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Selective sweeps are regions of reduced mutations caused by a favoured
mutation in DNA genome sequences. Finding these selective sweeps has been
under much research for the past decade. While the tools created from this
research have proved to be successful at finding selective sweeps, accurately
pinpointing the locations of sweeps remains an open problem in these tools,
such as RAiSD. It is the goal of this research paper to continuously decrease
the initial fixed window size to narrow the focus of these tools, thereby
improving their accuracy. In this research, we used RAiSD-AI to examine a
method to fulfil this goal. This method should more accurately predict the
locations of the selective sweeps and possibly locate the base pair positions
of these sweeps.

Additional Key Words and Phrases: Selective sweep detection, Positive se-
lection, RAiSD-AI.

1 INTRODUCTION
The DNA genome sequence has been discovered since 1953 [5].
Since then, efforts have been made to identify genes affected by
positive selection in the evolution of species [14]. Zhao et al. [23]
describe that with positive selection, an allele is favoured by nat-
ural selection and it becomes more common in a population. A
‘selective sweep’ occurs when a favoured allele sweeps away other
genetic diversity in a locus [23]. Detecting these selective sweeps has
been under much research for the past couple decades, where more
advanced approaches emerge such as SweeD [18], SweepFinder2
[8], OmegaPlus [3], ASDEC [24] and the tool this research utilises,
RAiSD [2]. Accurately detecting the presence of selective sweeps
boosts our understanding of the genetic basis of evolution and adap-
tation in both humans and other organisms [15].

The tool this research focuses on, RAiSD, is an open-source soft-
ware tool which combines the computationally inexpensive sliding-
window algorithm with a memory-aware approach for parsing in-
put data [2]. RAiSD is rather lightweight, as it only allocates a few
megabytes of memory [2] and it can scan whole genomes to detect
multiple sweep signatures. The sliding window algorithm is used
to detect sweep signatures by using a CNN classifier. In order to
achieve this, the DNA is encoded into binary and then converted to
a grayscale image [23]. The sliding window then parses over pieces
of the data, equal to the size of the window, and passes this chunk
of data, called a window, to the CNN to give a prediction whether
or not there is a sweep in this window.

The issue with sweep detection tools, such as RAiSD, is the input
window width. If this width is too large, the precision of finding
the selective sweep suffers as the location of the sweep is unknown
in the large window. While it is beneficial to know sweeps exist in
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a particular section, the precise location is more desirable. On the
other hand, if the window size is too small, its accuracy suffers as
it does not have enough information to accurately determine the
sweep’s location. This leads us to the purpose of this research paper,
namely using increasingly smaller window sizes in order to more
accurately determine where sweep sequences are.

1.1 ResearchQuestion
To achieve the goal of this research paper, the following research
questions were formulated:

Main RQ: What is the effect of incrementally decreasing the
window size of a CNN-based selective sweep detection tool
on its accuracy compared to the initial fixed window size?
Sub RQ1: What percentage of the top most likely points
provides the highest accuracy for the Minimisation Method?
Sub RQ2: What is the most effective initial window size?

To answer these research questions, a new method has been
developed that utilises the RAiSD-AI tool. RAiSD has two versions,
RAiSD-ZLIB and RAiSD-AI. The difference between these, is that
the ZLIB versions uses a GZ file format for processing, whereas
the other does not. The proposed method, named the Minimisation
method, first scans a DNA dataset, then iteratively creates smaller
windows based on the highest scores of the windows from the
previous iteration. This results in a small window width that has
the highest likelihood of a selective sweep existing in this window.

This paper is organised as follows: Section 2 details the necessary
knowledge required to understand this research. Followed by section
3 which outlines some tools that already exist and have the same
goal as RAiSD. Afterwards, section 4 explains the details of the
Minimisation method’s implementation. The results are discussed
in section 5 and lastly section 6 concludes this research.

