
Evaluation of TLS/SSL Implementations on Raspberry Pi for Secure IoT
Communication
LALANDE LUCAS LEV MICHEL, University of Twente, The Netherlands
SUPERVISOR: DR. ING. MOHAMMAD ELHAJJ, University of Twente, The Netherlands

Transport layer security (TLS)/Secure socket layer (SSL) is a security protocol
implemented on the internet aiming to provide communications that respect
the Confidentiality, Integrity, Availability (CIA) triad . The Internet of Things
(IoT) is a growing industry that requires encrypted communications to
respect the consumer’s privacy. IoT devices are devices with computing
capabilities but that are restricted in computing power and memory. Several
research report that TLS/SSL is too energy consuming and has too much
overhead which makes the connections inefficient on those devices. TLS/SSL
is defined by the Internet Engineering Task Force (IETF) a security protocol
that can be modified with several parameters , the Cipher suite, the transport
Protocol and handhsake optimisations such as session resumption and Pre-
Shared Key (PSK). It is known that the the Cipher Suite can be modified
by choosing cryptography functions with a low computational complexity
such as curves from the Elliptic Curve Cryptography (ECC) family. Another
aspect TLS/SSL depends on is the transport protocol. Two interesting are
TCP and UDP protocol that are by design oriented towards a connection-
oriented oriented protocol and connection-less protocol respectively, there is
no consensus on which is faster in terms of bandwidth while the handshake
process can also be altered for instance using PSK or session resumption.
One last aspect that has been investigated in research are performance
improvement over the software to accelerate computing processes. Each of
these step can be optimised. Previous research indicate that as is TLS/SSL is
not suitable for IoT devices as is.This calls for a comprehensive study that
assess whether this claim is true for a setup that is heavily optimised towards
embedded systems. The goal of this research is to assess optimisations and
their influence on speed of connection for the TLS handshake as well as
throughput and in throughput for the hash functions. Secondly a security
analysis must be carried to assess possible dangerous setups that could be
vulnerable to attacks such as TLS downgrade, Man In The Middle (MITM)
and vulnerabilities exploiting holes in the TLS 1.0 to 1.3 protocols and cipher
suites. This comprehensive study has for objective to provide information
on the speed of different TLS setups and their security properties in the
context of IoT devices. The following section provides more context on the
necessity of this study and introduces the main research question

Additional Key Words and Phrases: TLS, SSL, CIA, IoT, TCP, UDP, PSK,
MITM, IP, AEAD, ARP, IETF, ECC

1 INTRODUCTION
Society is increasingly including products integrating computers
and micro controllers within their household, those devices when
connected to the internet are also known as the IoT . The amount
of IoT devices has grown by 18% in 2022 and is forecasted to have
a growth of at least 15% from 2023 as mentioned in [1]. The infor-
mation transmitted by smart devices must be kept secure to forbid
malicious attackers from eavesdropping and breaching the privacy

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

of users.Transport Layer Security (TLS) and Secure socket layer
(SSL) are protocols that are designed to guarantee security over the
internet and guarantee the CIA triad. TLS is an upgraded version
of SSL historically and the terms TLS/SSL are used interchangeably
[2]. TLS/SSL is a security protocol that runs over a transmission pro-
tocol, some transmission protocols are TCP/IP, UDP ,both protocols
have the same functionality which is transmitting packets over the
network but are implemented and designed differently , specifically
TLS is designed for reliable direct communications and is widely
used on the internet some applications are web-browsing, email
and text messaging . As for UDP it is designed for real-time data
transmission and is designed for speed. It is generally considered
that UDP is faster than TCP in terms of bandwith however TCP
and UDP have been compared in [3] and in the specific scenario
they compare UDP is indeed faster. In the context of this research
the DTLS 1.3 protocol is investigated, which is TLS over UDP. The
study will be using the terms DTLS for TLS over UDP and TLS for
TLS over TCP. TLS has been proposed in 1999 by the IETF (Inter-
net Engineering Task Force) and the first version of the protocol
has been published in 1999 [4]. It is a communication protocol that
consists of a handshake with multiple steps that depend on the TLS
version. The standard nowadays is TLS version 1.3. TLS guaran-
tees the following properties for a communication Encryption,
Authentication, Integrity [4]. Researchers have been trying to
achieve fast and secure communications but the Status Quo is that
the best-established standard which is TCP/SSL is not efficient and
consumes too much power, in [5] the results demonstrate that en-
crypted communications consume 10 times more the number of
bytes transmitted per minute is also diminished when TLS/SSL is
activated. A concerning issue is that the state-of-the-art protocol
TLS/SSL for encrypted communications is considered secure but
has been proven to not be optimal for constrained devices due to its
energy consumption, high complexity and high overhead [5]. TLS
is made of several components,[6] enumerates key concepts of TLS,
the relevant ones are Handshake, Cipher suite, Certificate, and
Session. Handshake describes the protocol of messages that must
be exchanged in for a secure connection to be established and can
differ based on the implementation. The cipher suite describes the
combination of an encryption, a hashing, and a key exchange algo-
rithm that will be used during the TLS protocol as mentioned in [7].
It is then possible to trade security for faster hashing execution by
choosing algorithms that are less computationally expensive, many
are available but a promising direction are ECC algorithms. RSA
and ECC have been compared in [8] and the result conclude that
ECC is more performant than RSA regarding operational efficiency
and security. The Certificate is a document that contains a public
key and is signed by a CA(Certificate Authority) which is a mutually
trusted entity that pledges the integrity of a user’s identity. Finally,
the Session is a concept that represents a period of communication

