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Over the years, Docker has gained a high level of attention among enter-
prises, individual users and researchers. With its success, the number of
vulnerabilities and malicious intents increased, raising security concerns
among the public. Numerous studies have already been conducted that
aimed to identify, categorize, assess or mitigate these vulnerabilities. Al-
though more scarce, some studies also discussed the practical process of
dockerization, however with a focus on web services or data processing
software. This paper aims to blend elements of a literature review and an
empirical study to offer an overview of the advantages and security impacts
of Docker and present new insights from dockerizing and performing a
security assessment on a Python Client-Linux application. Furthermore, we
investigate the feasibility of introducing some recommended security best
practices in the context of our application. The chosen running environ-
ment for the application is a Raspberry Pi 4 and the security assessment is
performed using a security tool called Snyk.

Additional Key Words and Phrases: Docker, security impact, Python applica-
tion, vulnerability assessment

1 INTRODUCTION
Nowadays, cloud-native systems are among the most widely used
platforms for application development and deployment, offering sev-
eral benefits such as lightweight virtualization, resource efficiency
and streamlined DevOps processes [19, 27]. Numerous services like
Software as a Service (SaaS), Platform as a Service (PaaS), and In-
frastructure as a Service (IaaS), use virtualization techniques like
hypervisor or containerization to pool and share resources across
networks [3, 19].

As the industry evolved new requirements emerged, striving for
tighter development cycles, cost-efficient infrastructures and regu-
lar product deliveries which generated an increase in the adoption
of containers [14]. Compared to other widely employed alternatives
like virtual machines (VMs) that rely on hypervisor-based virtual-
ization and offer higher data security, containers provide a level of
performance close to bare-metal and the ability to execute many
versions of an application smoothly on the same computer [14, 18].
Their flexibility expanded their use to various application domains
such as Internet of Things (IoT) services, smart cars, service meshes
and many more, catching the attention of large-scale organizations
like Amazon, Spotify and Netflix [23].

From the perspective of market popularity, Docker encountered
the highest response, reaching the level of "market leader among
all container solutions" according to [18]. However, as the indus-
try demand and usage of Docker increased over time, its security
implications became a subject of interest among many enterprises,
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individual users and researchers. In fact, the security concerns that
containers face nowadays, among which wemay list attackers pilfer-
ing confidential information, denial of service attacks on application
containers, and privilege escalation to abuse the underlying host
resources, constitute one of the main obstacles to their broader
adoption [23, 26, 27].

Previous works exist on Docker and other containerization tech-
niques which aimed to identify, categorize or find mitigation solu-
tions to different vulnerabilities, to assess or employ various security
tools or frameworks, or to conduct surveys or studies on Docker
images and container security. Although more scarce, some studies
also discussed the practical process of dockerization. However, the
focus was often placed on applications related to web services or
data processing software. This paper aims to blend elements of a
literature review and an empirical study in order to offer a gen-
eral overview of the advantages and security implications of using
Docker and present new insights from dockerizing and performing
a security assessment on a Python Client-Linux application.

By Python Client-Linux application we describe a Python written
program which runs on a Linux operating system (in our case the
Raspberry Pi OS) and serves as a client in a client-server architecture
with the goal of requesting and receiving services or information
from the server. It is also important to note that IoT applications
such as ours are tightly coupled to the hardware which made it
challenging to address some of the application specific requirements
during the analysis [8].

1.1 Research question
To guide the research process, the following main research question
(MRQ) has been formulated, which was further sustained by three
sub-research questions (SRQ):

MRQ:What is the effect of dockerization on a Python Client-
Linux application?
SRQ1:What are the general advantages of using Docker?
SRQ2: What are the most common Docker security vulnera-
bilities?
SRQ3: To what extent can security guidelines be employed
in the Dockerization process?

To answer these research questions, a mixed approach was em-
ployed: SRQ1 and SRQ2 were answered fully through a literature
review, whereas SRQ3 implied both a literature review on existing
security guidelines and a hands-down dockerization process and
security assessment.

