
Enhancing Cybersecurity in IoT Networks: Exploring Lightweight Key
Establishment Using OSCORE and EDHOC
RENETA TRIFONOVA, University of Twente, The Netherlands
SUPERVISOR: DR. ING. MOHAMMED ELHAJJ, University of Twente, The Netherlands

The widespread adoption of IoT networks has revolutionized modern life
thanks to their diverse range of applications. With their increased usage, the
need to transfer data securely has never been more vital. Often IoT devices
are battery-driven and possess limited processing and storage capabilities.
In response to those limitations, there has been a shift towards the imple-
mentation of resource-efficient and lighter protocols. This research aims
to evaluate how lightweight key establishment through Object Security
for Constrained RESTful Environments (OSCORE) and Ephemeral Diffie-
Hellman Over COSE (EDHOC) can enhance cybersecurity in IoT networks
where resources are limited. The study strives to explore different key man-
agement approaches and the effects of certificates on security, efficiency,
and power consumption. The research methodology consists of the practical
implementation of the protocols in a physical system where factors such as
the impact of hardware acceleration on computational overhead and overall
power consumption will be assessed. The expected contributions are insights
into the tradeoffs between security, power consumption, and efficiency in
resource-limited IoT environments.

Additional Key Words and Phrases: IoT, CoAP, OSCORE, EDHOC, Hardware
Acceleration, TLS, DTLS

1 INTRODUCTION
The Internet of Things (IoT) refers to networks of connected de-
vices that can communicate with each other or to the cloud [1].
Nowadays, these networks have become an essential part of our
daily lives since we are always surrounded by smart products. As
the number of IoT devices continues to grow, they become more
vulnerable to attacks. Therefore, it is vital to secure the transmitted
data to prevent malicious activity that could compromise the entire
network and cause serious consequences. In order to ensure secure
communication in IoT networks, protocols for end-to-end security
have been implemented. These protocols ensure that the messages’
confidentiality, integrity, and availability remain uncompromised.

1.1 Background
Constrained Application Protocol (CoAP) is a compressed version
of the HTTP protocol designed for resource-constrained devices
where compatibility and low power are essential according to its
documentation [23]. While CoAP provides a high level of com-
munications security, it remains vulnerable to a series of attacks,
such as Man-In-The-Middle attacks or Denial-of-Service Attacks.
To mitigate such security vulnerabilities, the Internet Engineering
Task Force (IETF) has published a new standard, Object Security

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

for Constrained RESTful Environments (OSCORE), for application-
level security. According to the protocol documentation, OSCORE
provides end-to-end protection between endpoints communicating
using CoAP or CoAP-mappable HTTP [11]. Moreover, it supports
a wide range of proxy operations as well as translation between
transport protocols. As it was designed for resource-constrained
devices, its messages are as small as 11-13 bytes, and the protocol
encrypts only the data part of the payload, thus decreasing security
overhead and increasing bandwidth usage and battery lifetime of
the device [22]. To set up OSCORE, a security context needs to be
established. In order to do it in an optimized way, the lightweight au-
thenticated key exchange protocol Ephemeral Diffie-Hellman Over
COSE (EDHOC) can be used. EDHOC was proposed by the IETF for
its many advantages, one of which is that it significantly reduces the
number of roundtrips needed for setting up the OSCORE security
context [18]. The way the security context is set up can be seen in
Figure 1.

Fig. 1. OSCORE-EDHOC secure context establishment

One of the advantages EDHOC offers is that it uses ephemeral
keys, meaning for each key establishment session, different keys are
generated, ensuring there is Perfect Forward Secrecy (PFS) in the
communication channel [3]. The overall performance and cost of
OSCORE and EDHOC-based implementations have been of interest
to many researchers as it is crucial to evaluate metrics such as
computational overhead, power consumption, and security when
it comes to IoT devices. While there have been tests conducted to
measure such metrics, there is limited data about how different
key management strategies and certificates can affect performance.