2 BACKGROUND
In this section, we will describe the necessary biological concepts
and terminology to understand the data and thus the application of
the Minimisation method. This paper assumes the reader is familiar
with basic Computer Science related terms and has some knowledge
in this field, such as being familiar with some machine learning
concepts.

Chromosomes are large DNA molecules that contain the genetic
information for an organism [16], which can be found in the centre
of cells, the nucleus, as they are essential for DNA to replicate and
segregate during cell division [7]. A gene is a piece of DNA on the
chromosome and an allele is simply a variation of that [9]. DNA is
made up of four bases, that is: adenine (A), cytosine (C), guanine (G)
and thymine (T) [10]. These bases join together, A always with T and
G always with C to make base pairs [4]. The datasets used by RAiSD
are binary representations of these base pair positions. The first,
labelled as, ’Mild Bottleneck’ and the easiest dataset to work with
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[19]. A DNA bottleneck occurs when a population suddenly declines
[20], thus resulting in little DNA variation of the population when it
begins to grow again. The second dataset, named ’Severe Bottleneck’,
is the hardest dataset out of the three [19]. The difference between
this and the first is the degree of severity of the decline of the
population. The last dataset this research utilised is called ’Old
Migration’ [19]. This refers to the change of DNA after a population
has migrated from its original home and stayed in a new region for
some period of time.
To create the data in a readable format, RAiSD converts these

datasets into SNP files. This is a custom file format used for further
processing but is unable to be opened by a regular text editor. Bi-
ologically, an SNP is a single nucleotide polymorphism and is the
most common type of genetic variation for humans [13]. Each SNP
represents a difference in a single base, for example, an SNP may
replace cytosine (C) with thymine (T) in a certain stretch of DNA
[13]. The SNP files generated by RAiSD is an SNP vector, which is
an entire alignment column [2]. When loaded into Python, a three-
dimensional matrix is created and the base pair target position of
the SNP file. The three-dimensional matrix can be separated into
three two-dimensional matrices. The first two are identical and are
used by RAiSD-AI for verification and the last for classification. The
contents of the first two matrices represent rows of integers, while
the last matrix represents rows of binary.

Previously, we mentioned the use of a sliding window algorithm.
A window is simply a section of data, a sliding window will move its
focus over the data. When it moves, it discards the data it previously
kept and adds the new data it will focus on to the window [6]. In the
case of RAiSD, the sliding window moves over the datasets to create
SNP files which are then passed to a CNN model for classification.
In each dataset, there are multiple versions of DNA, these are

referred to as simulations. An image of such simulation is a part of it,
i.e. a window. A simulation can have multiple images, while a stride
determines how far each image is from each other. For example, if
an image starts at index 0 and with a stride of 5, the next image
would start at index 5.

Lastly, a CNN model, or Convolutional Neural Network model, is
a deep learning model that can be used to identify spatial patterns in
a robust manner [1]. CNNs are often used for computer vision and
classifying images. RAiSD has two different versions, one named
SweepNET [22] and the other FastNN [25]. As the name suggests,
FastNN is significantly faster than SweepNET but fails when running
window sizes smaller than 50. Therefore, this research utilises a
combination of both SweepNET and FastNN where SweepNET is
used for the smaller than 50 window sizes.

3 EXISTING SOLUTIONS
Research to detect selective sweeps has been carried out for the past
couple of decades. As a result, several methods have been developed,
such as SweepFinder, SweeD, OmegaPlus and iHS [17].
SweepFinder is a program that implements a likelihood-based

method to detect selective sweeps [8]. It performs a composite likeli-
hood ratio test for positive selection [12] where the likelihood of the
null hypothesis is calculated from the neutral frequency spectrum
and the likelihood of the alternative hypothesis is modelled in a way