The rest of this paper is organized as follows. Section 2 constitutes
the literature review part of the research including a short introduc-
tion to Docker, an overview of its general benefits, a discussion on
existing research on Docker’s security vulnerabilities and a sum-
mary of possible mitigation solutions. Section 3 describes the steps
taken to dockerize the application and explains why and how the
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security scanner was used. Section 4 presents an overview of the re-
sults gathered from the security assessment. Section 5 discusses and
analyzes the obtained results in comparison to the literature. Sec-
tion 6 concludes the paper by providing an answer to the research
questions and offering suggestions for further work.

2 LITERATURE REVIEW
The literature review was completed using three search engines,
namely: IEEE Xplore, Google Scholar and Scopus. The criteria for
choosing the papers involved the level of relevance, as well as the
publication year, encompassing papers from the time frame marked
by the debut of Docker to the present, namely from 2013 to 2024,
with a preference for more recent works. The later was considered
an important factor particularly when addressing security vulnera-
bilities given the continuously evolving nature of both threats and
mitigations.

2.1 Docker and basic concepts
To provide some context, the concept of virtualization refers to the
creation of a simplified abstract environment for software programs
which allows them to be moved or redeployed on any platform that
provides the same virtual environment [17]. Although containers
have been present for a long time, it was not until the debut of
Docker in 2013 that this type of technology started gaining more
and more interest [15]. Docker is an open-source virtualization tech-
nology that allows system architects and software developers to
install, test, and deploy applications in various operating system
environments [20]. At the foundation of Docker we have two es-
sential components: the virtualization solution known as Docker
engine and the Docker Hub platform which is a cloud-based registry
service dedicated to the storage and sharing of Docker images [18].
Compared to other container alternatives like LXC, OpenVZ or

Linux-Vserver, Docker distinguished itself through factors such as
speed, simplicity, and the existence of a standardized Dockerfile
format for creating and managing the software containers [14, 17].
Without changing the program’s underlying architecture, the de-
ployment of an application into the Docker platform is possible
by simply preparing an instruction file, also known as Dockerfile
[12]. This Dockerfile consists of a set of instructions used to create
a Docker image by building stacked layers, each describing the files
that are added, modified or removed by the Dockerfile commands
[17]. Once an image is built, the application can run inside a newly
created instance that gets further referred to as a container [29].

2.2 Advantages of using Docker
In order to better understand the benefits brought by container
technologies, it is important to understand the context that drove
some of the changes in implementation. We will start by discussing
their counterpart, namely the hypervisor-based virtualization which
has been and continues to be widely employed in the world of cloud
computing.

Virtual machines or VMs are the most popular form of hosted hy-
pervisor virtualization and are well known for offering an isolated,
reliable and fully operational environment for software applica-
tions [19]. However, their execution entails the usage of the host

machine’s resource pool and the creation of a new copy of the OS,
libraries and programs each time a new instance is created [23]. As a
result, the host needs to accommodate two operating systems along
with the newly introduced virtual layer, thus affecting the overall
performance [14].

Container technologies emerged to address these concerns, their
design enabling the sharing of the operating system kernel and
resources with the host [23]. What these technologies have in com-
mon is that they provide smaller footprints, increased scalability
and performance, as well as the ability to package application bi-
naries along with their dependencies and libraries into standalone
artefacts [24, 25]. Their characteristic of being lightweight resulted
from their lack of kernel and some system libraries, which reduced
image sizes to a few megabytes and sped up the boot process [14].
According to Sultan et al. (2019) [23], this difference can be rather
significant given that "a container can start in 50 milliseconds while
a VM might take as long as 30–40 seconds to start".
Despite the previously mentioned features, it was Docker’s spe-

cific implementations and additions which allowed it to dominate
the market over the other competing containerization alternatives.
Among these, we can name: the ability to produce and sustain the
largest number of virtual environments on a physical hardware, the
presence of a standardised Dockerfile format, increased compatibil-
ity with third-party softwares, as well as, the presence of its unique
Union File System [18]. The latter allows for the verification of the
stored images originating from DockerHub and provides accessibil-
ity to different file system in a consistent and centralized manner
[18].

