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Vision Mamba, recognized for its computational and memory efficiency, ad-
dresses the need for environmentally sustainable machine learning models.
However, it faces challenges in scalability and stability, particularly with
large-scale visual tasks such as ImageNet-1k. This paper improves Vision
Mamba by integrating Masked Auto-encoders (MAEs) to enhance image rep-
resentation learning. Specifically, three masking strategies—random, block,
and center masking—were implemented and their impact on the model’s
performance was evaluated. Experiments demonstrate that block masking
achieves the highest Structural Similarity Index Measure (SSIM) values, indi-
cating superior image reconstruction quality, while center masking delivers
the highest classification accuracy, reaching approximately 0.26 by epoch
20. Conversely, random masking performed the worst in both metrics.

Additional Key Words and Phrases: Bidirectional State Space Model, Masked
Image Modeling, Visual Representation Learning, Masked Auto-encoder,
Image Classification

Fig. 1. Architecture of Masked Auto-encoder, including classification logits

1 INTRODUCTION
Convolutional Neural Networks (CNNs) have been the cornerstone
of deep learning for vision tasks, known for their ability to hi-
erarchically learn features from images [1]. With advancements
in hardware technology, Vision Transformers (ViTs) have gained
prominence due to their capability to capture global context through
self-attention mechanisms [2]. However, ViTs are computationally
expensive and energy-inefficient, posing sustainability challenges
[3]. This high computational cost and energy consumption make
ViTs less viable for widespread, environmentally sustainable appli-
cations.
These problems are addressed in Vision Mamba (Vim) model,

which is a promising next-generation backbone for vision founda-
tionmodels, offering amore efficient alternative. The key innovation
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of Vision Mamba is the use of bidirectional Mamba blocks, which
process images in both forward and backward directions. This bidi-
rectional approach helps to eliminate inductive biases associated
with directional processing, thereby enhancing the model’s ability
to comprehend the global context while maintaining computational
and memory efficiency. Vision Mamba leverages bidirectional state
spacemodeling to achieve data-dependent global visual context with
significantly lower computational complexity compared to ViTs. Re-
markably, VisionMamba is 2.8 times faster than data-efficient Vision
Transformers and saves 86.8% of GPU memory, making it both a
high-performance and sustainable solution. [4]

The efficiency comes with a cost for Vision Mamba model, partic-
ularly in scalability and stability. One significant challenge is the
vanishing/exploding gradients, which hampers the model’s perfor-
mance in large-scale visual tasks such as ImageNet-1k. Additionally,
the inherently 1D nature of Mamba’s selective scanning technique
presents challenges when applied to 2D or higher-dimensional vi-
sual data, potentially leading to a loss of critical spatial information.
These limitations requires refinement to enhance the model’s ro-
bustness and applicability.[5]
This paper explores the integration of Masked Autoencoders

(MAEs) within the Vision Mamba model. MAEs are particularly use-
ful at managing the spatial redundancy inherent in images. They em-
ploy an asymmetric encoder-decoder structure, where the encoder
processes only visible patches, significantly reducing computational
overhead. Coupling these two designs enables the training of large
models efficiently and effectively, accelerating training by 3× or
more and improving accuracy. This approach allows for learning
high-capacity models that generalize at scale [6].
The aim of this paper is to contribute to the implementation

of MAEs within the Vision Mamba model improving the robust-
ness and generalization in order to achieve higher accuracy on the
ImageNet-1k dataset [7]. Additionally, this paper investigates the
performance of different masking strategies to determine which
method yields the best similarity score. The findings indicate that
center masking outperforms other strategies in terms of accuracy
when pre-trained and fine-tuned on ImageNet-1k.To facilitate achiev-
ing these objectives, the following research questions formulated:

(1) Which masking strategy yields the highest reconstruction qual-
ity in the Vision Mamba encoder, as measured by the Structural
Similarity Index (SSIM)?

(2) What is the impact of Masked Image Modeling (MIM) pretrain-
ing on the Vision Mamba model’s accuracy when fine-tuned for
image classification on the ImageNet-1k dataset?

The following section provides a review of related work, high-
lighting improvements made to Vision Mamba. Section 3 describes
the methodology, including the mathematical foundation, architec-
ture of the proposed model and the evaluation of masking strategies.
Section 4 details the experimental setup, followed by Section 5 which
presents the results and discussion of the conducted experiments.
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Finally, Section 6 concludes the paper and suggests directions for
future research.

