of regular expres-
sions and formal languages, particularly focusing on operations like union, concatena-
tion, and Kleene star (iteration) [2].
4An extension of Kleene algebra that includes Boolean tests, allowing for the modeling
and analysis of both program control flow and data flow within a unified algebraic
framework [11].
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Table 1. DyNetKAT operations

Operator Explanation
f = n Filter packets with filed f that match value n
f←n Modify packets field f with value n
p . q Apply operations p and q to the packet
; Sequential composition denotes the end of packet operations

Ch ! m (A)synchronously send messagem on a Ch channel
can happen only in conjunction with ? from a different component

Ch ? m (A)synchronously receive messagem on a Ch channel
can happen only in conjunction with ! from a different component

⊕ Non-deterministic choice between two sequences actions
⊥ No (null) action
1 Accept / true
0 Reject / false

rules. This makes it practically impossible to model concurrent SDN
behaviors.

1.3.2 DyNetKAT. To remedy these shortcomings, DyNetKAT [3]
was introduced as an extension. Unlike NetKAT, DyNetKAT was
built with dynamic SDNs in mind. It enables the ability to model
communication between data and control planes, allowing it to
properly represent an SDN.

DyNetKAT is powerful and relatively simple to use due to its high
level of abstraction and Kleene completeness5. Furthermore, as the
focus of this study revolves around enhancing the capabilities of
DyNetKAT, it inherently dictates the utilization of DyNetKAT as
the primary framework for investigation and improvement.

1.4 Running model
Figure 3 illustrates an SDN setup with one controller, one switch,
and two hosts. The size and simplicity of the model allow for an
easier presentation in this paper while still capturing the potential
for data races.

Fig. 3. Simple SDN setup

Equation (1) defines two DyNetKAT components (Switch and
Controller) that are executing in parallel:

𝑆𝑊 | | 𝐶 (1)

5A property of a language indicating that it can express all regular behaviors using the
operations of union, concatenation, and Kleene star, fully capturing the patterns and
sequences described by regular expressions and finite automata.

Next, the rules of operation are defined per component (refer to
Table 1 for operator explanation). It should be noted that in this
paper send and receive are used synchronously (handshake com-
munication). Whenever such communication happens, the event is
marked as ’rcfg’.

Equation (2) defines the Switch:

𝑆𝑊 := (𝑓 𝑙𝑎𝑔 = regular) · (𝑝𝑡 = 1) · (𝑝𝑡 ← 2); 𝑆𝑊 ⊕
(𝑓 𝑙𝑎𝑔 = blocking) · (𝑝𝑡 = 1) · 1; ( (𝐻𝑒𝑙𝑝 ! 1); 𝑆𝑊 ) ⊕
(𝑈𝑝 ? 1); 𝑆𝑊 ′

(2)

It has a simple configuration. It recognizes two types of packets,
blocking and regular (stored in the flag field of the packet). Both
must come from Host 1 and only regular packets will be forwarded
to Host 2. If a blocking packet is encountered, the Switch asks the
Controller for help by sending a message on channel ’Help’.

The rules define three non-deterministic choices or options.
• Choice 1
(1) Manipulate and forward the message packet6:
(a) (𝑓 𝑙𝑎𝑔 = regular) - check if a packet has field flag equal

to value ’regular’.
(b) (𝑝𝑡 = 1) - check if the packet is at port 1.
(c) (𝑝𝑡 ← 2) - forward the packet to port 2;

(2) Behave like itself (choose from initial choices);
• Choice 2
(1) Manipulate and forward the message packet:
(a) (𝑓 𝑙𝑎𝑔 = blocking) - heck if packet has field flag equal to

’blocking’.
(b) (𝑝𝑡 = 1) - same as in Choice 1.
(c) 1 - accept the packet, but not forward it;

(2) Send message "1" on channel ’Help’;
(3) Behave like itself;
• Choice 3
(1) Receive message "1" on channel ’Up’;
(2) Dynamically reconfigure to rules of Switch‘ ;

Note that steps within a choice must execute consecutively, while
choices themselves can happen arbitrarily. For example, imagine that
Switch is in choice 1. It manipulates the incoming packet, forwards
it, and moves on to step 2. At this point, the Switch can behave in
accordance with choice 1, 2, or 3, depending on the packets in the
network.

If the Switch gets the message on channel ’Up’, it should reconfig-
ure to the alternative mode of operation:

𝑆𝑊 ′ := 0; ⊥ (3)
Equation (3) represents reconfiguration of the Switch, for example
policy or routing table updates. In this particular case this definition
states that the Switch must do nothing.