1



TScIT 37, July 8, 2022, Enschede, The Netherlands Author

between a server and a client. These sessions can accept different
kinds of parameters. One famous optimisation technique is called
session resumption. It consists of not re-negotiating a session on
every subsequent connection. The results when activating session
resumption from this source [9] show that the amount of hand-
shakes required is halved. To conclude, it has been established that
standard TLS without optimisations is too computationally expen-
sive and slow in terms of throughput for IoT devices without any
optimisations. That is why it is necessary to investigate and provide
a comprehensive study of the optimisation techniques within these
protocols to make a step forward towards an encrypted IoT.
The rest of this paper is organized as follows: Section 2 states the
problem statement and describes the concrete research questions.
Section 3 provides an overview of related works that are used as ref-
erence to compare different TLS/SSL setups and also provide more
in-depth knowledge about the mechanisms that will be analysed in
this study. Section 5 is a performance analysis of TLS/SSL using the
wolfssl library in the context of IoT devices. The section 6 Is a com-
prehensive security analysis that provides an analysis on setups to
avoid and how to test for vulnerabilities in TLS implementations. In
section 8 conclusions are drawn based on results in the performance
and security analysis.

2 PROBLEM STATEMENT
This section aims to analyse the motivation and reasons driving
the development of fast and efficient SSL/TLS implementations and
define a specific problem to solve. It is clear from previous work
mentioned in 3 that any secure and encrypted communication pro-
tocol is slower than its un-encrypted version. Specifically, it has
been shown that TLS provides secure communication but is more
energy-consuming and reduces greatly the latency of communica-
tions due to it’s handshake requirement [5], making it unattractive
to adopt especially in devices with hardware constraints such as
limited memory and limited battery autonomy. Due to the nature of
the encryption algorithms, some components cannot be optimised
without significant security/speed trade-offs such as the minimal
amount of handshakes or a too simple cipher suite [6]. However,
these protocols can be optimised for constrained devices with dif-
ferent techniques such as picking an appropriate transportation
protocol, varying the cipher suites and techniques such as session
resumption as well as investigating an alternative underlying trans-
port protocol for example User Datagram Protocol (UDP). Several
attempts to investigate the following aspects(protocols, cipher suites,
handshakes) in the context of TLS in an IoT environment. However
the aforementioned investigations do not always take into account
a combination of these techniques. And some have not been per-
formed on IoT devices [10] namely this research that compares
cipher suites but does not have figure for IoT devices but only for a
virtual machine. This sparks the need for a comprehensive study
that would analyse different TLS setups on a Raspberry Pi such that
it is possible to run it efficiently over constrained devices altering
specific steps within the protocol. The consensus is that TLS as is,
is not a fitting solution for constrained devices. This requirement
of efficiency on constrained devices requires investigating differ-
ent TLS optimisation techniques to allow TLS to be widely used

within IoT environments. This need for a comprehensive study is the
driving factor introducing the following research question : What
influence do parameters such as Cipher suites, Handshake
parameters such as PSK and Session resumption, and trans-
port layer such as Transmission Control Protocol (TCP) and
UDP have on the performances of an TLS/SSL connection and
its security posture?
his research question is split into 3 more concrete sub-questions
that are answered in the context of this study

(1) How do different configurations of TLS/SSL implementations
on Raspberry Pi devices affect the security posture of IoT de-
ployments, particularly in terms of resistance against common
security threats such as man-in-the-middle attacks and protocol
vulnerabilities?

(2) What is the impact of the transport layer of different TLS-
based protocols, specifically TLS/SSL against DTLS, including
session resumption and their respective decryption processes on
the performance of Raspberry Pi devices in IoT environments,
considering factors such as communication latency, throughput,
under varying payload sizes ?

(3) How effective are optimization techniques such as elliptic curve
cryptography (ECC) and choice of cipher suite in improving the
performance of TLS/SSL implementations on Raspberry Pi for
secure IoT communication?

