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Compiling code using both the CPU and GPU has been gaining traction

over the last decade. Especially Python has seen many of these innovations

added via packages, such as Numba. However, compiled languages have

not seen this same growth. This research proposes a new compiler exten-

sion to allow writing GPU kernels in native Rust – a language for reliable,

high-performance systems programming. Presently, it is impossible to share

code between the host (CPU) and device (GPU) within the Rust solutions

for hybrid programming. Our approach represents an initial advancement

in this area: We made modi�cations to the Rust compiler to establish the

foundation for a hybrid compilation process. These modi�cations include:

(i) enabling the parsing of kernels de�ned in Rust for subsequent GPU com-

pilation, and (ii) developing a method for accessing the generated kernel

bytecode (GPU) from the host Rust code. Additionally, we created a set of li-

braries to facilitate kernel launching and execution, along with ensuring safe

memory management. Our extended compiler and the libraries necessary

for executing the GPU kernels in Rust are publicly accessible.

Additional Key Words and Phrases: GPU Acceleration, Compilers, GPU

Kernels, Rust, Hybrid Compilation

1 INTRODUCTION

Over the past decade, integrated hybrid programming solutions for

GPU acceleration have become more popular in languages like

Python. The advent of packages such as Numba, with millions

of downloads each month [2], has sparked a revolution in high-

performance computing within the Python ecosystem.With support

for writing General Purpose GPU code inside Python, using GPU

acceleration in Python programs has become more commonplace

for high-performance applications like simulations and scienti�c

models. However, this revolution has not yet come to full fruition

in compiled languages such as C, C++ or Rust.

Some advancements on GPU acceleration have been made for

some compiled languages. However, the current state of the art

in most compiled languages is still lagging behind Python. Raw

OpenCL API calls and programs are usually the standard for cross-

compatible programs [17]. NVIDIA however, does provide a hybrid

compiler [6] for C++ to interface with their CUDA-enabled acceler-

ation devices. This hybrid compiler compiles the source code in a

2-step process, where GPU functions are compiled and linked in a

preprocessing stage and the rest of the code is compiled afterwards.

In Rust, the libraries rust-cuda [1] and rust-gpu [8] emulate this

behaviour, albeit with limitations on the placement of kernels. In

these libraries, for example, it is currently not possible to write

kernels alongside host code such as in Python or CUDA C++.
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rust-cuda and rust-gpu have made signi�cant advances in hy-

brid compilation techniques, however, it is still noticeably more

complex to write kernels in Rust compared to Python with Numba.

We hypothesize the reason for this might be the lack of an integra-

tion mechanism that fully binds the host and device code together:

in rust-cuda and rust-gpu the programmer needs to actively sep-

arate kernels from the host code. This is an issue Numba and CUDA

C++ have successfully solved by allowing the programmer to de�ne

kernels alongside the host code.

We propose a new method of hybrid compilation that emulates

these successes with hybrid compilation in Rust. This new method

builds kernels de�ned in Rust from within the compiler, which im-

proves the linking between host and device code. In this paper we

show how this form of hybrid compilation is achieved, and how we

can write a kernel with our prototype as shown in Listing 1.

Intuitively, in Listing 1, we declare the kernel gpu64 with 1 array

argument. This kernel sets each element’s value to the index of

the element, resulting in the array [0,1,2,3,...]. In main(), we

declare the array we want to pass to the kernel, declare how many

threads and blocks we want to use [3], and launch the kernel with

the arguments we just de�ned. The result is then printed to the con-

sole. The engine declaration at the top speci�es which launch(..)

functions to import.

#![engine(cuda::engine)]

#[kernel]

fn gpu64(a: &mut [i32]) {

let i = tid();

a[i] = i;

}

fn main() {

let mut arr: Vec<i32> = vec![1; 256];

let threads_per_block = 64;

let blocks_per_grid = 4;

gpu64.launch(

threads_per_block,

blocks_per_grid,

arr.as_mut_slice());

println!("Result: {:?}", a);

}

Listing 1. Defining and executing a kernel with our prototype

In this work we investigate the following research questions:
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(1) Which components of the compiler need to be changed or

added in order to support the proposed hybrid compilation

method for integrating GPU kernels into CPU code?