Last but not least, controller can repeatedly receive "1" on ’Help’
channel, then send the message "1" on channel ’Up’ (respond to the
message on ’Help’):

𝐶 := (𝐻𝑒𝑙𝑝 ? 1); ( (𝑈𝑝 ! 1); 𝐶) (4)

6If all packet field comparisons and reassignments are successful, the packet is for-
warded, otherwise it is ignored.
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Note that both the Controller (Equation (4)) and the Switch (Equa-
tion (2)) are defined recursively. Such definitions allow to model
infinite continuous operations. Notice that the definition of the Con-
troller is truly endless. In contrast the Switch will end its execution
if reconfigured to Switch’ since the rules do not specify any action
after ⊥.

𝑆𝑊 := (𝑓 𝑙𝑎𝑔 = regular) · (𝑝𝑡 = 1) · (𝑝𝑡 ← 2); 𝑆𝑊 ⊕
(𝑓 𝑙𝑎𝑔 = blocking) · (𝑝𝑡 = 1) · 1; ( (𝐻𝑒𝑙𝑝 ! 1); 𝑆𝑊 ) ⊕
(𝑈𝑝 ? 1); 𝑆𝑊 ′

𝑆𝑊 ′ := 0; ⊥
𝐶 := (𝐻𝑒𝑙𝑝 ? 1); ( (𝑈𝑝 ! 1); 𝐶)

2 RELATED WORK
There is a multitude of different modeling languages for SDNs [5,
7, 9, 13–15, 17, 18], however only NetKAT (and its extensions) are
Kleene complete, meaning that it is possible to fully reason about
the system behavior using such language. This capability allows
network administrators to define, analyze, and enforce policies ef-
fectively, thereby ensuring reliable and efficient network operation.

The main existing alternative for this article is the SDNRacer [4].
It employs happens-before models7 for reasoning about event order-
ing, whereas DyNetKAT utilizes Kleene algebra for network model-
ing and analysis. The big difference between the two approaches is
that while the SDNRacer tests the network model by providing in-
puts based on real-world logs, the DyNetKAT Tracer determines the
network inputs based on its definition, which theoretically simplifies
and accelerates the validation process.

3 MOTIVATION
Although the DyNetKAT framework is catered to dynamic SDNs,
it has its limitations. This paper focuses on two such hindrances -
the detection and the traceability of data races within a network.
The research aims to create a tool to address these drawbacks by
creating an extension of DyNetKAT. The tool will improve the
existing framework with a validation process against data races,
increasing the stability of the networks validated with DyNetKAT.

4 CONTRIBUTIONS
• Easy installation of DyNetKAT using single script (install.sh
from research repository).
• Design of the algorithm for data race detection (Section 7).
• Implementation of the designed algorithm (TracerTool in
research repository).

5 DATA RACES

5.1 What are data races
In networking, a race condition occurs when the timing and or-
der of events, such as packet arrivals or thread executions, lead to
unpredictable and inconsistent system behavior.

This research focuses on data races, specifically between the data
and control planes. That is when a switch or a number of them use
7A conceptual framework used to reason about the temporal ordering of events in a
distributed system.

an outdated policy and/or forwarding table due to communication
delays between the controller and the switch.

5.2 Representation in the running model
If we take a closer look at the Switch, we can see that the second
non-deterministic choice includes communication on the channel
’Help’. The Controller is set up to respond on another channel, which
when received by the Switch changes its behavior to Switch’. This
effectively makes the act of sending on the channel ’Up’ take the
role of the rule update to the Switch.

The sequence:
𝑆𝑤𝑖𝑡𝑐ℎ requests an update→ 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 receives the request→

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 responds with the update→ 𝑆𝑤𝑖𝑡𝑐ℎ updates

can be defined as the update communication. And if completed
atomically8 both components will stay synchronized.
By the definition of the Switch (Equation (2)) it is possible to

receive a response (an update) or receive a data packet. The latter
simulates a communication delay between the Controller and the
Switch, allowing the Switch to follow outdated rules. This is a data
race - the Switch performs an action during the update communica-
tion.

5.3 How to detect data races
SDN is a paradigm that falls under the definition of a distributed
system9. In this case, the components are controllers and switches,
and the whole network represents a complete system.