2 RELATED WORK
The improvement of visual data representation enhances the per-
formance and applicability of models in downstream tasks such
as image classification, segmentation, and detection. Effective vi-
sual representation is essential for applications ranging from au-
tonomous driving [8] to medical imaging [9] and robotics [10],
where the accuracy and efficiency of models directly impact their
practical utility. Vision Mamba (Vim) represents a significant ad-
vancement in applying state space models to visual representation
learning. Vision Mamba utilizes bidirectional state space modeling
to achieve data-dependent global visual context with lower computa-
tional complexity compared to ViTs. The versatility is demonstrated
through its application in medical image classification [11], 3D med-
ical image segmentation [12], PointMamba for point cloud analysis
[13], and DeMamba [14] for AI-generated video detection.

To further enhance the capabilities of Vision Mamba, various pre-
training methods have been explored, with Masked Auto-encoders
(MAEs) emerging as a particularly promising approach. Prior to
MAE, BEiT [15] was the first to apply masked language modeling
(MLM) from natural language processing to the visual domain. BEiT
introduces a visual vocabulary based on the approach used in NLP,
making the training process more complex compared to MAE. BEiT
uses a block-wise masking strategy, with random block sizes and
aspect ratios, masking approximately 40
SimMIM [16], developed concurrently with MAE, simplifies the

pretraining process by directly predicting image patches rather
than visual tokens. SimMIM employs a linear layer for the decoder,
resulting in lower computational complexity. This model uses larger
masking blocks instead of increasing the masking ratio, similar to
MAE’s random masking strategy.

Following MAE, MaskFeat [17] was introduced, focusing on video
prediction. MaskFeat distinguishes itself by using the Histogram
of Oriented Gradients (HOG) as the prediction target, instead of
directly computing pixel values. This method proved effective in
video prediction tasks, using a block-wise masking strategy akin to
BEiT.

Other pretraining methods have also been explored to enhance vi-
sual representation learning. Contrastive learning techniques, such
as SimCLR [18] andMoCo [19], focus on learning representations by
contrasting positive and negative pairs. These methods rely heavily
on data augmentation to create diverse views of the same image, aid-
ing in learning robust features but often involve high computational
costs and complexity. Self-supervised learning approaches, such as
BYOL [20] and SwAV [21], aim to learn useful representations with-
out requiring labeled data. These methods typically involve creating
different augmentations of the same image and learning to predict
one view from another, although they can be resource-intensive
and complex to implement.

Fig. 2. Architecture of Masked Auto-encoder

3 METHODOLOGY

3.1 Mathematical Foundations
Convolution Operation
The convolution operation [22] in the MAE encoder is used for

extracting patches from the input image. The mathematical formu-
lation of the convolution operation is given by:

𝑝 =𝑊 ∗ 𝐼 + 𝑏
where:
• 𝑝 represents the output patches.
• 𝑊 is the convolution filter (kernel).
• 𝐼 is the input image.
• 𝑏 is the bias term.
• ∗ denotes the convolution operation.

Layer Normalization
Layer Normalization (LayerNorm) stabilizes the learning process

by normalizing the inputs across the features within each layer [23].
Can be shown as:

LayerNorm(𝑥) = 𝑥 − 𝜇
√
𝜎2 + 𝜖

where:
• 𝑥 is the input to the layer.
• 𝜇 is the mean of the input 𝑥 .
• 𝜎2 is the variance of the input 𝑥 .
• 𝜖 is a small constant to prevent division by zero.

Gaussian Error Linear Unit (GELU)
The Gaussian Error Linear Unit (GELU) [24] is an activation

function that combines the properties of the Rectified Linear Unit
(ReLU) and the Gaussian distribution. The GELU function is defined
as:

GELU(𝑥) = 𝑥 · Φ(𝑥)
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where:
• 𝑥 is the input.
• Φ(𝑥) is the cumulative distribution function (CDF) of the
standard normal distribution.

Patch Embedding
Patch embedding is a crucial step in converting the input image

into a sequence of patches that can be processed by the transformer
architecture [25]. This can be described mathematically as follows:

Given an input image 𝐼 of size𝐻×𝑊 ×𝐶 , where𝐻 is the height,𝑊
is the width, and 𝐶 is the number of channels, the image is divided
into patches of size 𝑃×𝑃 . The number of patches is (𝐻 ·𝑊 )/𝑃2. Each
patch is then flattened into a vector and projected into a higher-
dimensional space using a linear transformation.