(2) To what extent can the execution of kernels be simpli�ed in

Rust using our proposed hybrid compilation method?

We provide some background for the Rust language and its com-

piler in section 3. In section 4, we detail how our hybrid compilation

method is implemented in the Rust compiler. Additionally, we de-

scribe the challenges that come with the implementation of our

method. Furthermore, we also explore how the kernels generated

from our hybrid compilation method can be executed from the host

code. Section 5 expands on how we execute kernels with the CUDA

API. Section 6 describes how one can install our prototype on their

computer. Finally, in section 7, we discuss the advantages and dis-

advantages of our proposed method and compare them to other

hybrid compilation techniques in Rust, C++ and Python.

2 RELATED WORK

2.1 Early history of compute kernels

GPUs started out, as the name implies, as graphics accelerators.

During the early 2000s, programmable shaders and �oating point

operations were introduced to GPUs, which greatly advanced their

computing capabilities. In 2003, a signi�cant milestone was achieved

when 2 research groups independently discovered GPU programs

for linear algebra problems that ran faster on the GPU compared to

the CPU [5, 13].

In 2006, NVIDIA launched the CUDA (Compute Uni�ed Device

Architecture) framework [16]. CUDA allows programmers to write

general purpose compute code for highly parallel compute problems,

such as matrix multiplication. A few years later, Apple and Khronos

group developed OpenCL (Open Computing Language), a language

for de�ning code on (graphical) acceleration devices [17]. Both

CUDA and OpenCL use the concept of kernels, functions executed

on the acceleration device that can be queried from the host code.

2.2 History of integrated GPGPU programming in Python

During the late 2000s, Python’s popularity among programmers

started to increase, with many people choosing Python for its pre-

sumed accessibility and ease of use, particularly for those with lim-

ited programming experience. However, as projects expanded, the

performance limitations of Python became a problem. This sparked

a need for faster, parallelized Python code.

In 2010, Garg and Amaral [9] were the �rst to propose and de-

scribe a hybrid compilation and execution model that uses both the

CPU and GPU from a single code source in Python. Their solution

aimed to increase the performance of Python by providing an easy-

to-use framework that automatically extracts sections of code that

can be executed on the GPU. Although their solution successfully

sped up Python code, it failed to resonate with Python programmers.

In 2015, Lam et al. [14] launched the Numba project. This library

provides tools for accelerating numerical computations, specialising

in optimizing code for execution on CPUs and GPUs. In their re-

search paper, Lam et al. describe the same demand for accelerating

the performance in Python as Garg and Amaral [2010] did. Their

solution, however, has clung on and is massively popular within the

Python community. The Numba library garners roughly 17 million

downloads per month [2] and Lam et al.’s article on the implemen-

tation of Numba has reached 600 citations at time of writing1. An

important reason for the popularity of this library is its presumed

ease of use and syntactic simplicity, making it ideal for experiment-

ing with GPU kernels within existing code bases. Numba makes

heavy use of Python’s decorator system which allows it to access

the original source code and compile entire functions to bytecode.

2.3 Rust as a GPU programming language

While Python has had major developments on GPGPU computing,

Rust’s developments have been a bit more modest, only consisting

of minor advancements and experimental features. In 2013, Holk et

al. created a prototype for compiling Rust to a GPU target, speci�-

cally targeting the PTX (Parallel Thread eXecution) intermediate

language compatible with the NVIDIA CUDA kernels [10].

Up to this point, Rust kernels were mostly written using the

OpenCL interface. Kernel code is written in the OpenCL program-

ming language which is then compiled and executed at runtime (see

appendix A for an example). However, this method exposes a lot

of complexity and requires the programmer to know OpenCL, the

intrinsics of the GPU, and how kernels operate behind the scenes2.

Except for very speci�c use cases, this complexity is unnecessary

and complicates the development process.