In distributed systems like SDN, a data race means that the com-
ponents of a system are out of sync. So, race detection necessitates
a mechanism to determine whether components are synchronized.
One such mechanism for distributed systems is the use of vector
clocks.

6 VECTOR CLOCKS

6.1 Basics
It is a mechanism used in distributed systems to order events [6, 12].
As the name implies, it consists of a vector with a size equal

to the number of components in the system, where each vector
entry represents a step counter (clock) for each distinct component.
Each component in the system has its own copy of a vector clock
(Figure 4).

6.2 Inner workings
As shown in Figure 4, step 0 involves initiating all clocks with zeros.
When a component has an internal event, it increments its own
index in its local copy of the vector clock. The rest of the entries
in the clock, as well as the clocks of the other components, are
unchanged (step 1). Both steps 2 and 3 are the same as just described
but to another component.

Once a component sends a message, it first increments its clock,
and then sends it along with the message, creating a timestamped

8An indivisible and irreducible sequence of operations that must be executed completely
or not executed at all.
9A distributed system is a collection of independent computers that appears to its users
as a single coherent system [16].
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Fig. 4. Vector clocks in a system with the size 3 (three components)

message (step 4.1). Upon its arrival, the receiver updates each entry
in its own clock with the corresponding entry from the message
timestamp if the stamp has a greater value than the local copy, then
it increments its clock entry by one (step 4.2). Note that step 4 is split
in two, this is because in DyNetKAT communication is synchronous,
meaning send and receive happen in one time frame10.

6.3 Race detection using vector clocks
To understand how vector clocks help detect data races we first need
to know what does it mean for two vector clocks to be comparable.
Lets take two vector clocks 𝑉𝑖 and 𝑉𝑗 , array of ids 𝐼𝐷𝑠 , and two

components ids 𝑥 and 𝑦. The clocks are comparable if:

𝑉𝑖 [𝑥] ≤ 𝑉𝑗 [𝑥] ∀𝑥 ∈ 𝐼𝐷𝑠

or
𝑉𝑖 [𝑥] ≥ 𝑉𝑗 [𝑥] ∀𝑥 ∈ 𝐼𝐷𝑠

Such pair of vector clocks indicate that the components are syn-
chronized. In the case of:

∃ (𝑉𝑖 [𝑥] < 𝑉𝑗 [𝑥] ∧ 𝑉𝑖 [𝑦] > 𝑉𝑗 [𝑦]) ,where 𝑥,𝑦 ∈ 𝐼𝐷𝑠∧𝑥 ≠ 𝑦

two clocks suggest that the components are operating in parallel
and are no longer synchronized, implying a data race. Figure 5
visualizes comparable in incomparable vector clocks. While Figure 4,
step 5, showcases one possible scenario of vector clocks becoming
incomparable. Notice that step 5 is not the only race condition in
the example, however, races without communication between the
components are generally fine since the switches can transmit data
packets without synchronization.

7 TRACING ALGORITHM
This algorithm is the core of the tool. It is designed to ingest a
DyNetKAT model, then iterate over all possible execution paths
until either a recursion depth limit is reached or a data race has
occurred. The output consists of execution traces that caused the
violation, which themselves are sequences of network events.

10This is not true for every distributed system.

Fig. 5. Comparable (green) and incomparable (red) clocks

7.1 Critical DyNetKAT axioms
Two fundamental DyNetKAT axioms for the algorithm are 𝑝𝑖{𝑚}(𝑄)
and 𝑟𝑒𝑑𝑢𝑐𝑒 𝑄 . The pi operator takes n as the unfold limit and Q as
the DyNetKAT expression. It unfolds recursive definitions n times,
transforming infinite definition into a finite subset of actions, where
n is the number of actions separated by sequential composition (;). It
is important to recognize that packet operators (=,← and ·) together
until ’;’ are considered as one action.

𝑆𝑊 := (𝑓 𝑙𝑎𝑔 = regular) · (𝑝𝑡 = 1) · (𝑝𝑡 ← 2); (
(𝑓 𝑙𝑎𝑔 = regular) · (𝑝𝑡 = 1) · (𝑝𝑡 ← 2); ⊥ ⊕
(𝑓 𝑙𝑎𝑔 = blocking) · (𝑝𝑡 = 1) · 1; ⊥ ⊕
(𝑈𝑝 ? ”𝑜𝑛𝑒”); ⊥)

⊕ (𝑓 𝑙𝑎𝑔 = blocking) · (𝑝𝑡 = 1) · 1; ( (𝐻𝑒𝑙𝑝 ! ”𝑜𝑛𝑒”); ⊥)
⊕ (𝑈𝑝 ? ”𝑜𝑛𝑒”); ⊥

(5)

Equation 5 show application of 𝑝𝑖{2}(𝑆𝑊 ). Note that each non-
deterministic choice consists of two actions and the end statement
separated by ’;’. The third choice is the exception, because the rules
from Equation 3 simply state to stop execution.