Lastly, Docker can also prove itself beneficial in a company con-
text given its potential to reduce software development and shipping
time [18]. Normally, when moving from one computing environ-
ment to another, be it across devices, teams or into production, it
is required to install all necessary services and dependencies on
the new host machine. However, this process is time-consuming
and prone to errors or misunderstandings generated from unclear
instructions or incompatibilities with versions, related libraries,
security guidelines, network architecture or storage [19]. Docker
images, on the other hand, are portable and have all services and
dependencies needed already packaged inside, requiring only to run
one command for each application to pull the image and start it
inside a container.

2.3 Security implications
Although virtual machines are considered to provide a lower perfor-
mance when compared to containers, their counterargument is that
they employ better data protection. The applications executed from
within a virtual machine are restricted to only be able to access the
VM’s kernel, thus adding an extra layer of defence between the host
and applications [18]. On the other hand, Docker’s security relies on
two Linux-specific features: namespaces which isolate OS resources
and provide an autonomous environment for container processes,
and cgroups which regulate and limit resource utilization [9, 18].
Despite seemingly safe, because they combine and isolate all

dependencies into one single component, the kernel-sharing char-
acteristic makes containers and therefore the host, vulnerable to
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different security attacks [19, 30]. As a result, the security implica-
tions of Docker and similar containerization techniques have been
approached in different manners among the research community.
Some researchers have laid a foundation by identifying and cat-

egorizing possible vulnerabilities associated with Docker. For in-
stance, the survey presented by Sultan et al. (2019) [23] discusses
six main risk categories in respect to containers, namely involving:
images, registries, orchestration, containers, host OS and others. The
four different scenarios discussed host protection from containers,
safeguarding a container from its own applications, inter-container
security, and defence against dishonest or malevolent hosts [23].
The study made by Patra et al. (2022) [18] uses a similar threat
modelling strategy, however, with the addition of a fifth use case
dedicated to docker engine protection from applications, containers,
and hosts. In contrast, Martin et al. (2018)’s [14] analysis considers
a different vulnerability division across five categories based on the
distinct layers of the Docker ecosystem: weaknesses within images,
threats related to Docker or lib-container, unsafe production sys-
tem configuration, vulnerabilities in the transmission, validation or
decompression of images, and vulnerabilities in the Linux kernel.
Another category of papers has focused on assessing different

security frameworks such as STRIDE, DockerChannel, CONSERVE
or SEAF designed to find or evaluate threats that may result in
security breaches or information leakages such as root access mis-
use of host resources, DoS attacks, and the gain of unauthorized
access to sensitive data, source codes, and passwords [4, 5, 10, 26].
A case study by Wang et al. (2023) [25] even showcases their own
prediction-based online anomaly detection model, which models
prediction errors and identifies abnormalities using LSTM neural
networks and a dynamic sliding window technique.
The evolution in the number and impact of security vulnerabil-

ities posed by Docker images has also been under investigation.
A longitudinal study conducted by Mills et al. (2023b) [16] on 380
container images during three different time-frames revealed that
despite the increase in the number of vulnerabilities with time, less
than 1% of them were deemed as high risk. Meanwhile, other studies
emphasised the need for more updates of the third-parties packages
contained within the images and the potential for de-duplicating
registries and reducing image sizes by eliminating redundant files
[28, 29]. In addition, Lin et al. (2020) [13] raises attention to a few
more problems like the use of outdated base OS images, improper
and troublesome use of the "latest" tag and disregard for image
versioning.

2.4 Security guidelines
As a response to the security risks identified in the different Docker
components, researchers have taken the initiative to examine po-
tential mitigation techniques and propose best practices in order to
minimize the effects of using this technology.