Holk et al. details this problem in their paper and proposed a

hybrid compilation process to resolve it [10]. Their approach is

similar to Garg and Amaral’s proposed hybrid compilation model

[9].

Fig. 1. Overall workflow of Holk’s compiler. The pre-processor separates

kernels from the host code. The kernels are compiled separately from the

host code in order to generate GPU code. [10]

Holk’s method aims to preprocess the input �le such that host

code and device code can be compiled using di�erent compilation

targets. The separated code bases are then linked again during run-

time. Figure 1 illustrates the work�ow of Holk’s method, during the

preprocessing stage, the input �le is separated into 2 source �les,

one for GPU code and one for CPU code. The GPU code is then

1Sourced from https://dl.acm.org/doi/abs/10.1145/2833157.2833162
2This includes: building the kernel, supplying appropriate arguments, setting up the
output bu�er and enqueueing the built kernel for execution
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#[kernel]

fn add_kernels(++x: ~[float],

++y: ~[float],

++z: ~[mut float])

{

let i = ptx_ctaid_x() * ptx_ntid_x() +

ptx_tid_x();

z[i] = x[i] + y[i];

}

Listing 2. An example of a kernel declaration using Holk’s prototype. This

kernel function takes three arrays x, y, and z as inputs. It performs element-

wise addition of x and y, storing the results in z. Each thread computes one

element based on its unique index determined by the block and thread IDs.

compiled to GPU bytecode using a special compiler variant. The

CPU code is compiled to a binary which loads the generated GPU

bytecode from a �le. Holk et al. demonstrated a partial prototype

excluding the preprocessor stage.

Since 2020, Embark Studios has maintained the rust-gpu library

[8]. This library extends to Holk’s methods on the compilation of

kernels. The rust-gpu library compiles (separated) Rust GPU code

to SPIR-V [11], a new widely supported low-level language intended

for GPU devices. This code can then be embedded into the host

code for execution. The rust-gpu library has extensive support for

programmable shaders, a small program injected into the rendering

process to alter what is shown on the screen. This project has al-

ready been in development for a few years and is generally regarded

as the most stable library of all the available options as of 2024.

Rust syntax, however, is designed as a general-purpose language

for CPU computing. Therefore, not all language constructs can be

fully implemented for use on the GPU. As Sudwoj described in

2020 [18, p. 10], many basic operations would be unsafe or even

unsound due to the di�erences in the GPUmemory model compared

to Rust’s memory model. Especially pointer aliasing within GPU

kernels would be problematic. It should, however, be noted that

relatively little research has been done on this topic.

3 BACKGROUND

Rust has a few unique language concepts that makes it stand out

among other languages. These concepts include variable ownership,

the type system, and fearless concurrency [12].

3.1 Type System and Ownership

Rust has a unique type system taking inspiration from both im-

perative and functional programming languages. Rust prioritises

safety with the design of its type system. This is achieved with the

concepts of variable ownership and borrowing.

Ownership is Rust’s unique method of managing memory. It

allows the compiler to derive when memory should be allocated

and deallocated in the program, removing the need for a garbage

collector without leaving memory management to the programmer.

This system allows Rust to allocate more variables on the stack

compared to other languages. Ownership, however, does need a

set of rules all variables need to abide for the system to work [12,

ch. 4.1]. They are:

• Each value in Rust has an owner.

• There can only be one owner at a time.

• When the owner goes out of scope, the value will be deallo-

cated

An owner of a variable can be anything from functions to other

variables or sometimes even the program itself. The owner of a

variable may be transferred during function calls by passing the

variable as an argument.

Borrowing is Rust’s way to pass references to functions and other

objects without transferring ownership. In Rust, a reference must

always be valid during the duration of its use. This property is

checked by the compiler, which refuses to compile the program

if a borrowed reference may not be valid when used. This system

proves to be a very e�ective way to manage memory in a reliable

and safe manner [12].