Since the implementation of DyNetKAT is written in Maude11 re-
duce command is responsible for applying DyNetKAT axioms (rules).
It transforms a complex definition into a single chain expression,
representing possible execution routes.

The pi, just like any other operator must be used in conjunction
with reduce to get the desired output.

𝑟𝑒𝑑𝑢𝑐𝑒 𝑝𝑖{2}(𝑆𝑊 )
It is worth mentioning that DyNetKAT terms can be separated

into three groups:
• (𝑓 𝑙𝑎𝑔 = regular) · (𝑝𝑡 = 1) · (𝑝𝑡 ← 2); - max-text-assignments
(block of packet operations, namely =,← and · ).
• (𝐻𝑒𝑙𝑝 ! ”𝑜𝑛𝑒”) - send
• (𝐻𝑒𝑙𝑝 ? ”𝑜𝑛𝑒”) - receive

7.2 Variables
• 𝑁1, 𝑁2, ..., 𝑁𝑘 - components of the network (controllers and
switches) with id ’k’.
• 𝐶𝑘 :=< 0, 0, ..., 0 > - vector clock of the component ’k’.

11Maude is a high-performance reflective language and system supporting both
equational and rewriting logic specification and programming for a wide range of
applications.
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load ../../src/maude/dnk.maude

fmod MODEL is
protecting DNA .
protecting PROPERTY-CHECKING .

ops Init : -> DNA .
ops SW, SWP, C : -> Recursive .
ops Help, Up : -> Channel .

eq getRecPol(SW) = "(flag = regular) . (pt = 1) . (pt <- 2)" ; SW o+
"(flag = blocking) . (pt = 1) . 1" ; ( (Help ! "one") ; SW ) o+
(Up ? "one") ; SWP .

eq SWP = zero ; bot .
eq getRecPol(C) = (Help ? "one") ; ( (Up ! "one") ; C ) .

eq Init = C || SW .
endfm

Fig. 6. Model in .maude

• 𝑃 := (𝑁1 𝐶1) | | (𝑁2 𝐶2) | | ... | | (𝑁𝑘 𝐶𝑘 ) - the network config-
uration (program) where ’k’ components with vector clocks
are executing in parallel.
• 𝑝𝑚𝑁𝑘 := 𝑟𝑒𝑑𝑢𝑐𝑒 𝑝𝑖{𝑚}(𝑁𝑘 ) - short notation for reducing
component 𝑁𝑘 unfolded with limit𝑚.
• 𝑚𝑡𝑠 - max-test-assignments term
• D := {mts or send or receive or ⊥} ;D - recursive format of
the expression after unfolding.

7.3 Steps
The algorithm starts with the initial program 𝑃 . Then applies 𝑟𝑒𝑑𝑢𝑐𝑒 𝑝𝑖
to each component and creates a starting node with an unfolded
program: (𝑝𝑚𝑁1 𝐶1) | | (𝑝𝑚𝑁2 𝐶2) | | ... | | (𝑝𝑚𝑁𝑘 𝐶𝑘 ).

For each pair of components (𝑁𝑖 𝐶𝑖 ) and (𝑁 𝑗 𝐶 𝑗 ) ∀𝑖, 𝑗 ∈ {1, 2, ..., 𝑘},
check if 𝐶𝑖 and 𝐶 𝑗 are comparable. If so, continue, otherwise, save
the execution path as the trace and exit the node12. If the first action
of the expression is in form ’𝑚𝑡𝑠 ; 𝐷’:

• record𝑚𝑡𝑠 as part of the execution;
• update clock 𝐶𝑖 to 𝐶′𝑖 (increment the element at index 𝑖 in
𝐶𝑖 );
• replace 𝑝𝑚𝑁𝑖 with 𝐷𝑖 (the same action sequence as 𝑝𝑚𝑁𝑖 ,
excluding the first action), resulting in: 𝑃 ′ := (𝑝𝑚𝑁1 𝐶1) | |
(𝑝𝑚𝑁2 𝐶2) | | ... | | (𝐷𝑖 𝐶𝑖 ) | | ... | | (𝑝𝑚𝑁𝑘 𝐶𝑘 )
• create a new child node with 𝑃 ′ as the updated program.