In the following section starts the performance analysis, analysing
and describing setups aimed to speed up a TLS/SSL connection

3 RELATED WORK
In order to get resources on possible option this paper includes
possible related works that have been used as guidance for design-
ing the experiment and finding possible optimisations it is also to
explain in more detail keywords used in previous section. The fol-
lowing research from [10] has proposed a benchmark of different
TLS cipher suites. Namely ECDHE-ECDSA and RSA. In the cited
paper the results indicate that on average ECDHE-ECDSA performs
faster than RSA on Ubuntu systems. [8] also compares RSA and ECC.
They conclude that ECC outperforms RSA regarding operational
efficiency and security with lesser parameters, it is also concluded
that ECC is more suitable for resource constrained devices. The
choice of cipher suite is crucial in term of security aspects. In the
following study they [11] observe a dataset of TLS connections and
they see that only 50% of connections of the dataset implement TLS
1.3 and can be considered as secure as TLS 1.3 is now the standard
and older ciphers are considered weak. It is generally agreed that
UDP outperforms TCP in terms of throughput as mentionned in the
results of [3]. This information could let one think that DTLS 1.3
should be faster than TLS 1.3. However concerning DTLS 1.3 and
TLS 1.3 it is not so clear as they both implement a handshake in
their protocol so even though the transmission of packets is faster
it is not clear whether DTLS 1.3 performs better. There is little re-
sources providing benchmarks of TLS and DTLS in the context of
IoT devices.[12] compares the performance of the protocols TLS
and DTLS from their version 1.2 to their respective version 1.3 and
benchmarks results. The figures from this study show that for the
same cipher suite about 80 byte are added [12] DTLS comparing the

2



Evaluation of TLS/SSL Implementations on Raspberry Pi for Secure IoT Communication TScIT 37, July 8, 2022, Enschede, The Netherlands

TLS row with the same cipher suite. Another study [13] oriented for
medical IoT devices reports that for mobile networks TLS increases
the response time by 6.5% whereas DTLS increases the response
time by 11%. Based on these research, it seems that in most cases
DTLS adds more overhead than TLS. However there is not extensive
material and no studies benchmark clearly DTLS against TLS for the
same version in a general IoT context.Another possible optimisation
is handshake resumption it can speed up the connection time for
TLS/SSL by resuming a previous connection.This article [9] com-
pares handshakes for TLS and session resumption and indicates that
session resumption requires twice as little RTT than without it. [13]
explains the handshake in more details. Resuming a session would
allow a 1 RTT handshake. It is also possible to achieve a 0 RTT
within TLS 1.3 in the case of the use of a PSK [14]. In order to speed
up the connection process it is possible to accelerate the hashing step
by choosing specific hashes or use PSK.The following article [15]
highlights that comparing DHE-PSK-AES128-CBC-SHA256 with
DHE-RSA-AES128-SHA256 results in an almost halved average con-
nection time, in addition the following source [12] indicates that
PSK outperforms normal TLS from a performance point of view
and energy consumption. [16] Compares different pre-shared keys
against public-key exchange mechanisms. They find that plain PSK
performs better than any public key based mechanism, They also
found that for DHE-PSK it performs better than RSA only when
using small key sizes. Concerning TLS it is known to be vulner-
able to so-called MITM attacks. One general guideline is to pass
encrypted traffic as this already prevents the MITM from sniffing .
It is said that strong client authentication in compliance with server
invariance prevents TLS MITM attacks [17] in the following source.
Considering the following previous research this study will carry
on a comprehensive analysis and compare the results with previous
literature.

4 PROPOSED SOLUTION
The analysis is carried on a server client architecture with both
server and client running on the same device. This is also known as
a loopback interface. The goal of doing it this way is to remove the
network conditions from the equation and have a more accurate
measure of connection time for TLS/SSL. In order to carry out this
analysis the setup is to implement a TLS/SSL client/server pair with
different setups. Specifically to verify TLS 1.3 with DTLS 1.3 along-
side with TLS 1.3 with PSK and TLS 1.3 with Session resumption.
The experiment will measure the average connection time over
variable connection times that can be seen in Figure 4next, there
is a test with the same setup but to test throughput. Throughput
for the RX and TX buffers of the client and the serve will be logged
for variable payload sizes that can be seen in Figure 3. The goal
of this experiment is to answer RQ2. In addition different TLS 13
cipher suites are measured with different Elliptic curve groups by
running the wolcrypt benchmark with software acceleration t. This
will allow us to answer RQ3.

5 PERFORMANCE ANALYSIS
In the follwoing section the performance analysis will be carried
the goal of this section is to answer the questions asked in research

question 2 and 3 .concerning RQ 3 this section aims to answer
whether the choice of elliptic curve and the of cipher suite can speed
up the connection process by comparing them. Finally concerning
RQ 2 the goal is to compare TLS/SSL setup and TLS 1.3 against DTLS
1.3

5.1 Hardware setup
In order to carry out the experiment the setup described in Fig-
ure 1 is used. In the following setup the raspberry pi is connected
to the WiFi. For figure 2,3 and 4 both client and server were ran
on the same raspberry pi on loopback interface. The client/server
are the example the wolfssl library that can be modified accord-
ingly with options to modify TLS/SSL setup. The setup of the pair
is running the selected options TLS 1.3, Private Shared Keys and
Session Resumption are using TCP/Internet Protocol (IP) transmis-
sion protocol.Network connections do not vary in this case since
ran on same machine, this setup is called loopback traffic and can
be monitored on Wireshark by selecting the loopback interface
on the same machine.The connection time is bound to Processor
speed and TLS Stack size. This allows to measure the connection
times more accurately disregarding network conditions and eval-
uate solely the metrics influenced by the TLS/SSL implementation
and optimisations. This setup also can be used to measure accurately
the influence of hardware acceleration on arbitrary servers run on
the machine.