PatchEmbedding(𝑥) = 𝑥 ·𝑊𝑒 + 𝑏𝑒
where:
• 𝑥 is the flattened patch.
• 𝑊𝑒 is the learnable weight matrix.
• 𝑏𝑒 is the bias term.

Multi-Head Self-Attention
Multi-head self-attention [26] is a key component of transformer

architectures, allowing the model to focus on different parts of the
input sequence. The self-attention mechanism can be expressed as:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉

where:
• 𝑄 (queries), 𝐾 (keys), and 𝑉 (values) are derived from the
input.

• 𝑑𝑘 is the dimension of the queries and keys.
• The softmax function ensures that the attention weights sum
to one.

In multi-head self-attention, this mechanism is applied ℎ times
(with different learned projections) and the results are concatenated:

MultiHead(𝑄,𝐾,𝑉 ) = Concat(head1, head2, . . . , headℎ)𝑊𝑂
where:
• head𝑖 = Attention(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖
,𝑉𝑊𝑉

𝑖
)

• 𝑊𝑄

𝑖
,𝑊𝐾

𝑖
,𝑊𝑉

𝑖
are the projection matrices for the 𝑖-th head.

• 𝑊𝑂 is the output projection matrix.
Positional Encoding
Since transformers do not have a built-in notion of sequence order,

positional encoding is added to the input embeddings to provide
information about the position of each patch in the sequence [26].
The positional encoding can be defined as:

PE(pos, 2𝑖) = sin
(

pos
100002𝑖/𝑑model

)
PE(pos, 2𝑖 + 1) = cos

(
pos

100002𝑖/𝑑model

)
where:
• pos is the position.

• 𝑖 is the dimension.
• 𝑑model is the dimensionality of the input embeddings.

Residual Connections
Residual connections [27] help mitigate the vanishing gradient

problem and allow for deeper networks by adding the input of a
layer to its output:

Output = Layer(𝑥) + 𝑥
This simple yet effective mechanism helps in training deep neural

networks.
Feed-Forward Neural Network (FFN)
In transformer architectures, each encoder and decoder layer

contains a feed-forward neural network (FFN) [26] applied to each
position separately and identically:

FFN(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2
where:
• 𝑊1 and𝑊2 are weight matrices.
• 𝑏1 and 𝑏2 are bias terms.
• The ReLU activation functionmax(0, 𝑥) introduces non-linearity.

Adam Optimizer
The Adam optimizer was chosen for the pretraining due to its

adaptive learning rate capabilities, which facilitate faster conver-
gence and effective handling of sparse gradients [28]. Adam uses
estimates of the first and second moments of the gradients to adapt
the learning rate for each parameter. The optimization process in-
volves the following steps:

Initialization:

• Initialize the first moment vector𝑀 and the second moment
vector 𝑉 to zero.

• Initialize the time step 𝑖𝑇 .
Update Rules:

• Compute the biased first moment estimate𝑀 using exponen-
tial moving averages:

𝑀 = 𝛽1𝑀 + (1 − 𝛽1)gradients

where 𝛽1 is typically set to 0.9.
• Compute the biased second moment estimate 𝑉 using expo-
nential moving averages:

𝑉 = 𝛽2𝑉 + (1 − 𝛽2)gradients2

where 𝛽2 is typically set to 0.999.
Bias Correction:

• Correct the bias in the first moment estimate:

�̂� =
𝑀

1 − 𝛽𝑖𝑇1
• Correct the bias in the second moment estimate:

𝑉 =
𝑉

1 − 𝛽𝑖𝑇2
Parameter Update:
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Update the parameters 𝜃 using the corrected first and second
moment estimates:

𝜃 = 𝜃 − 𝛼 �̂�√︁
𝑉 + 𝜖

where 𝛼 is the learning rate, and 𝜖 is a small constant (e.g., 10−8)
to prevent division by zero.

The complete formula for updating the parameters𝑊 and 𝑏 can
be summarized as follows:

𝑀 = 𝛽1𝑀 + (1 − 𝛽1)gradients
𝑉 = 𝛽2𝑉 + (1 − 𝛽2)gradients2

�̂� =
𝑀

1 − 𝛽𝑖𝑇1
𝑉 =

𝑉

1 − 𝛽𝑖𝑇2

𝛼𝑡 = 𝛼

√︃
1 − 𝛽𝑖𝑇2
1 − 𝛽𝑖𝑇1

𝜃 = 𝜃 − 𝛼𝑡
�̂�√︁
𝑉 + 𝜖

Where:
• 𝜃 represents the model parameters (weights𝑊 and biases 𝑏).
• 𝑀 and 𝑉 are the first and second moment vectors.
• 𝛽1 and 𝛽2 are decay rates for the moment estimates.
• 𝑖𝑇 is the current time step.
• 𝛼 is the learning rate.
• 𝜖 is a small constant to prevent division by zero.