1

TScIT 41, July 5, 2024, Enschede, The Netherlands R. Trifonova

Moreover, many articles mention that hardware acceleration can
have a high impact on the performance and memory requirements
of the protocols, however, there is no sufficient research made to
extract concrete quantitative data to support the claim.
The IoT communication networks play a pivotal role in manag-

ing complex systems in various domains such as healthcare, smart
homes, and industrial automation. As such devices have increased
in complexity, new challenges associated with cybersecurity have
emerged, especially in environments with limited resources. One of
the largest IoT cyber attacks with severe consequences was theMirai
botnet distributed denial-of-service (DDoS) attack [17], where over
175,000 websites were affected. Such attacks which take advantage
of weak passwords can be prevented by adopting strong authenti-
cation mechanisms. The combination of using OSCORE together
with EDHOC ensures end-to-end encryption with verification of
both parties before data is exchanged, preventing DDoS attacks.
The need for robust authentication and encryption in IoT networks
opts for careful reflection on the key management strategies (e.g,
Pre-shared Keys (PSK), Raw Public Keys (RPK), or dynamically gen-
erated keys) as it is important to consider various metrics, such
as latency, throughput, and security in the design of the system.
However, at present, there is a lack of data that can help evaluate
the suitability and trade-offs of these key management strategies,
especially in the context of OSCORE and EDHOC-based systems.
Moreover, such networks use certificate-based authentication, al-
though a proper comparison of different digital certificates in terms
of critical metrics like resource utilization has yet to be made. This
is especially vital for devices with limited computational power, as
certificate-based authentication can prove to be resource-heavy.
More ways to improve computational overhead include the use

of hardware accelerators, special-purpose hardware structures sep-
arated from the CPU [19], as they can enhance the cryptographic
efficiency of algorithms such as Advanced Encryption Standard
(AES), an algorithm used with OSCORE. However, there is a need
for detailed documentation on the tradeoffs between speed and
power consumption when hardware acceleration is enabled, both
crucial factors to consider for IoT networks.

1.2 ResearchQuestions
Based on the above-mentioned information, the main goal of this
work will be to answer the following question:
How do key management strategies, certificates, and hardware accel-
erators impact the latency, throughput, security, and energy efficiency
of IoT devices secured by OSCORE and EDHOC protocols, and how
does establishing the security context over DTLS compare?
The main question can be split into the following three sub-

questions:

RQ1 How do different EDHOC methods of operation impact the
security of a system utilizing the OSCORE protocol and its per-
formance metrics, such as latency and memory requirements
in IoT networks?

RQ2 How do hardware accelerators influence the computational
overhead, energy consumption, and memory usage of IoT de-
vices implementing OSCORE and EDHOC protocols, and what
are the associated tradeoffs?

RQ3 How does establishing a security context for OSCORE over
DTLS compare in terms of computational overhead to incor-
porating the EDHOC protocol in the design?

1.3 Structure
The rest of this paper is organized as follows: Section 2 provides an
overview of related works. Section 4 presents the obtained data from
performing tests on computational overhead with the help of an
experimental setup together with an analysis of the security of the
system. The following Section 5 contains an analysis of the results,
while the conclusions Section 6 summarises the key points discussed.
Finally, in Section 7, directions for future work are presented.

2 RELATED WORK
As secure communication is essential within IoT networks, many
studies were conducted on advanced lightweight encryption algo-
rithms. In the article [24], various challenges to IoT environments,
such as power consumption of devices, limited battery, memory
space, performance cost, and security, were listed. The same article
pointed out that a constrained device’s security can be subject to
flexibility, emphasizing the importance of security metrics. The stan-
dard protocol for application-layer protocol is Hypertext Transfer
Protocol (HTTP). However, it has proven to be heavy and inefficient
when implemented on constrained, battery-powered devices [16].

Consequently, a simpler alternative, namely CoAP, was intro-
duced for IoT nodes. There is a variety of methods to achieve secure
communication for CoAP, one of which is applying OSCORE. As
evaluated in the article [7], compared to other alternatives, such as
Datagram Transport Layer Security (DTLS), OSCORE offers many
advantages, including the possibility to deploy on non-trusted prox-
ies through object security. Before working with the OSCORE pro-
tocol, a secure context needs to be established. This can be done
through EDHOC, a lightweight authenticated key exchange pro-
tocol. One of EDHOC’s advantages over Transport Layer Security
(TLS) is the reduced amount of roundtrips [2]. Moreover, the ED-
HOC handshake process requires only three messages with a fourth
optional message, while through DTLS, it can consist of up to 13
[4].