Fig. 1. Hardware setup for wolfssl client/server examples

5.2 Software setup
For the research and generating client/server pairs wolfssl-5.7.0 was
used. Wolssl is a lightweight SSL/TLS library implemented in C with
targeted to be ran on hardware devices IoT because of its size, speed
and feature set. To setup wolfssl you must first install it then config-
ure it with wanted parameters and then build it. More detailed steps
on how to generate the data can be found in the github [18]. The
library implements SSL protocols such as TLS 1.0 - 1.3 and supports
a handpicked list of cipher suites compliant with the according TLS
protocol. For the cryptographic tests wolfcrypt library was used
which comes shipped with wolfssl. Wolfcrypt is a lightweight crypto
library written in ANSI C and targeted for application in Embed-
ded devices. This benchmark is measured in MB/s representing the
throughput of the hash function for encryption for a block of 220
bytes.

3



TScIT 37, July 8, 2022, Enschede, The Netherlands Author

5.3 Wolcrypt and software acceleration
As discussed in earlier sections. The choice of cryptography mat-
ters significantly in the performances of TLS/SSL to uncover which
setups might be promising it is possible to analyse the speed a cryp-
tographic function executes in . The following figure demonstrates
all supported wolfssl symmetric hash functions. One more detail is
that those cryptographic fuctions can be accelerated by using math-
ematical libraries. In the following figure you can see different hash
functions performed each with either no optimisation, fastmath
or fastHugeMath.

Fig. 2. TLS 13 symmetric ciphers benchmarks

From the result an observation can be made that the Symmetric
hash function with the highest throughput out of the ones available
by the wolfcrypt library is POLY1305, HMAC-MD5 and MD5. One
more observation is that even though the math acceleration im-
proves it does not seem to be a significant improvement. In addition
in certain functions fastmath and fasthugemath are slower than
the setup not including any software acceleration. This observation
indicates that a math acceleration library does not mean it will nec-
essarily be quicker on average for any symmetrical hash algorithm
but it depends on which one thus when implementing it must be
taken in consideration and a user must use the appropriate math
library.

5.4 Comparison of TLS 1.3 cipher suites
As mentioned in Problem statement. The choice of Cipher Suite has
a strong influence on the connection speed of TLS/SSL. To uncover
which setups might be promising it is possible to analyse the speed a
cryptography function executes the connection in. In 4 the average
connection time over infinite connection attempts within 15 seconds
is measured and Figure 3 the total amount of bytes transmitted over
a TLS 1.3 connection with the following TLS 1.3 cipher suites list
and with elliptic curves of different groups is graphed the metrics
average connection time is chosen to be able to see the influence of
TLS on the connection part itself and throughput is to see the effect
of setup over the packet transmission.

TLS13-AES128-GCM-SHA256,
TLS13-AES256-GCM-SHA384,
TLS13-CHACHA20-POLY1305-SHA256,

Fig. 3. TLS 13 cipher suites Amount of bytes transmitted over 15 s

The results from the experiment show that the most performant
suite is the cipher suite TLS13-CHACHA20-POLY1305-SHA256 with
an elliptic curve that belongs to the SECP256R1 group. In certain
cases the cipher suites elliptic curve group in certain cipher suites
affect the number of bytes transmitted, even when the same cipher
suite for the rest of the operation is used . This shows that the choice
of elliptic curve group is crucial for an implementation with superior
performance. In TLS 1.3 a lot of previously available cipher suites
have been pruned compared to TLS 1.2 in order to leave only the ones
that implement the TLS 1.3 handshake and only ciphers. In addition
the list of symmetric algorithms has been filtered and the remaining
ones implement Authenticated Encryption Associated Data (AEAD)
algorithms in wolfssl [19]. These measures guarantee protection
against many potential attacks exploiting weaknesses in ciphers and
non-AEAD ciphers. These results indicate that the choice of elliptic
curve and elliptic curve group can greatly improve the connection
time if chosen appropriately. These results are displayed in Figure 3

Fig. 4. TLS 13 cipher average connection time for connections over 15 s

The results for the average connection time follow the results
from Figure 4 are similar to 3. They are correlated since connection
time has a direct influence on throughput and amount of bytes
transmitted in finite time.

5.5 Comparison of TLS/SSL optimisations
In the following sections the setups mentioned in Research question
2 and DTLS 1.3 against TLS 1.3 and state their results in comparison
to each other. The objective is to find which setup is the fastest in
terms of average connection time and throughput.

4



Evaluation of TLS/SSL Implementations on Raspberry Pi for Secure IoT Communication TScIT 37, July 8, 2022, Enschede, The Netherlands

5.5.1 PSK. The results obtained show that PSK is slower than re-
suming a session but resumption does not happen for every connec-
tion. It is also significantly quicker than DTLS 1.3. This matches the
findings from previous studies. It is advised in [20] to use ECDH or
DH in combination with PSK in order to guarantee forward secrecy
[21]. This can be seen in the graph of Figure 5

Concerning the results for throughput, For the RX buffer of server
and client PSK performs worse on small values or as well as DTLS
and performs as good as Session resumption for large value . The
same observations can be made for the TX buffer in Figure 6.
This validates the results obtained in [12] as it also shows that

from a performance point of view PSK has a significantly lower
connection time than the other compared setups.