where the neutral spectrum was altered by a recent selective sweep
[8]. SweepFinder2 improves upon this by increasing its sensitivity
and robustness to the effects of mutation rate variation and back-
ground selection [8]. However, SweepFinder2 suffers from increased
computational and memory requirements, which took 5 hours to
scan 1000 simulated datasets [2].
Similarly, OmegaPlus suffers from this, where it fails to scan

the first chromosome of the human genome [2]. OmegaPlus is a
tool to detect selective sweeps based on linkage distribution [3].
OmegaPlus implements the 𝜔 statistic which can be applied to the
whole genome [3]. The 𝜔 statistic is calculated by analysing the
ratio of genetic diversity in two regions, one where there is a known
sweep and the other in a region without one [11]. This statistic can
be used to accurately localise selective sweeps [11].

As described by Pavlidis et al. [2013], SweeD, or Sweep Detector,
is a tool to quickly detect selective sweeps in whole genomes by
building upon SweepFinder and analysing site frequency spectra
[18]. It does this by calculating the Site Frequency Spectrum, SFS,
analytically for demographic models that comprise of a number of
population size changes and, optionally, an exponential growth as
the most recent event [18].

Another sweep detection tool, named ASDEC, a neural-network-
based framework that can scan whole genomes for selective sweeps
[24]. It employs a CNN consisting of three layers, a a convolutional
layer, a pooling layer and a dense layer [24]. ASDEC achieves similar
accuracy as other convolutional neural network-based classifiers
that rely on summary statistics, but is much faster [24]. ASDEC was
used to scan the chromosome of the Yoruba population, identifying
nine known candidate genes [24].

Efforts have also been made to improve the pre-processing of data,
as described by Zhao and Alachiotis [2023], where they use a series
of pixel-rearrangement algorithms to increase CNN classification
accuracy for selective sweep detection [21]. From this, an increase
of about 24.55% in accuracy was observed, compared to the pre-
processing techniques previously used [21].

4 METHOD
This section will focus on the Minimisation method, aptly named
as it focuses on dividing windows into smaller and smaller pieces
to enhance the accuracy of RAiSD-AI. For the purposes of this
research, we chose windows of sizes: 1000, 750, 500, 200, 100, 50 and
10. These were arbitrarily chosen, except window size 10 as this is
the smallest window that RAiSD-AI can support without any errors.
Before Minimisation can begin, we pre-trained models based on
these window sizes to decrease the total time needed to run. These
models were trained on 20 images per simulation for each dataset.
The first step necessary is to generate the starting windows of

sizes of 1000. This is done by utilising RAiSD’s scan function on
one of the datasets mentioned in section 2. After this is complete,
the result is moved into a folder and renamed to replicate the input
RAiSD expects.

After this, the iterative process can begin. First, the folder of the
previous window size is tested using RAiSD-AI. The results from
which are deposited into two text files. First, named, ’PredResult-
sneturalTE’, containing the results for the neutral SNP files and the
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other, ’PredResultssweepTE’, containing the results for the sweep
SNP files. In both text files, the name of the SNP file and its score is
displayed. These text files are loaded into Python and then sorted,
keeping only the top X% of files for the sweep SNP files and the
bottom X% scores for the neutral SNP files. A more detailed explana-
tion can be found in section 4.2. From here on, when the top X% is
mentioned, we mean the top X% for sweep SNP files and the bottom
X% for the neutral files.

Next, if this iteration is not the last in the list, in other words, the
size is not 10, each SNP file which was retained from the sorting
is divided into smaller windows, as described in section 4.3. These
smaller windows are added to a new folder which also replicates the
input required by RAiSD-AI. The iterative process then continues
using this new folder with the smaller window sizes.
Conversely, if the iteration does reach the last size, 10, the pro-

cess stops and passes the SNP file names to calculate the base pair
positions, as detailed in section 4.4.