Evidence from a recent study [4] indicates DTLS uses at least x7
times more time on air and x4 times more FLASH and RAM com-
pared to EDHOC. After its standardization, OSCORE’s performance,
together with EDHOC, was compared to that of different protocols,
demonstrating promising results. When OSCORE is used together
with the key exchange protocol EDHOC, a times five reduction over
DTLS has been demonstrated in terms of transmitted bytes [10].
While there are promising results, it is important thorough testing
and valuation are done, as the protocols were introduced recently.
A study by Kim [13] presented a detailed analysis of potential

vulnerabilities of the EDHOC protocols, including susceptibility to
man-in-the-middle attacks during the key exchange phase. Their
findings suggest it is crucial to evaluate security against emerging
threats continuously. Another study [12] delved into various key
management methods, exploring their effectiveness and cost for IoT
devices. Some strategies mentioned were PSK, RPK, and CBOR Web
Tokens(CWT). The derived conclusions stated that PSK is commonly

2

Enhancing Cybersecurity in IoT Networks: Exploring Lightweight Key Establishment Using OSCORE and EDHOC TScIT 41, July 5, 2024, Enschede, The Netherlands

Fig. 2. Comparison between security protocols, based on "Fig 1" from [6]

used as it is efficient and easier to implement, while RPK and CBOR
Tokens have a higher computational demand andmay be suitable for
more powerful devices as they offer more robust security protection.
In some studies about OSCORE and EDHOC protocols, [10], pre-
shared keys were used for authentication. However, based on the
documentation on the protocol, there is no support for PSK as
static DH keys are sufficient [21]. It was explained that in initial
versions, PSK was an option; however, in later drafts, the decision
was retracted [9].

Although there are other ways to perform key sharing, the dif-
ferences between these methods regarding security and resource
usage need further evaluation. In [9] and [7], it is mentioned that
hardware acceleration increases the performance of OSCORE and
EDHOC. Additionally, the research done on Crypto-Hardware in the
Low-end IoT by Santos [20] documents that by utilizing hardware
acceleration for cryptographic operations, the overall energy cost
and execution time can be significantly reduced. Nevertheless, there
is still limited information about the exact impact hardware acceler-
ation can make in terms of latency and memory requirements in a
system implementing the OSCORE and EDHOC protocols.

An alternative approach for establishing a secure communication
channel between IoT devices is Named Data Networking (NDN).
NDN offers confidentiality by using authentication-based names
instead of IP addresses for identification [26]. Its high reliability
can be brought down to hop-wise transfers and network caches,
reducing the need for retransmissions [5]. Therefore, in multiple-
hop scenarios, NDN outperforms CoAP over DTLS and OSCORE
[5]. Nevertheless, an OSCORE-oriented approach has advantages
over NDN as it introduces a smaller security message overhead
[5]. For a better overview of the different approaches to secure IoT
communications, the following schema can be referred to: Figure 2.

3 METHODOLOGY
In this section, the research methodology will be discussed, address-
ing the hardware setup, software implementation, and used libraries
together with the researchmetrics that will help answer the research
questions.

3.1 Hardware setup
The testing environment consisted of the following components.
The experiments utilize the setup shown in Table 1. The way the
components were connected can be seen in as shown in Figure 3:

Table 1. Devices for Hardware Setup

Device Flash Memory SRAM

2x Raspberry Pi 4B 32GB 4GB
ESP32-S 4MB 520KB
Thinkpad P15v 500GB 16GB
AVHzY USB-Meter C3 / /

Fig. 3. Hardware Setup

The method used for measuring power consumption was taking
the highest measured value throughout the program’s execution. If
there was a difference between multiple measurements, the average
was presented.

3.2 Software setup
3.2.1 Measurements. The amount of flashed bytes was taken to
measure overall memory usage on the ESP32 microcontroller. The
memorymeasurements for the Raspberry Pi 4were acquired through
the usr/bin/time Linux command together with timing functions in
the code for the relevant sections. Note the results depend on the
libraries used and their submodules.