Among the most common exploits, denial of service (DoS) attacks
can do serious harm to Docker containers by overloading them
with requests or overusing the host resources, which can cause
system failures, slowdowns and render other programs and services
inoperable [11]. To mitigate this risk, it is advisable to configure
resource quotas, a process targeted to restrict the amount of memory

and processing power a container can utilize, such that less system
resources can be accessed by the malicious code [18].
On a more general level, it is recommended to ensure periodic

update of Docker, the host OS and the base image to include the
newest security changes [18]. Vulnerability scans should also be
employed regularly on both images and applications to identify
and address potential issues early on [23, 26]. These solutions can
prevent remote code execution, container escape attacks and DoS
[23].
Measures can also be taken in the early stages of creating the

Dockerfile to limit the overall attack surface which maximizes its
effect by either: following a multi-stage build approach where the
Dockerfile is structured to have a stage for building the image and
another for running, using an intermediate container that transfers
only the essential binaries and dependencies or by choosing a dis-
troless image which is essentially a minimal version that lacks a
few components like shells and package managers [26]. In addition,
Wong et al. (2023) [26] also advises users to pay attention to the
origin of any image fetched from DockerHub, opting for "official"
images over “verified”, “certified” and “community”. Using untrusted
images can lead to an attack on all containers within the host [23].

Another aspect worth considering is running the container with
the least level of privilege whenever feasible and trying to avoid
dangerous docker run options by limiting file permissions, configur-
ing TLS for DockerHub or hardening host configuration [18, 26, 30].
This approach is efficient towards preventing tampering, DoS at-
tacks and gaining unauthorized access that may lead to resource
depletion or data breaches [23].

Lastly, the network and API are crucial to Docker security since
the containers employ them for communication, hence it is advised
tracking their status and enabling communication among containers
only when necessary to minimize the chance of ARP spoofing, DoS
attacks and network-based intrusion [18, 23].

3 METHODOLOGY
Through this experiment, we aimed to better understand the process
of dockerization and its effects on the security level of a Python
Client-Linux application in order to make a comparison with the
currently available information and hopefully provide some new
insights. To commence, it is important to note that the chosen
running environment for the application was a Raspberry Pi 4 and
the security assessment was performed using a security tool called
Snyk.

3.1 Dockerization process
In order to set up the environment, the first step involved installing
Docker on the Raspberry Pi which was achieved by following the
instructions on the official website under the Debian section. Each
operating system has a dedicated set of steps and different installa-
tion alternatives, however we opted for using the AP repository. At
this step, it is recommended to run the basic "hello-world" image
which will display a confirmation message to ensure that Docker
works as intended.
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3.1.1 Requirements file. In real-world scenarios, most applications
make use of different third-party libraries or need to import func-
tions from different classes. In our context, these are the so-called
libraries and dependencies which need to be packaged together with
the application in the image for a correct execution. Fortunately,
this process can be automated by activating the virtual environment
and running the "pip freeze < {file-name}" command which will
generate a list of all installed packages in the current environment
and redirect the output to a file. These commands should be run in
the home directory of the application.

3.1.2 Dockerfile. The next step involved the creation of the Docker-
file. It is important that the name is not modified and no extension is
added, otherwise the file will not be recognized. An overview of the
general structure of the Dockerfile used for the dockerization of our
Python Client-Linux application can be seen in Figure 1. The first
line "FROM {image-name}" will pull a base image from the Docker
public repository Docker Hub which will serve as the first layer of
the image. It is possible to just include the name of the application,
in our case "python" and that will pull the latest version available,
however, as the application was run using python:3.9, we opted to
use the same version. The "WORKDIR /directory-name" instruction
is responsible for setting the default directory where commands
will be run inside the container. Next, the command "COPY" is re-
sponsible for copying files and/or directories from the host into the
file-system of the image. In our case, the dot points to the current
directory on the host whose contents will be copied to the home
path in the image. The image and, therefore, container will not be
able to access anything situated outside of this directory that could
be found on the host machine.
The instructions of type "RUN" are used to carry out any shell