3.2 Fearless Concurrency

One of the major goals of Rust is to provide safe and e�cient concur-

rent programming [12, ch. 16]. Rust extends the borrowing system

to provide what Rust de�nes as fearless concurrency. Fearless con-

currency aims to present concurrency issues as compilation errors,

allowing the programmer to �x issues while implementing the code

rather than discovering concurrency problems later on. The com-

piler checks extensively by analysing which variables are shared

among threads, whether they are properly guarded from data races,

and other analysis techniques.

The Rust team found that ownership system already checks many

of these properties. Just like in a single threaded program, borrowing

rules prevent normal references being passed to di�erent threads,

because the compiler cannot be sure the reference stays valid.

In short, fearless concurrency aims to allows the programmer

to write code free of small and subtle bugs and making it easy to

refactor code without introducing new bugs.

3.3 Rust Compiler Structures

This section describes the general compiler structure of rustc, the

Rust compiler. This summary is based on sections of The Rust Com-

piler Development Guide [7] and focuses on the parts most relevant

to this paper.

3.3.1 High-level Compiler Architecture.

In addition to unique language concepts, Rust’s compiler also has

some unique methods to compile Rust code to binaries. In gen-

eral, the Rust compiler can be broadly divided into several stages,

with an intermediate representation between stages [7, ch. 26]. We

summarise these stages in the following list:

(1) Parsing: The Rust compiler starts with parsing raw Rust

code into an Abstract Syntax Tree (AST ). The AST roughly

3



TScIT 41, July 8, 2024, Enschede, The Netherlands Niek Aukes

represents the Syntax written by the programmer as a tree

structure.

(2) AST Lowering: In this stage, the AST is converted to the

High-level Intermediate Representation (HIR). During this

process, all symbols used by the programmer are resolved

and given a DefId, which is a unique number that represents

every de�nition in the compiled code.

(3) HIR Analysis: After lowering the AST to the HIR, Type

checking and other analysis is performed on the HIR. This

process creates the typed HIR.

(4) HIR Lowering: The next stage involves lowering the typed

HIR to the Mid-level Intermediate Representation (MIR). The

MIR is a simpler, control-�ow graph-based representation that

captures the semantics of the program. This representation is

designed for analysis and optimization of the program’s core

logic.

(5) MIROptimization: DuringMIR optimization, various analy-

ses and transformations are applied to improve the e�ciency

and performance of the code. This includes borrow checking3,

as well as other optimizations that simplify and streamline

the control �ow and data usage in the program.

(6) Code Generation: The �nal stage is the translation of the

MIR to LLVM IR (Low Level Virtual Machine Intermediate

Representation) [15]. The LLVM IR is then processed by the

LLVM backend, which generates machine code for the speci-

�ed target.

3.3.2 �eries.

Unlike many other compilers, rustc does not execute these stages

sequentially after each other. Instead, it uses queries, which are func-

tions with some extra properties. They are designed to be memoized

and context-free, meaning that once a query has been computed, its

result is cached and can be reused without recomputation. Queries

in rustc can be thought of as a series of interconnected questions

and answers. Each query corresponds to a speci�c compiler oper-

ation or piece of information, such as type checking a particular

function or generating the MIR for a module.

In rustc, all the major compiler steps described in section 3.3.1

consist of a series of queries calling each other. All queries are de-

�ned on the TyCtxt struct, which acts as a central compiler context

most entities in the compiler have access to. Queries can therefore

be used to facilitate information transfer from one part of the com-

piler to any other part.

Queries also facilitate incremental compilation. Most source code

is not changed during compilation sessions and can theoretically

be reused if the initial inputs have not changed. rustc analyses the

inputs of queries for possible changes and decides if results from

the previous session can be reused for this query4.

3Borrow checking is part of Rust’s memorymanagement model. It is explained in chapter
4 of [12]
4The algorithm is explained in chapter 28.2 of [7]

4 MODIFICATIONS TO THE RUST COMPILER

For a hybrid compilation process to work, the following key steps

are needed to convert and link kernels with the host code:

(1) Identi�cation of kernel code in the source code.

(2) Compilation of kernel code to GPU bytecode.

(3) Integration of the compiled kernel bytecode back into the

host code.