The Adam optimizer is particularly effective for training deep
neural networks due to its ability to adaptively adjust the learning
rate for each parameter based on estimates of the first and second
moments.
Mean Square Error (MSE)
In order to calculate the training and validation loss of the pre-

training, MSE is used. MSE quantifies the difference between the
predicted values produced by amodel and the actual observed values
in the data [29], and is defined as follows:

MSE =
1
𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖 )2

where:
• 𝑛 is the number of observations.
• 𝑦𝑖 represents the actual value of the 𝑖-th observation.
• 𝑦𝑖 represents the predicted value of the 𝑖-th observation.
• (𝑦𝑖 − 𝑦𝑖 )2 is the squared difference between the actual and
predicted values for the 𝑖-th observation.

The MSE provides a single number that reflects the average
squared difference between the predicted and actual values. A lower
MSE value indicates a better fit of the model to the data, as it means
that the predicted values are closer to the actual values. Conversely,
a higher MSE value indicates a poorer fit, as the differences between
the predicted and actual values are larger.

Structural Similarity Index (SSIM)
The SSIM [30] is a measure of the similarity between two images,

which was used to compare the difference between the original
image and the reconstructed image after the masked autoencoder
pretraining. calculated as follows:

SSIM(𝑥,𝑦) =
(2𝜇𝑥 𝜇𝑦 +𝐶1) (2𝜎𝑥𝑦 +𝐶2)

(𝜇2𝑥 + 𝜇2𝑦 +𝐶1) (𝜎2𝑥 + 𝜎2𝑦 +𝐶2)

where 𝑥 and 𝑦 are the original and reconstructed images, 𝜇𝑥 and
𝜇𝑦 are the mean intensities, 𝜎𝑥 and 𝜎𝑦 are the standard deviations,
𝜎𝑥𝑦 is the covariance, and 𝐶1 and 𝐶2 are constants to stabilize the
division by a small denominator.

Cross Entropy Loss
CrossEntropyLoss [31] measures the difference between the true

label distribution and the predicted probability distribution pro-
duced by the model. The goal is to minimize this difference, thereby
improving the model’s accuracy.

CrossEntropyLoss is defined as:

CrossEntropyLoss = −
𝐶∑︁
𝑖=1

𝑦𝑖 log(𝑦𝑖 )

where:

• 𝐶 is the number of classes.
• 𝑦𝑖 is the true label for the 𝑖-th class (1 if the class is the correct
label, 0 otherwise).

• 𝑦𝑖 is the predicted probability for the 𝑖-th class.

For a batch of 𝑁 examples, the loss is averaged over all examples
in the batch:

CrossEntropyLoss = − 1
𝑁

𝑁∑︁
𝑗=1

𝐶∑︁
𝑖=1

𝑦 𝑗𝑖 log(𝑦 𝑗𝑖 )

where:

• 𝑁 is the number of examples in the batch.
• 𝑦 𝑗𝑖 is the true label for the 𝑖-th class of the 𝑗-th example.
• 𝑦 𝑗𝑖 is the predicted probability for the 𝑖-th class of the 𝑗-th
example.

In essence, Cross Entropy Loss evaluates how well the predicted
probability distribution matches the true distribution. It penalizes
incorrect predictions more heavily when the predicted probability
is far from the actual class label. This configuration is selected to
balance the learning rate for effective optimization.