3

TScIT 41, July 5, 2024, Enschede, The Netherlands R. Trifonova

3.2.2 uOSCORE-uEDHOC library. The uOSCORE-uEDHOC library
was installed on both Pis. The first Pi takes on the role of the initia-
tor client, while the other one is a responder server. They use the
library’s corresponding sample implementations of both roles. Since
the two Pis are connected via the same network, they were also
assigned static IPs. There are four supported EDHOC methods: Sig-
nature keys for both initiator and responder, Static Diffie-Hellman
keys for both initiator and responder and a combination of signature
keys and Diffie-Hellman keys. Moreover, Zephyr OS was used to
upload the project containing uOSCORE and uEDHOC protocol
implementation on ESP32S so that the metrics could be evaluated
for a microcontroller of a smaller size.
3.2.3 libcoap library. An additional library, namely libcoap, was
used for its OSCORE implementation over DTLS. The library was
installed on each Raspberry Pi 4 device, enabling them to communi-
cate with each other via WiFi.
3.2.4 edhoc and libcoap libraries. Libcoap, together with a third
library called edhoc, was utilized for evaluating the performance
of both OSCORE and EDHOC protocols on ESP32S as well as docu-
menting the impact hardware acceleration has on the overall effi-
ciency of the protocols. For the purpose of performing such tests,
the project configuration options for hardware acceleration, namely
"Use hardware AES acceleration”, “Use hardware SHA acceleration”,
“Use hardware MPI (bignum) acceleration" were used. Currently,
the edhoc library only supports EDHOC method 0 (EDHOC authen-
ticated with asymmetric keys) and cipher suite 0 (AES-CCM-16-64-
128, HMAC 256/256, X25519, EdDSA, Ed25519). It is important to
mention that the edhoc library is only compatible with an older
version of CoAP.

3.3 Research Metrics
A variety of metrics relevant to the computational overhead of
resource-constrained devices were measured. As securing IoT com-
munications is a pivotal goal in this research, metrics relating to
the security of the implementation were evaluated. Below there is a
list of relevant measurements related to the EDHOC and OSCORE
protocols:

(1) Power Consumption: The electric current (Amperes) and elec-
tric power (Watts) consumed by the devices [24].

(2) Memory usage: the Flash or RAM requirements that need to
be satisfied to use the protocols measured in bytes [7].

(3) Computation Time: The time that certain processes take to
execute [8]; in this study, it is measured in milliseconds or
seconds, depending on the experiment.

(4) Confidentiality: Ensuring no unauthorized individuals have
access to the transmitted data [25].

(5) Integrity: The data has not been altered by an unauthorized
individual [25].

(6) Authentication: The process of confirming the identity of a
device or entity in the system [25].

4 RESULTS
The setup mentioned in Figure 3.1 was used to evaluate the per-
formance and security implications of using OSCORE and EDHOC
protocols in resource-constrained IoT environments. The results are
organized according to the research questions, providing insights

into key management strategies, hardware accelerators’ impact, and
DTLS comparisons.

4.1 RQ1
The following section will summarise the findings related to an-
swering the first Research Question 1.2. The first research question
focuses on comparing the use of Diffie-Hellman Static Keys and Sig-
nature Keys as well as CBOR certificate authentication. The ESP32S
device was used to obtain data related to the computational over-
head of the authentication mechanisms on resource-constrained
devices. It is important to mention the results can be dependent on
the cryptography engine used.

4.1.1 Power Consumption: Between the three key management
methods, there was no visible difference in terms of electric cur-
rent and power; the measured values were consistently 0.025A and
0.129W. The power consumption was calculated based on the below
Equation 1:

𝑃 = 𝑉 × 𝐼 (1)
where:

• 𝑃 is the power in watts (W).
• 𝑉 is the voltage in volts (V).
• 𝐼 is the current in amperes (A).

4.1.2 Computation Time. After comparing the results from tests on
the interaction between OSCORE and EDHOCwith six different test
vectors, two of which used Signature Keys, two which used Diffie-
Hellman Static Keys, and two utilized CBOR certificates, the results
showed a slight increase in latency when the Diffie-Hellman Static
Keys were used. This can be explained by the fact that the Diffie-
Hellman key exchange involves additional steps for generating and
exchanging the keys in a secure way. In Table 2, the differences can
be compared.

4.1.3 Memory Usage. In Table 2, it can be seen the three methods
have minimal differences when it comes to the usage of DRAM
(Dynamic Random Access Memory) and IRAM (Instruction Random
Access Memory). However, the FLASH space used is much higher,
which could be explained since the certificate size is larger than the
key size as it can contain data such as issuer information, date of
validity, subject information, signature, etc. Moreover, parsing and
storing the certificates is an additional requirement.

4.1.4 Confidentiality.

• Diffie-Hellman Static Keys: As DH keys provide a strong en-
cryption mechanism that establishes communication over an
insecure channel, even if attackers intercept a message, it will
not be possible to decrypt the data. As the EDHOC suite uses
the AES-CCM-16-64-128 algorithm, confidentiality is pro-
tected while keeping the protocols efficient in a constrained
environment.