In this section, we describe in detail how these steps are imple-

mented in the Rust compiler.

4.1 Overview

Fig. 2. The overall workflow of our compiler-based method.

Figure 2 describes the overall work�ow of our modi�ed compiler.

When the compiler needs to compile a �le like input.rs, it needs

to go through all the steps as described in section 3.3.1. In �gure 2,

the �rst four steps (parsing, AST lowering, HIR analysis, and HIR

lowering) are represented by the single arrow between the input

�le and the Mid-level IR (MIR). These steps have been simpli�ed in

the �gure, since they do not di�er structurally from the unmodi�ed

compiler.

When the compilation process reaches the Mid-level IR, the CPU

and GPU code are separated and put into di�erent compilation

tracks. The lower track in �gure 2 describes the original compila-

tion track that is used for CPU code. The upper track is followed by

GPU code, such as user-de�ned kernels.

The GPU code, following the upper track, is compiled by a newly

written code generator, which converts the GPU code MIR into

GPU-compatible bytecode. This yields a code string which can be

embedded into the host code.

The CPU code, following the lower track, encounters themonomor-

phiser, which further prepares the MIR for (parallel) code generation.

Just before the the prepared MIR is compiled to LLVM-IR, the GPU

bytecode is merged back into the CPU code as an embedded lit-

eral, which can be accessed during execution. The LLVM-IR code

generator then continues compiling the program as normal.

4.2 Language Design

A kernel can be declared by using the #[kernel] attribute on a

function, as shown in Listing 1. This tells the compiler that the

annotated function is a kernel, and should be compiled for the GPU.

4



Hybrid compilation between GPGPU and CPU targets for Rust TScIT 41, July 8, 2024, Enschede, The Netherlands

The function name is reused to refer to the �nal bytecode of the

GPU kernel. This can be seen in Listing 1 as well, the gpu64 symbol

in main() refers to the static bytecode that was generated during

the compilation process. This behaviour, however, is problematic for

the compiler due to what we refer to as the ‘Type Masking’ problem.

4.3 The Type Masking Problem

In the context of our hybrid compilation method, the type masking

problem is a unique challenge that arises from the dual nature of

kernel functions. Speci�cally, the type of a kernel function must be

interpreted di�erently depending on the context in which it is used.

When a kernel is declared, it should be treated as a regular func-

tion de�nition. However, any part of the code referencing the kernel

should yield the kernel bytecode rather than the original function

de�nition. This duality in type interpretation creates, what we call,

the type masking problem.

The primary challenge of type masking lies in the compiler’s

need to manage the dual nature of kernels. This requires careful

handling within the compiler infrastructure to ensure that each

kernel function is interpreted correctly depending on its context. To

address this problem, we provide a second type de�nition for kernels

that captures the original function’s type, which can be accessed by

compiler components that workwith the original function de�nition

of the kernel.

4.4 Code Separation and Integration

With type masking issues resolved, we are ready to separate kernel

code from host code and integrate kernel bytecode back into host

code. To achieve this, we use Rust’s query system to our advantage.

Rust’s query system is designed to facilitate on-demand compu-

tation and caching of compiler artifacts5. When the code generator

needs the MIR of a particular function, it issues a query for that

function. The query system then retrieves and optimizes the MIR

when needed by the code generator.

We extend this query-based approach to handle kernel de�nitions.

When the code generator requests the MIR of a kernel function, we

intercept this request to perform kernel code generation and literal

embedding, yielding the compiled kernel bytecode as a literal. This

literal is then embedded within the host code.

Figure 3 describes this process for the example in Listing 1. In this

example, the code generator needs to generate LLVM-IR code for

the main() function and the gpu64(..) kernel. The main() func-

tion is compiled normally following the original queries. However,

the gpu64(..) kernel is passed to another query that speci�cally

compiles kernels.

5Artifacts are anything generated during the compilation process that can be reused in
other steps of the process

Fig. 3. This diagram highlights the demand-driven aspect of how queries

are used, and how we use queries to separate and merge kernel code.