Accuracy
The evaluation of the fine-tuned model’s performance is con-

ducted using the accuracy metric, calculated as:

Accuracy =
Number of Correct Predictions
Total Number of Predictions

The accuracy metric provides a straightforward measure of the
model’s classification performance, allowing for a clear comparison
of different masking strategies.
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3.2 Model Architecture
The proposed model is based on the Vision Mamba architecture
and incorporates a Masked Auto-encoder for pretraining. The MAE
aims to predict masked portions of the input images, enabling the
model to learn robust visual features in an unsupervised manner.
The overview of the architecture can be found in Figure 2

MAE Encoder
The encoder of the Masked Auto-encoder Mamba architecture

starts by converting the input image into a sequence of patches
using a convolution operation (nn.Conv2d). As previously described
in the mathematical foundations, this is achieved by applying a
convolution filter𝑊 over the input image 𝐼 , expressed as:

𝑝 =𝑊 ∗ 𝐼 + 𝑏

where 𝑝 represents the output patches, ∗ denotes the convolution
operation, and 𝑏 is a bias term. After patch extraction, these patches
undergo a random masking process determined by the mask_ratio.
This involves randomly replacing a set percentage of these patches
with a mask token, introducing an element of data sparsity that
forces the encoder to learn robust and generalized representations.
The masked patches are then processed through a sequence of
transformer-like encoder blocks. Each block typically performs a
transformation akin to:

Block(𝑥) = LayerNorm(𝑥 +Mixer(𝑥))

where Mixer abstracts a mixingmechanism (similar to multi-head
attention [26]) that updates each patch representation based on its
neighbors, and LayerNorm is a normalization step that stabilizes
learning by normalizing data within each layer, as described in the
Layer Normalization section.
MAE Decoder
The decoder in the architecture is tasked with reconstructing the

original image from the encoded and masked patch representations.
It uses a series of linear transformations and non-linear activation
functions structured as:

Decoder(𝑥) = LayerNorm(GELU(𝑊2 (GELU(𝑊1𝑥 + 𝑏1)) + 𝑏2))

Here, 𝑊1 and 𝑊2 are the weights of linear layers, 𝑏1 and 𝑏2
are biases, and GELU is the Gaussian Error Linear Unit, an acti-
vation function used for introducing non-linearity, as previously
detailed in the GELU section. After processing through these lay-
ers, the decoder reshapes the output back into the dimensions
corresponding to the original image patches. This reshaped data
is then spatially expanded to match the original image’s dimen-
sions through an up-sampling step using a transposed convolution
(nn.ConvTranspose2d), mathematically described as:

Upsampled(𝑥) =𝑊 ′ ∗ 𝑥 + 𝑏′

where𝑊 ′ is the transposed convolution filter and 𝑏′ is the bias.
This reconstructed output aims to approximate the original image,
effectively learning to fill in the details for the patches that were
masked during the encoding phase.

3.3 Masking Strategies
In this paper, three different masking strategies were tested to eval-
uate the robustness and reconstruction capabilities of our model.
Below is a brief description of each strategy:

• Center Masking: In this strategy, the central 75% of the
image is masked. This involves placing a square mask in the
center of the image, leaving only the border areas visible.
The purpose of this strategy is to test the model’s ability to
reconstruct the most critical part of the image, which is often
the central region where the main subject is located (Figure
3).

Fig. 3. Center Masking

• Block Masking: Here, 75% of the image pixels are randomly
masked in blocks. Each block is a single pixel, and the lo-
cations of these masked pixels are randomly chosen. This
strategy aims to evaluate the model’s performance in filling
in randomly missing parts of the image, simulating a scenario
where random noise or corruption affects various parts of the
image (Figure 4).

Fig. 4. Block Masking

• RandomMasking: In this approach, each pixel in the image
has a 75% chance of being masked independently of other pix-
els. This results in a random and dispersed masking pattern.
The goal of this strategy is to challenge the model to infer
and reconstruct the image with a high degree of randomness
and irregular missing areas, which is a common scenario in
real-world applications (Figure 5).
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Fig. 5. Random Masking

4 EXPERIMENTAL SETUP
Pretraining Process

The pretraining process involves training theMaskedAuto-encoder
to reconstruct masked portions of the input images using a subset
of the ImageNet-1k dataset [7]. This subset contains 20 classes and
is loaded using the Hugging Face datasets library, then split into
training and validation sets (80% training, 20% validation). Data
augmentation techniques such as resizing, random cropping, hori-
zontal flipping, and color jittering are applied to the images. These
techniques are common in contrastive representation learning and
help improve the robustness of the model [32].
Training is performed on a single NVIDIA A16 GPU, utilizing

the Adam optimizer with a learning rate of 1 × 10−5. For the loss
function, mean squared error (MSE) is employed. The batch size is
set to 64 for both training and validation, and the training process
runs for up to 20 epochs with early stopping based on validation
loss improvement.