• Signature keys offer strong encryption, although they lack
forward secrecy - the keys used to encrypt and decrypt in-
formation do not change, making the system vulnerable to
retrospective attacks.

• Using PKI (Public Key Infrastructure), CBOR encoded X.509
certificates provide a strong level of confidentiality.

4

https://github.com/eriptic/uoscore-uedhoc
https://docs.zephyrproject.org/latest/introduction/index.html
https://libcoap.net/
https://gitlab.com/marcovr/edhoc/-/tree/master?ref_type=heads

Enhancing Cybersecurity in IoT Networks: Exploring Lightweight Key Establishment Using OSCORE and EDHOC TScIT 41, July 5, 2024, Enschede, The Netherlands

4.1.5 Integrity. Integrity in the system is maintained through the
hashing algorithm SHA-256. Both DH-based key exchange and sig-
nature keys prevent the data from being tampered with by ensuring
no modifications are made to the public keys used.

4.1.6 Authentication. The Diffie-Hellman key exchange poses a
vulnerability of a man-in-the-middle attack. By using signature
keys, authentication can be performed through digital signatures,
confirming the identities of the parties trying to connect.

Table 2. Authentication Methods and measurements

Type EDHOC Method Latency (sec) IRAM (bytes) DRAM (bytes) FLASH (bytes)

Client request Signature Keys 0.154 46656 8756 147456
Client request Static DH Keys 0.164 46656 8756 147456
Server key derivation Signature Keys 0.038 46656 8752 147456
Server key derivation Static DH Keys 0.044 46656 8752 147456
Client authentication CBOR certificate 2.827 46656 8808 229376
Server authentication CBOR certificate 2.791 46656 8808 229376

These results indicate that the communication protocols exhibit
low latency, which is crucial for time-sensitive IoT applications. The
minimal time required for message transmission and acknowledg-
ment highlights the efficiency of the OSCORE and EDHOC protocols
in constrained environments.

4.2 RQ2
For the purpose of answering the second research question, the
setup involving a laptop and microcontroller ESP32S was used. The
microcontroller has support for the following types of hardware
acceleration: AES, Random Number Generation (RNG) and SHA256.
Previous studies have mentioned the possibility of improvement
when such hardware acceleration is involved in the process; more
information in Section 2. The performance comparison between
enabling and disabling hardware acceleration for the ESP32S in
implementing the OSCORE and EDHOC protocols reveals mini-
mal differences in performance, as can be seen from Figure 4. This
observation can be attributed to several factors:

• Resource-Efficient Protocol Design: The EDHOC protocol is
specifically designed for minimal computational and message
overhead, owing to the fact that many resource-constrained
devices do not have the capacity to perform intense oper-
ations. The protocol employs elliptic curve cryptography,
which requires less computational effort and is thus efficient
even without hardware acceleration.

• Optimized Library Implementation: The EDHOC library, ed-
hoc,, available at Marco von Raumer’s GitLab repository, uti-
lizes the mbedtls library for cryptographic operations. This
library is optimized for performance, leveraging efficient al-
gorithms and data structures to minimize computational load.
The use of mbedtls_ecdh_calc_secret together with other
optimized functions ensures that the performance of resource-
constrained devices remains high even without them having
dedicated hardware acceleration.

• Minimal Message Overhead: The protocol’s design minimizes
the number of messages exchanged and their sizes, which
reduces the time and computational resources required for
each operation.

4.2.1 Computation time:

• EDHOC Initialization (edhoc_init_context): Both configu-
rations took nearly the same time (28 ms).

• Handling CoAPMessage (edhoc_handle_coap_message): The
average time with hardware acceleration enabled was slightly
higher (98.33 ms) compared to when disabled (94.67 ms); how-
ever, such difference is negligible.

• OSCOREContext Creation (create_oscore_ctx):With hard-
ware acceleration enabled, the average time was 54.75 ms,
slightly more than the 52.8 ms without it.

4.2.2 Memory Usage: Memory usage metrics can be observed in
the following Table 4. There was consistency across both configura-
tions for all operations with slight differences. The version where
hardware acceleration was enabled consistently used less flash mem-
ory: 503872 bytes in comparison to 508758 for the server and 508707
compared to 513425. The difference is approximately 1%, which in
such a system does not make a large impact.

4.2.3 Power Consumption: Power measurements did not show a
noticeable difference between the implementation with hardware
acceleration and without it.