operation that can be performed in the terminal, including those
for modifying environment variables and installing software. An
example can be found in the following two lines which are both
meant to install the necessary dependencies that the application
needs inside the container. Often, the latter command would suffice,
however, there are cases where specific dependencies cannot be
installed via "pip" and generate an error during the building stage
of the image and therefore need to be installed separately using
"apt-get install". The following three commands aim to create a new
non-root user, assign it the necessary permissions for the desired
directory and specify that this user will responsible for the execution
of the remaining commands using "USER {user-name}" instruction
. This is one of the security practices which will be discussed in
section 5.
Sequentially, the "ENV" commands are responsible for setting

environmental variables which are meant to change the behaviour
of the application. The "PYTHONPATH" ensures that the specific
path is included in the search for imports. The other environmental
variables are very specific to the current application and therefore
out of the scope of this discussion. Finally, the "CMD" instruction
specifies which command should be executed when the container is
started, usually the one for starting the application. The difference
between the "CMD" and the "RUN" command is that the latter is
run during the building stage and adds a new layer each time to the

Fig. 1. Dockerfile overview

image, while the former describes the runtime behaviour without
adding any new layer to the image.

3.1.3 Building the image and running it in a container. The command
for building the Docker image is rather straightforward "sudo docker
build -t {image-name} .". The -t flag is used in order to give a name
to the image which is also known as a tag and the " ." at the end
implies that the Dockerfile is located in the current directory. After
that, every command in the Dockerfile will be executed, creating
the layers of the image. Lastly, to run a specific image inside a
container, we made use of the "sudo docker run -v /path1:/path2
{image-name}" command. The -v /path1:/path2 optionmounts /path1
from the host computer to /path2 inside the container. This was
essential in the context of our application because of the need for
file sharing regarding the contents of the USB.

3.2 Security Assessment
Security scanning tools are essential for locating and fixing vul-
nerabilities, hence proactively reducing the risk of exploitation in
production environments by covering different techniques such as
static, dynamic, software composition analysis (SCA), and container
security scanning [21].

Multiple such tools are available, however, Snyk was chosen for
our analysis as its functionalities seemed the most fitted to our con-
text. Some relevant features offered by Snyk include: inter-container
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security scanning, precise vulnerability mapping, low false positive
rate, security enhancing suggestions or even immediate fixes, an
intuitive user interface and GitHub integration [1, 2]. Among the
programming languages supported by Snyk we can name: Python,
Ruby, Node.js, Java, and Scala [2].
There are multiple ways of interacting with the tool including

the CLI, IDEs, API, however, we opted for logging in to the Snyk
Web UI platform through GitHub account linkage.

According to the documentation, Snyk Risk Scores are automati-
cally applied for any vulnerability-type issues, allowing for a risk-
based prioritization strategy and calculated based on the threat’s
possible impact and exploitability level [22]. At the end of the scan-
ning, the tool assigns each issue a risk score, ranging from 0 to 1000
[22]. This is further used to derive four levels of significance, namely
critical, high, medium and low in an equally distributed manner
(intervals of 250) [22]. In addition, the interface provides a list view
which allows the users to inspect each vulnerability individually,
including aspects such as vulnerability name, issue severity, secu-
rity score, exploit maturity issue type and more. Examples of how
the overall security assessment could look like, as well as, figures
of detailed views of threats and generated security improvement
suggestions can be found in section 4.

As a final step, we performed an analysis on the results by looking
into each vulnerability’s CWE (CommonWeakness Enumeration) or
CVE (Common Vulnerabilities and Exposures) code to find out the
use case, how it can be exploited and which solutions could prevent
the attack from happening. These information were gathered from
the two official websites [6, 7] of the specific codes which can be
found in the description of each vulnerability. More details on the
results can be found in Section 5.