For all pairs of elements (𝑝𝑚𝑁𝑖 𝐶𝑖 ) and (𝑝𝑚𝑁 𝑗 𝐶 𝑗 )13, if (𝑋 !𝑚𝑠𝑔; 𝐷𝑖 )
is part of the 𝑝𝑚𝑁𝑖 and (𝑋 ?𝑚𝑠𝑔; 𝐷 𝑗 ) is part of the 𝑝𝑚𝑁 𝑗 :

• record 𝑟𝑐 𝑓 𝑔(𝑋, 𝑚𝑠𝑔) as part of the execution;
• the receiver (𝑁 𝑗 ) updates its clock (increment the element
at index 𝑗 and update the rest of the entries in 𝐶 𝑗 if the
corresponding ones in 𝐶𝑖 are greater);

12This will not happen on the first pass, but is an important recursion end condition.
13If send or receive do not have a compatible pair (same channel and same message),
they are skipped (ignored).

• update the program to: 𝑃 ′ := (𝑝𝑚𝑁1 𝐶1) | | (𝑝𝑚𝑁2 𝐶2) | |
... | | (𝐷𝑖 𝐶𝑖 ) | | ... | | (𝐷 𝑗 𝐶 𝑗 ) | | ... | | (𝑝𝑚𝑁𝑘 𝐶𝑘 )14
• create a new child node with 𝑃 ′ as the updated program.

Otherwise if 𝑝𝑚𝑁𝑖 is ⊥, skip the element.
The steps are repeated for each created child recursively from

clock comparison (start of previous paragraph), until no more chil-
dren can be created.

7.4 Input format
The encoding shown before is purely theoretical, actual DyNetKAT
implementation15 requires the model to be in .maude format, which
means that theMaude syntaxmust be used. Figure 6 depicts the same
running model in Maude implementation. The ’DNA’, ’PROPERTY-
CHECKING’, ’Recursive’, and ’Channel’ are modules and types re-
quired by DyNetiKAT. 𝑔𝑒𝑡𝑅𝑒𝑐𝑃𝑜𝑙 is a special operator, its purpose is
to define recursive definitions. Be aware that max-test-assignments
and all packet related operations are in a string format.
The model along with the recursion limit are required as the

input.

Fig. 7. Execution tree of program 𝑆𝑊 | | 𝐶 with unfold 1 (the starting node
is marked in green)

14Notice that𝐶𝑖 and𝐶 𝑗 are symmetric with respect to | | , meaning𝐶𝑖 | | 𝐶 𝑗 is the same
as𝐶 𝑗 | | 𝐶𝑖 .
15DyNetiKAT available at https://github.com/hcantunc/DyNetiKAT
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8 VALIDATION
To validate the correctness of the tool, we can check if the produced
execution treesmatch expectations. Running the tracer with unfold 1
yields an execution tree with two child nodes representing two
possible options: getting a packet with flag regular or blocking
(Figure 7).

This matches the definitions of the Switch (Equation 2) and the
Controller (Equation 4). Out of the three possible Switch choices, the
third is the only one that necessitates a preceding action from an-
other component (Controller). While the Controller can not perform
the sending action, without receiving first. Both actions were taken
by the Switch, so in both nodes only its clock was updated.
Up until unfold of 3, no data races occur, so no race traces are

produced. Figure 8, showcases the first race tree. As expected, the

Fig. 8. Race execution tree of 𝑆𝑊 | | 𝐶 with unfold 3

race condition occurred after reconfiguration (Node 3), or (𝐻𝑒𝑙𝑝 ! 1)
from the Switch and (𝐻𝑒𝑙𝑝 ? 1) from the Controller. When the for-
mer performs a packet-related action, instead of completing the
handshake. Keep in mind that the race tree is a sub-tree of the full
execution path. You can find a full graph with unfold 3 and more in
the repository16, specifically in the directory ’OUTPUTS_FOR_PA-
PER’17.
16https://github.com/EZUTwente/DyNetiKAT_with_race_tracing
17https://github.com/EZUTwente/DyNetiKAT_with_race_tracing/tree/master/OUT-
PUTS_FOR_PAPER

The resulting traces can be seen in the Figure 9 in the short
form as a single expression, and in the long form showing the
performer, the action, the vector clocks, and the corresponding node
id in the graph. All traces include only one 𝑟𝑐 𝑓 𝑔 step, meaning the
update was not completed and the data races between the planes has
occurred. Both traces describe the expected, result, which validates
the implementation.