4.1 SNP File Names
Firstly, it is important to explain the naming used by RAiSD and sub-
sequently, Minimisation. Each SNP file’s name generated by RAiSD
has the format such as, ’400_6_0.snp’. The first integer, ’400’, repre-
sents the simulation the SNP file belongs to, the second represents
the image and the last integer is redundant to our method. When
new windows are created by our method, it appends the image
number to this name. For example, if we create two images from the
above file, they would now be called ’400_6_0_0’ and ’400_6_0_1’.
Additionally, the size of the window is added to this name, 750 in
this case as the file above would be of size 1000, therefore the final
name for the first image would be ’400_6_0_0_750.snp’. Some place-
holder should be here, as in section 4.2 it is vital this placeholder
exists. The window size was used here, however, when creating new
windows, this integer is removed before adding the image number
to the new file name.

4.2 Sorting SNPs
The goal of sorting through the SNP files is to take the top X% of the
child (smaller) windows with the best scores generated from RAiSD
from the parent (larger) windows. This is done to decrease the
computation time of the method and attempt to fulfil Sub-Research
Question 1. It would be incorrect to simply take the top X% of the
entire data as this would neglect some simulations with lower scores.

First, the file names are loaded into Python, using the ’PredResult-
sneturalTE’ or ’PredResultssweepTE’ files. Then, iterating over the
SNP filenames, the filename is split into an array based on the ’_’
character. This leaves us with the name of the larger file. Consider
the example in section 4.1, ’400_6_0_0_750.snp’ and ’400_6_0_1_-
750.snp’ were created from the file, ’400_6_0.snp’. By removing the
last two indices, we see both of the child windows have the same
name as well, which is,’400_6_0’. After deriving the parent window’s
name, we subset the files beginning with this name and then take
the top X% of these if we loaded the names from the ’PredResultss-
weepTE’ or bottom X% if the ’PredResultsneutralTE’ was loaded.
We round up this calculation, so there must be at least 1 file. It is
then joined into a list with the other results. A simple formula for

this would be ⌈𝑆 ∗ 𝑋 ⌉ where S is the subset of files beginning with
the same name and X is the top X% represented in decimal format.

4.3 Creating New Windows
The first step in creating a new window is to remove any padding
that was added in a previous iteration, more details are in section
4.3.1. We need padding to ensure that the size of each window
is the same due to the requirements of the CNN model. There is
a possibility we could omit padding by overlapping the windows,
however, that would be biased to the data in the centre of thewindow
as the edges of the window will not be processed as much. After this
fist step, the necessary padding is calculated and then added to the
existing window. This may seem counter-intuitive, to remove and
then add padding but there could be a case where a large amount of
padding has been added to the window already and by removing
this, the next window size may only need a much smaller amount of
padding. For example, in Figure 1, the padding gets removed from
the initial window (1), which results in a window size smaller than
the intended child window size (2). However, if we retained the
initial padding, a new window would span mostly padding and its
score from RAiSD-AI would suffer. For further explanation, please
read section 4.3.1.

Fig. 1. Depiction of padding being removed and then added again. The
hashed area represents the padding.

Next, we simply iterate i times over the parent window, where i is
defined as: parent window size (O) divided by the stride (S) rounded
up => ⌈𝑂/𝑆⌉ = 𝑖 . Then the matrix is partitioned based on the third
index of the parent window using the formula: 𝑖 ∗ 𝑆 for the start of
the smaller window and 𝑖 ∗𝑆 +𝑁 for the end of the window, where N
represents the intended child window size. As discussed in section
2, when an SNP file is loaded into Python, a 3d matrix is created.
The 3d matrix can be thought of as three 2d matrices. Therefore, the
first index of the 3d matrix represents a 2d matrix, the second index
represents the rows of that matrix and the last index represents the
columns. As we wish to partition based on the columns, we use the
last index. If a partition is less than the size of the new window, the
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iterative process is broken and the new windows are moved to the
proper folder to be used in the next iteration of Minimisation.