Table 3. Flash Memory used in bytes with and without Hardware Accelera-
tion (HWA)

Mode Flash Memory Flash Memory (Compressed)

Server HWA 785536 503872
Server no HWA 790608 508758
Client HWA 792624 508707
Client no HWA 797760 513425

4.3 RQ3
To compare the security context establishment over DTLS and ED-
HOC, both the libcoap and uOSCORE-uEDHOC libraries were used.
Currently, the libcoap library does not support the EDHOC proto-
col, and it uses DTLS to establish the security context, while the
uOSCORE-uEDHOC library has implemented the EDHOC protocol.
The two libraries’ implementations were compared through a sce-
nario where the following actions happened: encrypting a request,
sending it, receiving a response, decrypting it, and validating the
results. The setup used for the tests included the two Raspberry Pi
4 devices, which were connected via WiFi; more information can be
found in the methodology Subsection 3.1.

Table 4. Overview of performance comparison between OSCORE and ED-
HOC and OSCORE and DTLS for security context establishment

Protocol(s) Prower (W) Current (A) Time (s) RAM (KB)

OSCORE and EDHOC 1.536 0.301 0.046 2732
OSCORE and DTLS 2.235 0.395 2.04 7049

5

https://gitlab.com/marcovr/edhoc/-/tree/master?ref_type=heads
https://gitlab.com/marcovr/edhoc/-/tree/master?ref_type=heads

TScIT 41, July 5, 2024, Enschede, The Netherlands R. Trifonova

1 2 3 4 5 6 7 8 9 10 11 12
0.4
0.42
0.44
0.46
0.48
0.5
0.52
0.54

Po
w
er

(W
at
ts
)

ESP32S Power Consumption

Hardware Acceleration Disabled
Hardware Acceleration Enabled

1 2 3 4 5 6 7 8 9 10 11 128 · 10−2
8.5 · 10−2
9 · 10−2

9.5 · 10−2
0.1

Po
w
er

(A
m
pe
re
s)

ESP32S Power Consumption

Hardware Acceleration Disabled
Hardware Acceleration Enabled

1 2 3 4 5 6 7 8 9 10 11 12
400
410
420
430
440
450

Ti
m
e
(M

ill
is
ec
on

ds
)

Computation Time Server

Hardware Acceleration Disabled
Hardware Acceleration Enabled

1 2 3 4 5 6 7 8 9 10 11 12
400
410
420
430
440
450

Ti
m
e
(M

ill
is
ec
on

ds
)

Computation Time Client

Hardware Acceleration Disabled
Hardware Acceleration Enabled

Fig. 4. ESP32S Power Consumption and Total Computation Time with and without Hardware Acceleration

4.3.1 Power Consumption: The maximum power consumed by the
libcoap client side was 0.395 Amperes or 2.235 Watts. The power
consumed by the other library’s client was less, 0.301 Amperes or
1.536 Watts.

4.3.2 Computation time: After using timing operations within the
two systems, the measurements revealed it takes 2.04 seconds to
establish secure context through libcoap, while with uOSCORE-
eEDHOC, the operations and message exchange across the two
devices takes 46 milliseconds.

4.3.3 Memory Usage: The DRAM and SRAM usage by the libcoap
client measured a total of 7049 KB, while that of the uSOCORE-
uEDHOC client was significantly less, 2732 KB, representing a re-
duction of approximately 61.24%.

4.3.4 Confidentiality: DTLS uses encryption of the entire commu-
nication channel, ensuring no unauthorized access is made. EDHOC
ensures the confidentiality of individual messages by offering end-
to-end encryption [21].

4.3.5 Integrity: In DTLS, integrity is achieved by a Hash-based
Message Authentication Code (HMAC) on the receiver side, allowing
the detection of any altercation to the records. [14]. Conversely,
EDHOC makes use of CBOR Object Signing and Encryption (COSE)
for cryptography and identification of credentials [21], ensuring
message integrity.

4.3.6 Authentication: Authentication in DTLS is certificate-based,
while EDHOC has more options, such as RPK or public-key certifi-
cates. In DTLS, there are three types of handshake: unauthenticated,
server-authenticated, and fully authenticated. As the handshake
phase includes multiple packet exchanges, it introduces significant
communication and energy consumption overhead [15]. In contrast,

EDHOC’s handshake requires only three messages, making it a
more compact alternative for constrained environments.