4.5 Code Generation

Before code generation can be performed, theMIR needs to undergo

a process called monomorphisation. Monomorphisation involves

resolving generic functions into their speci�c implementations. In

Rust, this process also collects which functions are used within the

program to �lter out unused functions.

Once monomorphisation is complete, the next step is to generate

code from MIR to NVVM IR (NVIDIA Virtual Machine Intermediate

Representation). There are existing implementations for generating

NVVM IR code from MIR, but we encountered several challenges

integrating those into our solution. Many existing solutions, for ex-

ample, rely on foreign APIs, such as LLVM. Integrating these APIs

into the Rust compiler proved to be problematic due to compatibility

and portability issues.

We attempted to reuse the code generators in [1] and [8]. How-

ever, these code generators were built for di�erent versions of rustc,

requiring us to update these libraries to resolve compile errors. Ad-

ditionally, we experienced issues with binding the third-party tools

used by these code generators into our modi�ed compiler.

Due to these challenges, we were unable to implement the code

generation phase within our prototype. Instead, we opted to return

a hand-written kernel program, ignoring any code written by the

programmer. This approach serves as a placeholder to demonstrate

the overall work�ow, but it is clearly an area for future improvement.
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4.6 Literal Embedding

To access the �nal kernel code, we need to embed the compiled

bytecode into the �nal executable. This is achieved by replacing the

kernel function MIR with a MIR static that then contains the kernel

bytecode.

Instead of directly embedding the code as a literal, we wrap it in

a structure that carries some additional metadata of the kernel. This

metadata provides the name of the kernel and the arguments the

kernel expects. External libraries may extend this wrapper with their

own implementations for executing kernels. To do this, one must

specify the library containing these extensions with the engine

macro, as shown in listing 1. We provide such a library for CUDA

kernel executions, which will be further discussed the following

section.

5 KERNEL EXECUTION ON THE GPU

After completing all these steps, we are �nally able to access com-

piled kernels in the host code. In this section, we detail how we use

the CUDA API to execute our kernels, and how a programmer can

use the libraries presented in this paper.

5.1 The CUDA Execution Model

CUDA [16] is a parallel computing platform and programming

model created by NVIDIA. CUDA enables developers to write pro-

grams that execute across multiple parallel threads on the GPU. The

CUDA execution model is based on the concept of a grid of thread

blocks [3], where each thread block contains a number of threads.

thread blocks, in turn, are organised into a grid, which represents

all threads used by a kernel.

Fig. 4. A grid of thread blocks [3]

CUDA provides 3 di�erent memory types to support the high

level of parallelism. These are:

(1) Global Memory: Accessible by all threads in the grid, but

with high latency. It is used for large data transfers between

the host and the device.

(2) Shared Memory: Shared among threads within the same

block. It has lower latency compared to global memory and

is useful for data that needs to be frequently accessed by

multiple threads within a block.

(3) Local Memory: Private to each thread, but with low latency.

It is used for variables that are only accessed within a single

thread.

Kernels are launched by the host device.When a kernel is launched,

the programmer speci�es the grid and block dimensions, which de-

termine the number of thread blocks in the grid and the number of

threads in each block. Listing 1, for example, speci�es 64 threads

per block with 4 blocks in total, resulting in 256 threads in total.

5.1.1 Interacting with CUDA.

The CUDA Toolset provides a C API to interact with CUDA-enabled

GPUs from the host. This API de�nes functions for initializing the

CUDA environment, managing GPU memory, transferring data

between the host and the GPU, and launching kernel executions.

With this API, any program is able to launch kernels on the GPU.

5.2 CUDA with Rust

To interact with the CUDAAPI, we developed a library that provides

safety abstractions for objects and functions de�ned in the CUDA

API. Usually, foreign APIs do not conform with Rust’s rules for

safety and memory management. Safety Abstractions act as wrap-

pers around the API such that it does conform with Rust’s rules, and

make sure that API calls are valid. The libraries we developed for this

purpose can be found at https://github.com/NiekAukes/rust-kernels,

along with the relevant usage documentation.