The stride here is a whole number but it is dynamically calculated
for each window size iteration. The input stride is a percentage
and using this, the stride in the above calculation is calculated. For
example, if the stride is set to 15%. when creating windows of size
750 the stride is 112.5, rounded up to 113. The formula for this would
be: ⌈𝑠 ∗ 𝑁 ⌉ where s is the percent stride in decimal format, and N is
the new window size.

4.3.1 Padding. Padding should be added equally to both the front
and end of the window. This ensures that during the creation of new
windows, there is an equal spread of padding and data. If all padding
was added to the front or end, the result of that window would
be lower in comparison to the other windows. From here, when
’matrix’ is referred to, we mean the first 2d matrix of the window.
When referring to adding padding to the window, we mean each of
the 2d matrices has padding added to them, based on the columns.
For example, after adding 500 padding, the shape of the 1000 matrix
will transform from (3,128,1000) to (3,128,1500).

To calculate the padding, first removing any padding from previ-
ous iterations as described in section 4.3 and seen in Figure 1 step
(1), we must then check if the length of the matrix is less than the
intended size of the child window. If it is, we add padding to the
front and end of the window equal to (𝑁 − 𝐶)/2 where C is the
current size of the matrix, as shown in step (3) in Figure 1. After, if
the stride is less than the intended child window size, padding equal
to (𝑂%𝐶) + 𝑆 is added to both sides of the window. Otherwise, we
calculate the padding using the formula:

(⌈(𝑂/𝑆)⌉ ∗𝐶 −𝑂) mod 𝑁

2
This gives the padding needed to be added per side. After this is
complete, the slicing of the window can commence, as described in
section 4.3.

4.4 Calculating Base Pair Positions
After Minimisation is complete, we can proceed to calculate the base
pair positions of the smallest windows. Both the original window, of
size 1000, and the smallest window, size 10, are loaded into Python
and we will proceed to locate the index of the smallest window in
the original, size 1000, window. First, any padding in the smaller
window is removed, and then the first integer in its matrix is used
to locate the indices where it occurs in the larger window, as shown
in Figure 2. For example, if the first integer in the first 2d matrix
of the smaller window is 127, we locate all indices in the larger
windows 2d matrix where 127 is located. Then we slice smaller
sections of the larger window using these indices as the staring
point and the length of these subsections equal to the length of the
small window. This can be seen in Figure 2, where the subsections
from the Window of 1000 are called Copy Size. Then we check if
these pieces are equal to the original window size 10, if they are
their indices are saved, otherwise they are discarded. This approach
is called Pattern Matching. We save all indices found and leave it up
to the user to determine which is the correct position, an alternative
method is described in section 6.1 which should locate the exact
base pair position.

Fig. 2. Diagram depicting the location and slicing of smaller window sizes
from the large window.

When the large windows are generated, they each have a target
position. This target position is at its centre, therefore at index 500.
Using the saved indices of the smaller window, we can calculate how
far away the smaller window is from the centre using 𝑖−500 where i
is the index of the smaller window. If this value is negative, it means
the smaller window is to the left of the centre, and conversely, if it
is positive, the smaller window is located to the right of the centre.
Next, we must load the positions saved in the datasets. This is

done by scanning the original dataset file for lines starting with
’position’ and loading this line into a list. The result is a matrix,
where the rows represent the simulation and the columns the base
pair position values. We first find the list belonging to the large
windows simulation by using the first integer in the large windows
name. For example, 400 is the simulation for the large window as
described in section 4.1. Next, we must search this list for the index
of the target position, which we will call T. To find the distance of
the smaller window to this target position we add them,𝑇 + (𝑖−500).
Using this value we find the value in the list located at this new
index. Lastly, we must multiply this by the size of the region in base

Fig. 3. Benchmark accuracies for each dataset.
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pairs, which is usually set to 100000 by RAiSD-AI and was also set to
this value in this research. To better understand this, the following
formula is used:

𝑃 [𝑇 + (𝑖 − 500)] ∗ 𝐿
Where P is the list of base pair positions of the corresponding sim-
ulation, T is the index of the target position, i is the index of the
smaller window and L is the size of the region in base pairs.
This calculation is done for all possible indices found in the pat-

tern matching and then saved to a text file.