5 DISCUSSION
The results from the previous Section 4 related to performance
and security are analyzed for the purpose of providing a better
understanding of the trade-offs and implications for enhancing
cybersecurity in resource-constrained IoT environments.

5.1 Answering RQ1
The three authentication methods have certain advantages and pos-
sible disadvantages. While EDHOC ensures PFS through ephemeral
keys, signature keys reused across sessions do not offer forward
secrecy. This emphasizes the necessity for frequent key updates to
ensure the system’s robust security. DH static keys provide benefits
such as forward secrecy and small message sizes. Given that the
DH authentication mechanism is weaker and can be vulnerable to
MiTM attacks, robust authentication should be ensured.
Authentication can be strengthened through digital signatures

by utilizing signature keys. CBOR certificates reduce the risk of
devices being impersonated in the network; however, as seen from
the experimental data, the latency is significantly higher than that
of the other methods. Moreover, the message overhead can increase,
posing a burden for some resource-constrained devices.

Considering these factors, authentication mechanisms should be
chosen according to the system’s requirements. Hybrid approaches
may be suitable in order to leverage the strengths and mitigate any
potential weaknesses.

6

Enhancing Cybersecurity in IoT Networks: Exploring Lightweight Key Establishment Using OSCORE and EDHOC TScIT 41, July 5, 2024, Enschede, The Netherlands

5.2 Answering RQ2
These results from the performed experiments suggest that the ED-
HOC protocol’s design, coupled with the efficient implementation
of the libcoap library, ensures high performance even without hard-
ware acceleration. The similarity in performance metrics is proof of
the protocol’s suitability for constrained environments, providing ro-
bust security without imposing significant computational or energy
overheads. While there is a slight difference between the memory
usage between the two implementations, this can be explained by
the fact that hardware acceleration offloads cryptographic compu-
tations to dedicated hardware, reducing the CPU and software load
and the memory requirements.
By incorporating these findings, the study highlights that while

hardware acceleration can enhance performance, the efficient design
of the EDHOC protocol and its implementation ensures that IoT
devices can maintain secure and efficient communication without
supporting it. This is particularly beneficial for resource-constrained
IoT environments where hardware acceleration may not always be
feasible.
To achieve more conclusive results, it would be beneficial to

perform more thorough tests on different microcontrollers with
different types of hardware acceleration, as ESP32S is only one
example.

5.3 Answering RQ3
The DTLS and EDHOC protocols offer a similar degree of security
and available features. As the protocols are suitable for both IPv6
and IPv4, they are accessible for a variety of devices. Based on the
measured results in the previous section, using uOSCORE-uEDHOC
demonstrated a significant improvement from libcoap together with
OSCORE with DTLS secure context establishment. It is important
to keep in mind that the latter implementation also contained an
improved version of OSCORE and EDHOC, which was designed
specifically for constrained devices. The experiments highlight that
the computational overhead was much smaller, which could be
explained by the fact that securing CoAP messages through DTLS
introduces significant delay as it requires decrypting the messages
at proxies and a significant number of roundtrips. Additionally,
the difference of 31.3% between power consumption in Watts and
23.8% in electrical current further proves OSCORE and EDHOC’s
efficiency over DTLS.

When it comes to the security offered by both protocols, although
achieved by different means, both ensure the communication be-
tween IoT devices is tamper-proof. Consequently, both protocols
have been optimized for different usages and have considerable
strengths. While DTLS may not be as tailored to constrained devices
as EDHOC, its benefits are notable as its standardization is wider,
meaning integration into existing technologies can be simpler. Fur-
thermore, it is highly suitable for the continuous transfer of large
volumes of data where the robust protection of an entire communi-
cation session is crucial. Nevertheless, in relation to resource-limited
systems, EDHOC remains more lightweight for its efficiency and
low overhead.

6 CONCLUSIONS
This research explored the performance of the OSCORE and ED-
HOC protocols for resource-constrained IoT devices. Different key
management strategies, including Diffie-Hellman static keys, signa-
ture keys, and CBOR certificates, offer their respective strengths and
weaknesses. Using DH static keys allows a balance between security
and performance to be met; however, the system becomes vulnera-
ble without proper authentication. Although there is no guaranteed
forward secrecy without frequent key updates, signature keys of-
fer strong encryption and integrity, and CBOR certificates, despite
being highly secure, can introduce a significant delay in the pro-
gram as well as an increase in flash memory usage. These findings
emphasize selecting authentication mechanisms based on specific
application requirements is of key importance.
The impact of hardware acceleration on the EDHOC protocol

revealed minimal impact in terms of computation time, memory
usage, and power consumption. This efficiency of the protocol makes
it suitable for environments where hardware acceleration is not
possible, demonstrating that secure communication can be feasible
with limited resources.