5.5.2 DTLS. The results seem to indicate that DTLS is slower for
larger values and quicker for less than 100 subsequent connections.
When running the benchmarks the DTLS server logs would stop for
a few seconds while waiting for packets. One reason is that UDP
being stateless, residual information from previous connections
interferes with the subsequent ones thus slowing down a client that
tries to connect thousands of times to the same server depending
on packet timing. This indicated that the DTLS 1.3 implementation
of wolfssl is slower than TLS for multiple subsequent connections .
It is displayed in this from Figure 5.
Concerning the results for throughput, the RX buffer of server

it performs on small values similarly to PSK and for large values
similarly to TLS 1.3. For the Client RX buffer it performs better from
100, 1000, 2500 and worst 5000 and 10000 than other protocols. As
for the TX buffer of the server and client it performs better than
other stups except for small values in TX buffer of client. It seems
that the throughput is not increased for the Receiving buffer but is
improved for the transmitting buffer for DTLS compared to other
setups. this can be verified in Figure 6 .
Comparing this to [3] it is clear that even though UDP outper-

forms TCP, DTLS 1.3 does not outperform TLS 1.3 in terms of
throughput and is much slower for large amount of connections.

5.5.3 Session resumption. From the results the Session resumption
is the method that give the quickest average connection time in
Figure 5. However in practice the resumption is not happening at
every connection, hence on the field this values will depend on the
amount of allowed resumptions.
From 6 Session resumption has similar performances to TLS 13

and seems to be quicker for larger quantity of bytes transmitted for
RX buffer for client and server and RX buffer of server
These results match the results found in [9] as it shows that

Session resumption reduces the average amount of RTT by half. In
our results the average connection time is more than halved. It is
mentioned that in practice it should not be allowed to resume an
infinite amount of connections. However it is clear from the results
than resuming a session is more than twice as fast than establishing
a new connection via TLS 1.3.

6 SECURITY ANALYSIS
Implementing TLS/SSL on IoT devices requires some optimisations
described in previous sections. However certain combinations of

Fig. 5. Average connection time for 10, 100, 250, 500, 1000 subsequent con-
nections

Fig. 6. Throughput of receiver and transmitter buffer of client and server

these optimisations can leave users of the servers vulnerable to
certain types of attacks. This section aims to provide an answer to
Research question 1 and provide an overview of vulnerable security
postures and resistance against MITM attacks. When implementing
SSL/TLS on IoT device possible vulnerabilities that could be intro-
duced by the choice of the TLS setup must be taken into account.
Factors that can influence the security posture are the choice of
cipher suites, The protocol version and the chosen communication
protocol. In the following sections go other possible attacks one can
expose himself if choosing a vulnerable combination of ciphers.Tools
are provided that can help a user implementing his own TLS/SSL
server to verify whether his implementation is vulnerable to differ-
ent kind of attacks by carefully avoiding the following pitfalls. This
can be done with tools such as a TLS fuzzy test suite which tests for
known TLS/SSL vulnerabilities. The following section covers those
topics in more details.

6.1 Hardware setup
In order to performMITM a raspberry pi on local network connected
to WIFI was used. This setup is designed in such a way to have
access to the local network and can act upon devices within it. The
following section goes over the software components used in this
analysis.

5



TScIT 37, July 8, 2022, Enschede, The Netherlands Author

6.2 Software setup
In order to perform the analysis various tools for penetration testing
have been looked into . Bettercap is a Command Line Interface tool
that allows to perform various attacks such as Man In The Middle,
TCP Proxies, Address Resolution Protocol (ARP) spoofing and also
recognise devices on the network and sniff traffic. The ones that are
interesting for the scope of this research are MITM attacks, TCP
Proxy. To perform the attacks you need to install bettercap and
follow this guide [22] for the TCP proxy you can follow the guide
from bettercap docs [23] the code in order to launch the attack is
the bettercap CLI with the script that is in this guide. This allows
us to modify packets .

To test ssl implementations fuzzy tests are available open source.
For instance the tls fuzzer implemented in python [24]. This library
can be tested on openssl servers and any other kind of TLS/SSL
connections. The following section will explain with more details
the intricacies of these attacks in the next sections.

6.3 MITM with bettercap and TLS Proxy
MITM has been described as a common vector of attack used on
TLS/SSL. This section gives concrete tools that can be used to per-
form a MITM attack on a TLS client/server pair. The initial and
target architecture are described next in order to become man in the
middle they give an indication on how an attacker would perform
the attack. Usually a network setup for a local network looks like
the following figure

Fig. 7. Normal flow of client - router connection

How a man in the middle attack is performed with the bettercap
module is by first sniffing target IP on the local network. Then
choosing the target and the router the device pretends to be the
router and sends the messages.It is now capable of sniffing traffic
and if a request is made with http for instance the device will log
it. This also allows for packet manipulation with more elaborated
attacks however they need to be protocol specific and they are more
elaborate and time consuming to perform. One interesting module
is the TLS proxy which allows to perform the same operation but
on an client and server and also allows a script that can be added
and that can be modified and used to alter packets. It is possible
to override packets. No concrete attacks with packet manipulation
have been attempted due to lack of time but this could be for future
works. The whole process is illustrated in Figure 8.