5 RESULTS AND DISCUSSION
In this section, the results of the research will be shown and dis-
cussed. In order to assess if the Minimisation method improves the
accuracy of RAiSD-AI, we must first run a benchmark using the
same window widths. Naturally, the higher the accuracy, the better
the result.

Fig. 4. Accuracies produced by the Minimisation Method for each dataset.

5.1 Benchmark
To create these results, the models, as used in the Minimisation
method, were also used to assess RAiSD-AI’s accuracy without the
method. As described at the beginning of section 4, these models
were trained on simulations with 20 images each. Similarly, the
testing data also contains 20 images per simulation. The values as
seen in Figure 3 is the output accuracy of RAiSD-AI. These tests
were run independently of one another and the score of one does
not affect the score of another.

It is important to note that the Old Migration dataset is not large
enough to encompass the initial 1000 window, therefore this has
been omitted and it starts at index 750 instead.

As shown in Figure 3, we see RAiSD-Ai performs very well with
the Mild Bottleneck Dataset. For the other two datasets, the smaller
window sizes between, and including, 200 and 50 seem to perform
better than their larger counterparts. There is a noticeable dip in
accuracy for all three datasets at window size 10, which can likely be
explained by the transition from FastNN to SweepNET as SweepNET
is only used for this smallest window size. It seems that even with
several images, RAiSD-AI can struggle with more difficult datasets.
the highest accuracy for the Old Migration dataset being about 96%
at window size 50 and at the same size, roughly 92% accuracy for
the Severe Bottleneck dataset.

5.2 Minimisation Results
Here the results of applying the Minimisation results are shown.
These accuracy scores are calculated by taking the maximum score
of each simulation per window size iteration after sorting the SNP
files, as described in 4.2. Next, we assess if the model predicts the
window to have a sweep or not by judging if the score of the window
is > 0.5. By using the ground truth of these files, we calculate the
accuracies per iteration. The stride percentage for the results found
in Figure 4 is 15% and it takes the top 5% of SNP files per iteration.

At first glance, all three datasets seem to perform well when the
Minimisation method is applied to them. The most surprising is that
the most difficult dataset, the Severe Bottleneck, seems to perform
better than the other two at some window sizes. Surprisingly, the
Mild Bottleneck seems to suffer slightly as Minimisation occurs.

Fig. 5. Accuracies for each dataset with varying top X percentages, using stride of 100%.
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Fig. 6. Accuracies for each dataset focusing on 5%-10%.

Fig. 7. Accuracy of each dataset with Minimisation applied with a X% of
6% and stride of 15%.

Dips can be seen at window size of 500, 100 and 50 before improving
again at window size 10. This may be due to the noise introduced by
the padding. While not all datasets managed to reach 100% accuracy,
this could be achieved with a more fine grained stride or a different
top percentage. Alternatively, adjusting some other parameters such
as the top percentage, as discussed in section 5.3, or adjusting the
starting window, as described in section 5.4.

5.3 Top Percentage
In this section, we test the Minimisation method with various top
X percentages. The stride percent for these experiments was set to
100, therefore the output varies slightly from section 5.2.