This new library allows the library user to load kernels onto

the GPU, execute them, and manage device memory for the GPU.

Most of these uses are not signi�cantly di�erent from the original

API. However, now being able to de�ne kernels in Rust leads us

to something interesting we can do with the API. Data types are

now completely mirrored between CPU and GPU, this allows us to

implement novel ways for handling device memory that work well

with Rust’s ownership system.

5.2.1 Device Memory Modelling.

We model device memory using a special object that represents an

object in GPU memory. This object, which we call a device pointer,

is created from transferring a regular object, such as an array of

integers, to the GPU. Compatible data types contain a method to

transfer the object in question to the GPU. This method then yields a

device pointer to that object. During the transformation, the original

type of the object is retained as metadata within the device pointer.

With the device pointer, data on the GPU can be easily retrieved

and copied back to the host memory. This is essentially the same

process as transferring to the GPU, except in reverse. Listing 3 high-

lights how data transfer is done in code.

Unfortunately, not all data structures can be sent to the GPU

easily. To send a data structure to the GPU, it needs to be able to

capture all information this structure has access to on the host.

In other words, it may not have references to host data, as those

references are invalid on device memory. We need to be sure all

data is accessible on the GPU. This, however, is a limitation of the

current implementation, rather than the overall system. Future work
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let mut arr: Vec<i32> = vec![1; 100];

let dptr = arr.to_device().unwrap();

dptr.copy_to_host(&mut arr).unwrap();

Listing 3. transferring arr to the device and copying it back. arr.to_-

device() transfers data to the GPU, yielding a device pointer. calling

dptr.copy_to_host(..) copies the data back to host memory.

may experiment with these concepts and possible solutions for this

problem.

5.3 Kernel Launchers

As described in section 4.6, the compiler allows extension meth-

ods to be placed on the kernel structure. In our library, we add the

launch(..) and launch_with_dptr(..) methods to these kernel

structures. A kernel can be launched using thesemethods, specifying

the grid and block dimensions and supplying necessary arguments

to the kernel. The normal launch(..) variant takes arguments that

still exist on the host memory and transfers them to the GPU. The

launch_with_dptr(..) variant takes device pointers already cre-

ated by the programmer.

With these functions, we wrap back to listing 1. This listing

uses the launch(..) variant to launch the gpu64 kernel. listing 4

replicates the same program as shown in listing 1 while using the

launch_with_dptr(..) variant to launch the kernel.

let device_arr = arr.to_device();

// launch_with_dptr is NOT blocking,

// CPU can do whatever it wants

// while GPU is working

match gpu64.launch_with_dptr(

threads_per_block,

blocks_per_grid,

device_arr.as_mut_slice());

// get the result,

// this is a blocking operation

device_arr.copy_to_host(&mut arr);

println!("Result: {:?}", arr);

Listing 4. Executing the kernel with device pointers instead of raw data

6 TOOLING INSTALLATION

To use the prototype shown in this paper, one needs to install the

necessary tools and libraries on their computer. This section de-

scribes how to install our prototype on a new computer. There are

a few prerequisites that need to be available on the host computer.

The host computer must:

• Have a CUDA-enabled GPU

• Be running Windows or Linux (Ubuntu)

• Have the CUDA Toolkit installed [3]

• Have rustup installed [12, ch. 1]

To install the compiler, clone the compiler from github: https:

//github.com/NiekAukes/rust/tree/kerneldev-mir-opt and follow

the installation instructions in the README.md �le.

The libraries necessary for executing kernels can be found at

https://github.com/NiekAukes/rust-kernels. This repository also

contains a sample project that can be used as a template for projects.

To install these, download all �les from the repository and unpack

them into a folder. The README.md �le describes a few extra steps

to fully install the libraries. The sample project is already linked with

the libraries provided and does not need any further modi�cation.

Kernels can now be written and executed with the provided sample

project.

7 DISCUSSION

This study set out to design a new compiler-centered hybrid compi-

lation method suitable to Rust and other compiled languages. We

succeeded in creating a prototype for this new method and found

that it is a valid approach for implementing a hybrid compilation

process in Rust.