6.4 TLS fuzzer
To test TLS/SSL servers a method of testing called Fuzzy testing
consists of testing multiple standard attacks or provide a script that
can test for a potential attack.

Some well known attacks are TLS downgrade also known as SSL
stripping which consists of negotiating a lower version of TLS than
the advertised one by the server. It is often implemented with a

Fig. 8. MITM flow hardware setup

MITM setup. Since our sample servers were TLS 1.3 and DTLS 1.3
most of the common attacks on ciphers have failed on our servers.
In some cases it would also fail due to difference in implementation
of TLS/SSL libraries for wolfssl as it in . By lack of time it was
not possible to get the TLS fuzzer libraries compatible with wolfssl
to test everything It was possible to test those attacks on openssl
servers like in the docs [24] of the repository.

7 DISCUSSIONS
Based on the results presented in the performance analysis specif-
ically in section 5.5 it is clear how DTLS 1.3, TLS 1.3 and Setups
with PSK and Session perform. This paper also has compared the
available cipher suites and functions for TLS 1.3 in wolfcrypt and
found ways to accelerate crypto functions with software. Previous
research have mentionned that the drawbacks of TLS/SSL were
great in terms of energy consumption and speed. From this study it
is shown that it is possible to make an application-specific custom
client server architecture that would meet the specific requirements
of the application for speed by applying optimisations with the math
library, the choice of cipher suite and the TLS/SSL stack but also
by choosing a lightweight library such as wolfssl that is adapted
for the application. This can improve the connection time problem
for IoT devices using SSL/TLS that do not require autonomy. Since
power consumption has not been measured it is not possible to
make an analysis of the power consumption it is thus not possible
to draw any conclusion on devices that require autonomy.DTLS 1.3
and TLS 1.3 have been compared, even though it seems that at the
moment DTLS 1.3 performs worse on large value it has comparable
results and could be a viable solution in the future. It needs to be
investigated more as it is not a standard in the industry and is quite
recent there is little literature about it so this could deserves atten-
tion in the future. The last section of this paper makes a security
analysis and gives general guidelines on how potential attacks could
be triggered, how to use fuzzy testing to test an SSL/TLS connection
implementation and parameters. One direction for this is to extend
the security analysis and focus on the DTLS 1.3 protocol as well as
properly implementing attacks at the byte level that have not been
done due to time constraint.

8 CONCLUSION
TLS/SSL is commonly used on the internet in HTTPS and TLS en-
crypts most of the internet. It requires optimisations as it has been
shown to not be recommended with plain TLS 1.3 for IoT devices.

6



Evaluation of TLS/SSL Implementations on Raspberry Pi for Secure IoT Communication TScIT 37, July 8, 2022, Enschede, The Netherlands

Optimisations are possible by using altering the transmission pro-
tocol, the cipher suite, and adding session resumption or PSK. In
addition IoT devices are a potential target for attackers and requires
a comprehensive analysis on potential vectors of attack. This paper
demonstrates a comprehensive performance analysis and properties
TLS/SSL in the context of IoT devices and answers the aforemen-
tioned research questions. More specifically it has been shown that
the cipher suite choice when used in context of secure connections
based on previous results has a direct effect on the speed of con-
nections as can be seen in Figure 1 where cipher suites throughput
is compared, it is also shown that it is possible to accelerate this
process with software acceleration. The results in previous paper
also show that ECC cipher suites perform better than RSA and are
more adapted for constrained devices. In this study TLS 1.3 cipher
suites are compared and the results in Figure 4 indicate that the
elliptic curve group choice has a significant impact, in some cases
for the same cipher suite the connection time is halved. Concern-
ing handshake optimisations the results in 5 indicate that PSK and
session resumption have a positive effect on reducing the average
connection time . In the same results TLS and DTLS are compared .
Previous paper [3] indicates that UDP outperforms TCP in terms of
bandwidth which could indicate that DTLS 1.3 would be faster than
TLS 1.3. In this study it is shown that it is not the case in 6 as the
bandwidth is not superior and in some cases is performing worse
than TLS 1.3 it is also shown in 5 that for large amount of subse-
quent connections DTLS is much slower than TLS. In addition to
this this paper provides a comprehensive analysis and guidelines on
how an attacker would approach attacking a connection via attack
vectors and tools such as bettercap by performing using MITM. This
paper provided a tool to test implementations of TLS/SSL in order to
protect a connection from the most common vulnerabilities that are
known.These results have for goal to give a global overview on how
to implement a fast and secure SSL/TLS connection in the context of
IoT devices and how to protect from common vulnerabilities. From
the analysis of potential attacks in this section it is recommended
to use the latest protocol version of TLS which is 1.3 as it prunes
all weak cipher suites and the handshake is more robust as it ad-
dresses flaws in previous versions however it can still be vulnerable
depending on the configurations that is why it is necessary to carry
on fuzzy testing on the server in order to test the configuration for
robustness.