The results for this experiment, as shown in Figure 5, have more
variation than expected. Firstly, the Severe Bottleneck has a much
different result than the other two, In the sense that the top percent
does not make too much of a difference. This is especially the case

for window sizes of 200 and 50. This may explain the stronger per-
formance of the Severe Bottleneck seen in Figure 4. For all three
datasets, the Top 1% line can not be seen. Upon investigation of the
output values, it shows that the Top 1% and Top 5% have the same
accuracy scores. This is likely due to the rounding used, for example
20 ∗ 0.01 = 0.2, rounded up to 1, which is the same as 20 ∗ 0.05 = 1,
where 20 is the number of files with the same parent window. Sur-
prisingly, especially for the Mild Bottleneck, the difference between
the Top 5% and 10% lines is quite substantial. In order to confirm
this as the reason, Figure 6 has been created which focuses on the
percentages 5 to 10.

Once again, there are only two lines visible from this experiment.
After investigating the output values, it determines that the split
is between the Top 5% line and all five others are joined. That is,
percentages from 6 to 10 all have the same accuracy scores. However,
it is still surprising that at the later window sizes (100, 50, 10), there
is no deviation. At those later iterations, there are many more files
than it started with, therefore we should expect some variation
between the top X% at this point.
After adapting our initial parameters used in Figure 4, we see

some considerable changes, as shown in Figure 7. Firstly the Mild
Bottleneck does not vary and maintains a constant 100% accuracy,
unlike the results shown in Figure 4, where it would drop to about
99.8% accuracy at window size 100 and 99.9% for window size 50.
While the Old Migration still does not reach an accuracy of 100%.
it gets even closer to having a final accuracy of 99.9% in Figure 7.
As for the Severe Bottleneck, despite the worse accuracy at window
size 1000, starting at 92.9% in 7, in comparison to Figure 4, starting
at 99.8%, it still manages to reach an accuracy score of 100% at the
same window size of 100 as in Figure 4.

5.4 Starting Window
Here are the results of starting the Minimisation method with vari-
ous window sizes. It uses this new starting window to scan the data
and then proceed with the remaining window sizes. Until now, it
has always been started with a window size of 1000. In Figure 8, it
shows the result of this experiment, the other parameters for these
results are the Top 1% and a stride of 100%.

6



An Iterative Algorithm for Increasing Accuracy of a CNN-based Selective Sweep Detection Tool TScIT 41, July 5, 2024, Enschede, The Netherlands

Fig. 8. Accuracies for each dataset starting with various window sizes.

Fig. 9. Accuracy of each dataset with Minimisation applied with a X% of
5% and stride of 15%, starting at window size 500 for each dataset.

It is immediately evident that a smaller window size is preferred.
Most notably the large differences between window size 1000 and
750 for the Mild Bottleneck, as well as window size 750 and 500 for
the Old Migration dataset. Surprisingly, this does not seem to be
the case for the Severe Bottleneck, While there is some difference
between sizes of 1000 and 750, they seem to have roughly the same
accuracy when they finish.
When applying a window size to the datasets with the same

parameters as Figure 4, it reveals some interesting variations. Like
Figure 7, the Old Migration dataset does relatively well, ending
with a 99.9% accuracy. Here it seems to outperform Figure 7 at each
window size. Similarly, the Mild Bottleneck dataset does not deviate
from 100%. The most interesting case, the Severe Bottleneck, seems
to have done worse than the previous experiments, failing to reach
a 100% end accuracy. It seems that for more complex datasets, a
starting wider starting window is preferred. This may explain why

the Old Migration does note fare as well as the others, as the starting
window is not the maximum for this dataset.

6 CONCLUSION
The goal of this paper was to use increasingly smaller window
sizes in order to more accurately determine the location of selective
sweeps, so that a wider scope may be used by sweep detection
tools without losing accuracy or precision. Throughout this paper,
we have not only discussed the pre-existing solutions to detect
selective sweeps but also the details of the Minimisation method
which attempts to achieve this goal.