We found that the compiler needs some adjustments to support a

hybrid compilation process as described in this paper. Many parts,

such as parsing, name resolution and optimisation passes require

minor to no changes. However some parts, like type checking and

code generation, need more substantial changes to solve the type

masking and literal embedding problems. Other problems, such as

kernel code generation, requires building new components from

the ground up.

We also found that, with this new method, kernel executions

may be signi�cantly simpli�ed for the end programmer. Our ap-

proach to literal embedding allows libraries to provide their own

data structures and implementations for representing and working

with kernels.

The proposed method discussed in this paper is remarkably dif-

ferent than the already existing methods of NVIDIA and rust-gpu.

These di�erences result in advantages and disadvantages for our

compiler-based method compared to the preprocessor solution of

the existing methods.

One advantage of our method is the increased code sharing op-

tions for the device code, especially in Rust. Currently, it is impos-

sible to share code between the host and device within the Rust

solutions for hybrid programming. This is less of an issue for a

language like C++, where the CUDA C++ compiler does support

code sharing.

Another noticeable advantage is the integration of device code

compilation within the compiler. This could allow for unique code

optimisation opportunities, as the compiler knows about both the

device code and the host code at the same. Optimisations involving

executing and de�ning kernels could be researched further. Per-

forming static analysis to identify parallelisable loops and replace

them with kernels could also be done as further research.
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This integration, however, also presents a disadvantage. Due to

the device code compilation process being integrated in the com-

piler, we are not able to separate these components anymore. With

the relatively limited use cases of GPU accelerated code, this might

present a logistical and motivational challenge with maintaining

the compiler for the target language. We would recommend keeping

the modi�ed compiler separate from the o�cial download channels

while it is maturing, but still easily installable using o�cial sources.

Due to the missing code generation phase, the prototype pre-

sented in this paper is not yet suitable for actual use within a project.

It is, however, su�cient as a proof of concept on how a compiler

could use our method to compile kernels. Previous studies and

projects have already established that Rust code can be compiled to

GPU targets [1, 8, 10]. The code generation issue is therefore mostly

a technical di�culty, rather than a research problem. However, there

is still a possibility that di�culties arise with the code generation

phase of the proposed method. We therefore recommend further

work to be done on integrating code generation in our method.

8 CONCLUSIONS

This study set out to design a new compiler-centered hybrid compi-

lation method suitable to Rust and other compiled languages. We

succeeded in creating a proof of concept for this new method and

found that it is a valid approach for implementing a hybrid compila-

tion process in Rust, with additional advantages on kernel execution

handling. It could be a viable alternative for existing solutions for

hybrid programming within the Rust language. However, further

research on code generation is needed to fully cement the proposed

method’s viability.

We are pleased with the result of the prototype this paper presents

and the ability to write host and device code alongside each other.

There remains much potential in extending this work. Future e�orts

should focus on improving the code generation phase, enhancing

language support for more complex kernel functions, and devel-

oping automated memory management solutions to simplify GPU

programming. By addressing these areas, we can further optimize

the performance, usability, and robustness of the proposed hybrid

compilation method in Rust.
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A RUST WITH OPENCL

extern crate ocl;

use ocl::ProQue;

fn trivial() -> ocl::Result<()> {

let src = r#"

__kernel void add(__global float* buffer,

float scalar) {

buffer[get_global_id(0)] += scalar;

}

"#;

let pro_que = ProQue::builder()

.src(src)

.dims(1 << 20)

.build()?;

let buffer = pro_que.create_buffer::<f32>()?;

let kernel = pro_que

.kernel_builder("add")

.arg(&buffer)

.arg(10.0f32)

.build()?;

unsafe { kernel.enq()?; }

let mut vec = vec![0.0f32; buffer.len()];

buffer.read(&mut vec).enq()?;

println!("200007: {}", vec[200007]);

Ok(())

}

Listing 5. A kernel defined with the OCL library in Rust. OCL allows the

programmer to call OpenCL functions from Rust. [4]
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