4 RESULTS
In this section, we included the output generated by the security
assessment tool on the Dockerfile and requirements file (see Figure
2), as well as a few examples, showcasing detailed views of some
of the vulnerabilities identified (see Figure 3 and Figure 4) and
presenting two of the suggestion offered in order to improve some
of the issues (see Figure 5 and Figure 6).

Fig. 2. Security assessment result

5 DISCUSSION
The output generated as a result of the vulnerability scanning (see
Figure 2) discovered a total of 99 issues in the Dockerfile and re-
quirements file. Through a simple calculation we can observe that,
58% are deemed as low risk and less than 4% can be found in the
highest risk category.

Fig. 3. Detailed view Dockerfile critical vulnerability

Fig. 4. Detailed view Dockerfile high vulnerability

5.1 Dockerfile security assessment
Focusing on the Dockerfile, 57 issues were identified: 1 critical, 1
high and 55 low. We will discuss in detail the two ranked the highest
and summarize the findings for the low-risk category.
Firstly, the critical issue (see Figure 3) "CWE-190: Integer Over-

flow or Wraparound" is said to be introduced by zlib/zlib1g which
is a version of a data compression library and can be caused by ex-
ceeding an integer type when performing an arithmetic operation.
This vulnerability can have a significant impact on the applica-
tion when used during memory allocation, data handling or buffer
management given an attack can be triggered through user inputs.
Possible exploits include remote code execution, DoS attacks or
data corruption. The recommended mitigation strategies discuss
input validation, revising the choice of certain function for safer
alternatives and performing regular updates and code audits.
Secondly, the vulnerability ranked as high (see Figure 4) "CWE-

770: Allocation of Resources Without Limits or Throttling" sig-
nalised that no restrictions are set on the amount of memory or
resources which can be allocated to the container. This can give
attacker the opportunity to utilize many resources, spamming a
large number of requests or even monopolizing the entire quota
preventing the other components from receiving their share. Among
the security implications we can name DoS, system crashes and
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Fig. 5. Base image update

performance issues. Solutions to this problem include: configuring
resource limits, monitoring processes and input validation.
Finally, the other low-risk vulnerabilities were concerning: re-

source exhaustion, incorrect permission assignment, improper val-
idation of certificates or ckecksums, out-of-bounds, uncontrolled
recursion, link following, cryptographic issues, code injection, in-
formation exposure, improper input validation or authentication.
Furthermore, the ways in which they could be exploited included:
confidential wrap tokens, arbitrary code executions, modify or read
memory and application data, DoS, privilege gain, protection mech-
anism bypass and data corruptions and employ similar mitigation
strategies to the ones already mentioned.
Out of the 57 issues, 6 can be solved by choosing a more recent

version of the base image as it can be seen in Figure 5.

5.2 Requirements file security assessment
In the case of the requirements file, the tool identified 42 issues:
3 critical, 17 high, 17 medium and 5 low. The three critical issues
concerned heap-based buffer overflow, arbitrary code execution and
improper following of a certificate chain of trust. Meanwhile, the
high risk vulnerabilities included: injections, out-of-bound reads,
licensing issues, DoS, uncontrolled resource consumption and buffer
overflow.

Out of the 42 issues detected, 34 can be resolved through a simple
update of the dependency used which is automatically suggested
and fixable by Snyk (see Figure 6).

Fig. 6. Dependency update

5.3 Literature comparison
During the dockerization process we could appreciate some of the
benefits of using Docker. The Dockerfile format was convenient
and simple to use, multiple instances could be created and ran on
the same host and the time necessary to start the application from
within the container was very short, almost imperceptible matching
the statement provided by Martin et al. (2018) [14].

Furthermore, the vulnerabilities found as a result of the security
assessment corresponded with the ones listed in the literature. Simi-
lar to the longitudinal study of Mills et al. (2023b) [16], we also found
that most of the threats listed were deemed as low-risk, although
his study included a larger range of risks thus rendering a lower
percentage.