The main research question of this paper was to investigate the
effect of incrementally decreasing the window size compared to
a fixed window size. As we have seen, the Minimisation method
fulfills this requirement and does does seem to be an improvement
in its accuracy. As shown in Figure 4, the accuracies for all three
datasets did improve to almost 100% for all three.While with varying
parameters; the accuracy can worsen during the computation of
the Minimisation method, as shown in Figure 4. However, a general
improvement in accuracy can be seen, as even after the first sorting
has taken place, the Minimisation method does achieve a higher
accuracy than the benchmark. This can be seen in Figure 3, window
size 1000 and the same window size in Figure 4.
The second research question was to investigate while top X%

provides the highest accuracy. From the figures shown in section
5.3, it is generally better to use a higher percentage, especially when
a large stride is used as used for Figures 5 and 7. However, this
does lead to a longer computation time as the Minimisation method
must create significantly more windows, especially if a small stride
is introduced. Due to the rounding used when taking the top X%,
it seems that every 5% increases in this parameter only changes
the accuracy scores, that is percentages 1 to 5 will have the same
accuracy scores and 6 to 10 will have the same accuracy scores.
Lastly, the last research question was to investigate which was

the most effective initial window size. To determine what the most
effective initial window size seems to be a complex problem. As seen
in section 5.4, the smaller window sizes seem to perform better than
their larger counterparts. As shown in Figure 9, a smaller window
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size is preferred for less complex datasets, whereas a wider window
is preferred for more complex ones. For future researchers, they may
want to keep a large window size as their initial starting window
size as other parameters, such as the stride and top X%, can be used
to increase the accuracy, as seen in Figure 5 for the top X% and
Figures 5.2 and 7 for a smaller stride. In the cases of the Mild and
Severe Bottleneck datasets, their lengths were enough to satisfy an
initial window size of 1000, but future researchers should adjust
this to a size almost equal to their datasets. Some margin should be
left in order to take multiple images of the dataset, with some stride
between each new image.

6.1 Future Work
There are several ways in which the Minimisation method could be
improved. Firstly, a stride of 1 would give an extremely fine grained
search throughout the entire window, unfortunately, this is not pos-
sible with the current implementation of Minimisation. While there
is no limit on the quantity of the input, Minimisation calculates the
entirety of one iteration and then proceeds with the next. Therefore,
a sliding window algorithm could improve Minimisation’s accuracy
further.
While optimisation was taken into account during the develop-

ment of the Minimisation method, it can still take considerable
computation time. Therefore, it would benefit from further research
into the optimisation of this method. From observation during this
research, the most time occurs during the creation of the windows,
hence efforts should be focused here.

Furthermore, some variations in accuracy from the Minimisation
method was observed, such as in Figure 5, despite the Mild Bottle-
neck starting at 100% at window size 1000, the accuracy drops in
the next iteration. This is not limited to the Mild Bottleneck dataset,
as the Old Migration’s accuracy in Figure 5, there is little variation
between window sizes 500 and 50. Some investigation should be
done to understand this using explainable AI tools.
Lastly, as mentioned in section 4.4, there is a way to calculate

the exact base pair positions. This could be done by utilising the
naming scheme utilised by the Minimisation method. As described
in section 4.1, the image of each window is added to the name. For
example the first is labelled as 0, the second 1 etc. Using these, the
calculation of the index of the window is possible. Then, using the
formula, as explained in section 4.4, the calculation of the exact base
pair position of the window would be possible. The stride of the
window must be taken into account, as well as the padding added
when creating the child windows.
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A APPENDIX A
During the preparation of this work, the author used ChatGPT in
order to reverse engineer the pre-exiting SNP file loading function
that was found in a Python file, belonging to PyTorch. The function

generated by ChatGPT was tested to ensure that the files saved
through the function could also be loaded by the pre-existing SNP
file loading function. Aside from this, the text editor used was Over-
leaf and Grammarly was used to check any grammar mistakes in
this paper. Lastly, bibtex.com’s DOI to BibTeX converter was used
to generate references in BibTeX format, which Overleaf then used
to generate the reference list. After using these tools, the author re-
viewed and edited the content as needed and takes full responsibility
for the content of the work.
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