9 DISCUSSION

9.1 Usage and installation
The DyNetiKAT_with_tracer repository contains the instructions
on how to install and run the tracer in the README.md file in
the root directory. The only system requirement is the Linux op-
erating system, specifically Ubuntu 20.0418 with python (version
> 3.10.12). The tool also uses Maude 3.1, however it is included in
the installation of the Tracer.

To use it, run the command in the following form ’python tracer_-
runner.py <path_to_maude> <path_to_model_in_maude>’. The com-
mand has several optional parameters (Table 2):

Table 2. DyNetKAT operations

Parameter Value Explanation
-c - output text with color
-t - show tracing steps
-u int unfold depth
-g ’race’ or ’full’ choose which tree to generate and what traces to print
-f string set a name for text output file (copy of console output)

Note that the parameters with values shoud be inputed without
the space between the parameter and the value (example ’-grace’ to
produce only race graphs and traces)

9.2 Implementation
The resulting extension called Tracer (available at github.com/
EZUTwente/DyNetiKAT_with_race_tracing) met the assigned goal
- implement race tracing tool for DyNetKAT (based on the theory
in [8]). It is, however, a sophisticated prototype, rather than the final
product. The main limitation is the speed, which is caused by the
sub-optimal efficiency.
It was not important in this step of the broader DyNetKAT and

SDN research. However, it is extremely important for the power
and the performance of the algorithm. The two slowest parts of the
tool are the tree creation/traversal and the clock comparison. The
former can be improved with parallelization, since the branches of
each node and independent between themselves. This will allow for
multiple CPU threads to explore several execution paths simultane-
ously, dramatically increasing the speed. The latter can be addressed
with a better comparison algorithm, as well as with parallelization.
The current comparison mechanism uses two-dimensional itera-
tion, checking every pair, resulting in the exponential complexity
of𝑂 (𝑛2), where n is the number of components. As the comparison
is done pairwise, it can also benefit from parallel execution. One

18Other Linux distributions might work, however, the development and testing were
done on the specified version of Ubuntu.
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RACE SHORT TRACES
Trace 0:
"(flag = blocking) . (pt = 1) . 1"; rcfg('Help', '"one"'); "(flag = blocking) . (pt = 1) . 1";

Trace 1:
"(flag = blocking) . (pt = 1) . 1"; rcfg('Help', '"one"'); "(flag = regular) . (pt = 1) . (pt <- 2)";

RACE LONG TRACES
Trace 0:
{C[0, 0] || SW[0, 0]} nid:0;
[SW] "(flag = blocking) . (pt = 1) . 1" {C[0, 0] || SW[0, 1]} nid:1;
[SW -> C] rcfg('Help', '"one"') {C[1, 2] || SW[0, 2]} nid:3;
[SW] "(flag = blocking) . (pt = 1) . 1" {C[1, 2] || SW[0, 3]} nid:5;

Trace 1:
{C[0, 0] || SW[0, 0]} nid:0;
[SW] "(flag = blocking) . (pt = 1) . 1" {C[0, 0] || SW[0, 1]} nid:1;
[SW -> C] rcfg('Help', '"one"') {C[1, 2] || SW[0, 2]} nid:3;
[SW] "(flag = regular) . (pt = 1) . (pt <- 2)" {C[1, 2] || SW[0, 3]} nid:6;

Fig. 9. Race traces of 𝑆𝑊 | | 𝐶 with unfold 3 (each action is colored differently for visibility)

should acknowledge that the parallelization is not the silver bul-
let for efficiency drawbacks. A CPU can have only so many cores
and threads, so the use of more efficient algorithms and/or data
structures is most likely unavoidable.

10 CONCLUSIONS
The research successfully achieved the assigned goals, namely to
design and implement the tracing algorithm as an extension for the
DyNetKAT framework. The prototype is not perfect but suffices to
prove the concept and provides a solid foundation for the future
improvements mentioned in the implementation section. If refined,
it can help improve SDN stability validated with the Tracer tool, by
indicating potential problems before deployment. This will allow
for future race research, and provide potential real-world usage.

11 USE OF AI TOOLS
This paper made use of AI tools such as Grammarly for the grammar
checking. As well as OpenAI ChatGPT and Microsoft Copilot as
complementary search engines and dictionaries.
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