5.3.1 Security guidelines feasibility. The other aspect which we
wanted to investigate through the dockerization of the application
was the feasibility of employing security guidelines. As mentioned
at the end of Section 5.1 and Section 5.2, a simple update on the
base image and application’s dependencies was possible and had
the potential to reduce a good amount of the vulnerabilities iden-
tified. The other measure that was applicable in our case was the
configuration of resource quotas by adding the option "–memory"
and "–cpus" when running the container.
On the other hand, limiting the privilege level of the container

was only partially possible, due to some processes and components
requiring root privileges and therefore we could not switch to a non-
root user through the entire process. Lastly, the two-stage build with
a distroless image was consider, however the attempt turned out
unsuccessful. This could have happened due to a variety of reasons
such as the tight coupling of the application with the hardware
given the necessity to access the authorization files on the USB or
perhaps because of the strict path dependencies required by the
application.

6 CONCLUSION
In this paper, we dockerized and performed a security assessment on
an application and compared our findings with existing literature.
Furthermore, we investigated the feasibility and potential effect
of introducing some of the recommended security best practices
in the context of our application. Given the limited time frame,
this research focused on dockerizing a single Python Client-Linux
application. However, valuable insights were gathered from some

6



Docker: Advantages and Security Implications on a Python Client-Linux Application TScIT 41, July 5, 2024, Enschede, The Netherlands

of the characteristics which influenced the dockerization process
and could serve as a base for similar applications.
The main research question for this paper was to investigate

the effect of dockerization on a Python Client-Linux application.
Our experiment revealed that, although Docker introduced addi-
tional vulnerabilities to the application, more than half of them
were ranked as low-risk and only a small percentage may have a
significant impact on the overall security level of the application.
(SRQ3) In addition, we discovered that some of the risks could

potentially be eliminated or at least prevented by introducing se-
curity guidelines into the development process such as reducing
the attack surface, restricting resource quotas, performing updates
on the application and based image, employing minimal privileges
whenever feasible, using a multi-staged build approach and moni-
toring the status and communication of the containers. However,
it is important to note that depending on the application and its
specific needs, some guidelines might not be feasible as it happened
with our IoT application.

(SRQ1) Overall, the Docker technology brings many benefits to
the users such as portability, increased performance, reduced foot-
prints, scalability, simplicity of use, high compatibility, consistent
filesystem and reduced development and deployment times. (SRQ2)
However, it is important to be also aware of the possible threats and
take them into account in the early stages in order to avoid vari-
ous exploits such as: remote code execution, DoS attacks, privilege
escalation, data or memory corruption, injections and information
leakages.

6.1 Future work
Future work could extend this analysis to include a larger and more
diverse set of IoT applications. The focus of such an experiment
could be on gathering a more comprehensive understanding of the
needs and behaviour of this category of applications in relation
to the usage of Docker and to the different restriction which may
appear. In addition, the problems which occurred with the highest
frequency could be further investigated and solutions could be pro-
posed, thus increasing the likeliness of users choosing Docker for
their program.

Another interesting direction could focus on experimenting with
different dockerization strategies, for instance trying different places
of division or numbers of containers for the same application and
comparing the scenarios via a security assessment. This idea would
research how different levels of isolation, networking and container
communication could affect the security of an application. Along-
side, the amount of memory and resources should be considered
as the number of containers increase in order to not significantly
affect the performance.
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A APPENDIX A
During the preparation of this work the author utilized ChatGPT
4 for assistance in debugging, providing Dockerfile examples and
generating references in the BibTeX format which were further
served Overleaf for the creation of the reference list. In addition, the
author used Grammarly to check the grammar and spelling, as well
as QuillBot for some paraphrasing suggestions. After using these
tools and services, all content was thoroughly reviewed and edited
as needed. The author takes full responsibility for the final outcome.
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