REFERENCES
[1] “Number of connected IoT devices growing 16% to 16.7 billion globally.” [Online].

Available: https://iot-analytics.com/number-connected-iot-devices/
[2] “SSL and TLS: Theory and Practice, Third Edition - Rolf Oppliger - Google

Books.” [Online]. Available: https://books.google.nl/books?hl=en&lr=&id=
TOnNEAAAQBAJ&oi=fnd&pg=PP1&dq=ssl+tls+history&ots=8asB5Rh50v&
sig=lC02-Vd6GJpJjx918phj55FFofU&redir_esc=y#v=onepage&q=ssl%20tls%
20history&f=false

[3] F. Taha Al-Dhief, N. Sabri, M. Albadr, F. Taha AL-Dhief, N. M. Abdul Latiff,
N. Noordini Nik Abd Malik, M. Abbas Abbood Albader, M. Abed Mohammed,
R. Noori AL-Haddad, Y. Dawood Salman, M. Khanapi Abd Ghani, and
O. Ibrahim Obaid, “Performance Comparison between TCP and UDP Protocols in
Different Simulation Scenarios,” Article in International Journal of Engineering
& Technology, vol. 7, pp. 172–176, 2018. [Online]. Available: https://www.
researchgate.net/publication/329698255

[4] P. Cui, “Comparison of IoT Application Layer Protocols,” 4 2017. [Online].
Available: https://etd.auburn.edu//handle/10415/5713

[5] I. L. B. M. Paris, M. H. Habaebi, and A. M. Zyoud, “Implementation of
SSL/TLS Security with MQTT Protocol in IoT Environment,” Wireless Personal
Communications, vol. 132, no. 1, pp. 163–182, 9 2023. [Online]. Available:
https://link.springer.com/article/10.1007/s11277-023-10605-y

[6] “Fortifying MQTT Communication Security With SSL/TLS | EMQ.” [On-
line]. Available: https://www.emqx.com/en/blog/fortifying-mqtt-communication-
security-with-ssl-tls

[7] “An Introduction To Cipher Suites | JSCAPE.” [Online]. Available: https:
//www.jscape.com/blog/cipher-suites

[8] “(1) (PDF) RSA and ECC: A comparative analysis.” [Online]. Avail-
able: https://www.researchgate.net/publication/322558426_RSA_and_ECC_A_
comparative_analysis

[9] “TLS Session Resumption: Full-speed and Secure.” [Online]. Available: https:
//blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/

[10] “(1) (PDF) Performance Analysis of SSL/TLS Crypto Li-
braries: Based on Operating Platform.” [Online]. Avail-
able: https://www.researchgate.net/publication/359906722_Performance_
Analysis_of_SSLTLS_Crypto_Libraries_Based_on_Operating_Platform

[11] L. Universitet, S.-L. +++, S. Frisenfelt, and E. Kjell, “Characterization of cipher
suite selection, downgrading, and other weaknesses observed in the wild
Karaktärisering av cipher suite val, nedgradering och andra svagheter som
observerats i det vilda.” [Online]. Available: www.liu.se

[12] G. Restuccia, H. Tschofenig, and E. Baccelli, “Low-Power IoT Communication
Security: On the Performance of DTLS and TLS 1.3,” 2020 9th IFIP International
Conference on Performance Evaluation and Modeling in Wireless Networks, PEMWN
2020, 11 2020. [Online]. Available: https://arxiv.org/abs/2011.12035v2

[13] “Benchmarking SSL Performance.” [Online]. Available: https://www.haproxy.
com/blog/benchmarking-ssl-performance

[14] “Whats new with TLS 1.3. Recently TLS 1.2 got updated to TLS. . . | by Robert van
Rijn | Medium.” [Online]. Available: https://medium.com/@vanrijn/what-is-new-
with-tls-1-3-e991df2caaac

[15] “When to use Pre Shared Key (PSK) Cipher Suites – wolfSSL.” [Online]. Available:
https://www.wolfssl.com/when-to-use-pre-shared-key-psk-cipher-suites-2/

[16] F. C. Kuo, H. Tschofenig, F. Meyer, and X. Fu, “Comparison studies between
pre-shared and public key exchange mechanisms for transport layer security,”
Proceedings - IEEE INFOCOM, 2006.