The training procedure (Figure 2) includes several key steps. First,
the input images are passed through a patch embedding layer and
masked according to a predefined mask ratio (75%). The masked
patches are then processed by the encoder blocks. During the re-
construction phase, the decoder reconstructs the masked portions
of the images, and the reconstruction loss is calculated as the MSE
between the original and reconstructed images. This loss is then
back-propagated, allowing the optimizer to update the model pa-
rameters. After each epoch, the model is evaluated on the validation
set, with early stopping implemented to halt training if the vali-
dation loss does not improve for 10 consecutive epochs (patience).
Additionally, the Structural Similarity Index Measure (SSIM) is used
to evaluate the reconstruction quality of the images.
Fine-tuning Process
Following pretraining, the Masked Auto-encoder encoder is fine-

tuned for the image classification task using a simplified classifier
architecture. The fine-tuning involves loading the pretrained MAE
encoder weights and replacing the decoder with a classifier head.
The same subset of ImageNet-1k used in pretraining is utilized
for fine-tuning, but the focus shifts to classification accuracy. The
classifier architecture consists of a patch embedding layer followed
by multiple blocks for feature extraction and a final classification
layer. The training is performed using the Adam optimizer with
a learning rate of 1 × 10−4 and the Cross Entropy Loss function.
The training process runs for 20 epochs, with early stopping if the
validation loss does not improve for 10 consecutive epochs.

5 RESULTS AND DISCUSSION
The SSIM values for different masking methods across epochs are
shown in Table 1. The visualisation of the improvements over the
epochs can be seen in Appendix (Figure 7,8, 9, 10). SSIM is used to
measure the reconstruction quality of the images:

Epoch Center Masking Block Masking Random Masking

5 0.3372 0.2887 0.4151
10 0.1809 0.3674 0.0084
15 0.3488 0.3441 0.4162
20 0.4023 0.5741 0.4686
Table 1. SSIM values for different masking methods across epochs

From Table 1, it can be observed that the SSIM values fluctuate
across epochs, showing varying levels of reconstruction quality.
Notably, block masking consistently achieves higher SSIM values
compared to center masking and random masking. At epoch 20,
block masking achieves an SSIM value of 0.5741, the highest among
all masking strategies. This suggests that block masking is more
effective in maintaining the structural integrity of the images.

The accuracy comparison of different masking strategies over 20
epochs is illustrated in Figure 6

Fig. 6. Architecture of Masked Auto-encoder

From Figure 6, it is evident that center masking consistently
outperforms block masking and random masking in terms of accu-
racy. Center masking shows a steady increase in accuracy, reaching
approximately 0.26 by epoch 20. In contrast, block masking and ran-
dom masking exhibit lower accuracy values, with random masking
performing the worst.

The results highlight the effectiveness of different masking strate-
gies in pretraining the Vision Mamba model with MAE. The SSIM
values suggest that block masking is more effective in reconstruct-
ing images with high structural integrity, as indicated by higher
SSIM scores. However, when evaluating the model’s accuracy on
the ImageNet-1k classification task, center masking proves to be
the superior strategy.
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The superior performance of center masking in terms of accuracy
can be attributed to its ability to focus the model’s learning on the
most informative parts of the image, typically located in the center.
This targeted approach likely helps the model capture more relevant
features, leading to better generalization and higher classification
accuracy.

On the other hand, the lower accuracy observed with block mask-
ing and random masking indicates that these strategies may not be
as effective in guiding the model to learn discriminative features
essential for classification tasks. Random masking, in particular,
shows the poorest performance, suggesting that the dispersed na-
ture of the missing patches may hinder the model’s ability to learn
coherent and meaningful representations.

6 CONCLUSION
This paper explored integrating Masked Auto-encoders (MAEs)
within the Vision Mamba model to enhance image representation
learning, evaluating random, block, and center masking strategies
on the ImageNet-1k dataset. Block masking achieved the highest
SSIM values, performing better compared to center and random
masking in image reconstruction. Center masking delivered the best
classification accuracy, reaching about 0.26 by epoch 20. Random
masking performed the worst in both metrics. These findings high-
light the importance of choosing appropriate masking strategies
for balancing reconstruction quality and classification performance.
Future work should address scalability issues in Vision Mamba and
explore other pretraining methods and optimizations for MAEs.
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7 APPENDIX

Fig. 7. Epoch 5 of pre-training

Fig. 8. Epoch 10 of pre-training

Fig. 9. Epoch 15 of pre-training

Fig. 10. Epoch 20 of pre-training
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