[17] N. Karapanos, S. Capkun, and E. Zürich, “On the Effective Preven-
tion of TLS Man-in-the-Middle Attacks in Web Applications.” [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/karapanos

[18] “SSL-TLS/research-main/src at main · pandasansgains/SSL-TLS.” [Online].
Available: https://github.com/pandasansgains/SSL-TLS/tree/main/research-main/
src

[19] “TLS 1.3 Protocol Support | Documentation – wolfSSL.” [Online]. Available:
https://www.wolfssl.com/docs/tls13/

[20] “TLS 1.3 Performance Part 3 – Pre-Shared Key (PSK) – wolfSSL.” [Online].
Available: https://www.wolfssl.com/tls-1-3-performance-part-3-pre-shared-key-
psk/

[21] “Tls 1.3 PSK with ECDH (Page 1) — wolfSSL — wolfSSL - Embedded SSL Library.”
[Online]. Available: https://www.wolfssl.com/forums/topic2051-tls-13-psk-with-
ecdh.html

[22] “Man In The Middle Attack Using Bettercap Framework | HackerNoon.” [Online].
Available: https://hackernoon.com/man-in-the-middle-attack-using-bettercap-
framework-hd783wzy

[23] “tcp.proxy :: bettercap.” [Online]. Available: https://www.bettercap.org/modules/
ethernet/proxies/tcp.proxy/

[24] “tlsfuzzer/tlsfuzzer: SSL and TLS protocol test suite and fuzzer.” [Online].
Available: https://github.com/tlsfuzzer/tlsfuzzer

7

https://iot-analytics.com/number-connected-iot-devices/
https://books.google.nl/books?hl=en&lr=&id=TOnNEAAAQBAJ&oi=fnd&pg=PP1&dq=ssl+tls+history&ots=8asB5Rh50v&sig=lC02-Vd6GJpJjx918phj55FFofU&redir_esc=y#v=onepage&q=ssl%20tls%20history&f=false
https://books.google.nl/books?hl=en&lr=&id=TOnNEAAAQBAJ&oi=fnd&pg=PP1&dq=ssl+tls+history&ots=8asB5Rh50v&sig=lC02-Vd6GJpJjx918phj55FFofU&redir_esc=y#v=onepage&q=ssl%20tls%20history&f=false
https://books.google.nl/books?hl=en&lr=&id=TOnNEAAAQBAJ&oi=fnd&pg=PP1&dq=ssl+tls+history&ots=8asB5Rh50v&sig=lC02-Vd6GJpJjx918phj55FFofU&redir_esc=y#v=onepage&q=ssl%20tls%20history&f=false
https://books.google.nl/books?hl=en&lr=&id=TOnNEAAAQBAJ&oi=fnd&pg=PP1&dq=ssl+tls+history&ots=8asB5Rh50v&sig=lC02-Vd6GJpJjx918phj55FFofU&redir_esc=y#v=onepage&q=ssl%20tls%20history&f=false
https://www.researchgate.net/publication/329698255
https://www.researchgate.net/publication/329698255
https://etd.auburn.edu//handle/10415/5713
https://link.springer.com/article/10.1007/s11277-023-10605-y
https://www.emqx.com/en/blog/fortifying-mqtt-communication-security-with-ssl-tls
https://www.emqx.com/en/blog/fortifying-mqtt-communication-security-with-ssl-tls
https://www.jscape.com/blog/cipher-suites
https://www.jscape.com/blog/cipher-suites
https://www.researchgate.net/publication/322558426_RSA_and_ECC_A_comparative_analysis
https://www.researchgate.net/publication/322558426_RSA_and_ECC_A_comparative_analysis
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://www.researchgate.net/publication/359906722_Performance_Analysis_of_SSLTLS_Crypto_Libraries_Based_on_Operating_Platform
https://www.researchgate.net/publication/359906722_Performance_Analysis_of_SSLTLS_Crypto_Libraries_Based_on_Operating_Platform
www.liu.se
https://arxiv.org/abs/2011.12035v2
https://www.haproxy.com/blog/benchmarking-ssl-performance
https://www.haproxy.com/blog/benchmarking-ssl-performance
https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
https://medium.com/@vanrijn/what-is-new-with-tls-1-3-e991df2caaac
https://www.wolfssl.com/when-to-use-pre-shared-key-psk-cipher-suites-2/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/karapanos
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/karapanos
https://github.com/pandasansgains/SSL-TLS/tree/main/research-main/src
https://github.com/pandasansgains/SSL-TLS/tree/main/research-main/src
https://www.wolfssl.com/docs/tls13/
https://www.wolfssl.com/tls-1-3-performance-part-3-pre-shared-key-psk/
https://www.wolfssl.com/tls-1-3-performance-part-3-pre-shared-key-psk/
https://www.wolfssl.com/forums/topic2051-tls-13-psk-with-ecdh.html
https://www.wolfssl.com/forums/topic2051-tls-13-psk-with-ecdh.html
https://hackernoon.com/man-in-the-middle-attack-using-bettercap-framework-hd783wzy
https://hackernoon.com/man-in-the-middle-attack-using-bettercap-framework-hd783wzy
https://www.bettercap.org/modules/ethernet/proxies/tcp.proxy/
https://www.bettercap.org/modules/ethernet/proxies/tcp.proxy/
https://github.com/tlsfuzzer/tlsfuzzer

	Abstract
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Proposed solution
	5 Performance Analysis
	5.1 Hardware setup
	5.2 Software setup
	5.3 Wolcrypt and software acceleration
	5.4 Comparison of TLS 1.3 cipher suites
	5.5 Comparison of TLS/SSL optimisations

	6 Security analysis
	6.1 Hardware setup
	6.2 Software setup
	6.3 MITM with bettercap and TLS Proxy
	6.4 TLS fuzzer

	7 Discussions
	8 Conclusion
	References