A comparison between two implementations, one using OSCORE
and EDHOC and the other using only OSCORE with DTLS secu-
rity context establishment, revealed higher power consumption and
computational overhead when the latter was used. Consequently,
OSCORE and EDHOC protocols have proven to be better suited for
devices with limited resources, although DTLS can have consider-
able strengths in continuous data transfer scenarios.

Overall, the research provides insights into the trade-offs between
security, latency, and resource utilization in IoT networks using
OSCORE and EDHOC protocols, highlighting the need for additional
investigation into possible optimizations.

7 FUTURE WORK
This demonstration indicates it is crucial to explore the possibilities
of OSCORE and EDHOC as it would be beneficial to have wider
standardization and use of lightweight protocols in IoT networks.
Evaluating the protocols for multi-hop scenarios would provide
insight into possible packet loss. Future improvements to the ED-
HOC and OSCORE implementation may include adding a caching
mechanism similar to NDN’s for better performance in multi-hop
scenarios. Moreover, it can be beneficial to see what impact crypto-
accelerators can make when different microcontrollers are used
instead.

ACKNOWLEDGMENTS
Gratitude is extended to this research’s supervisor, Dr. Mohammed
Elhajj, whose invaluable guidance helped shape the outcome and
direction of the conducted study.

ADDITIONAL TOOLS
During the preparation of this work, the author used Grammarly to
correct writing errors and enhance readability. After using this tool,
the author reviewed and edited the content as needed and takes full
responsibility for the work.

7

TScIT 41, July 5, 2024, Enschede, The Netherlands R. Trifonova

REFERENCES
[1] Dan-Radu Berte. 2018. Defining the IoT. Proceedings of the International Conference

on Business Excellence 12, 1 (2018), 118–128. https://doi.org/doi:10.2478/picbe-
2018-0013

[2] Alessandro Bruni, Thorvald Sahl Jørgensen, Theis Grønbech Petersen, and Carsten
Schürmann. 2018. Formal Verification of Ephemeral Diffie-Hellman Over COSE
(EDHOC). In Security Standardisation Research, Cas Cremers and Anja Lehmann
(Eds.). Springer International Publishing, Cham, 21–36.

[3] Baptiste Cottier and David Pointcheval. 2022. Security Analysis of the EDHOC
protocol. arXiv:2209.03599 [cs.CR] https://arxiv.org/abs/2209.03599

[4] Geovane Fedrecheski, Mališa Vučinić, and Thomas Watteyne. 2024. Performance
Comparison of EDHOC and DTLS 1.3 in Internet-of-Things Environments. In
IEEE Wireless Communications and Networking Conference. Dubai, United Arab
Emirates. https://hal.science/hal-04382397

[5] Cenk Gündogan, Christian Amsüss, Thomas C. Schmidt, and Matthias Wählisch.
2020. IoT Content Object Security with OSCORE and NDN: A First Experimental
Comparison. In Proc. of 19th IFIP Networking Conference (Paris, France). IEEE
Press, Piscataway, NJ, USA, 19–27. https://ieeexplore.ieee.org/document/9142731

[6] Cenk Gündoğan, Peter Kietzmann, Martine Lenders, Hauke Petersen, Thomas C.
Schmidt, and Matthias Wählisch. 2018. NDN, CoAP, and MQTT: a comparative
measurement study in the IoT. In Proceedings of the 5th ACM Conference on
Information-Centric Networking (Boston, Massachusetts) (ICN ’18). Association
for Computing Machinery, New York, NY, USA, 159–171. https://doi.org/10.1145/
3267955.3267967

[7] Martin Gunnarsson, Joakim Brorsson, Francesca Palombini, Ludwig Seitz, and
Marco Tiloca. 2021. Evaluating the performance of the OSCORE security protocol
in constrained IoT environments. Internet of Things 13 (2021), 100333. https:
//doi.org/10.1016/j.iot.2020.100333

[8] David Harris-Birtill and Rose Harris-Birtill. 2021. Chapter 12 Understanding Com-
putation Time: A Critical Discussion of Time as a Computational Performance Metric.
Brill, Leiden, The Netherlands, 220 – 248. https://doi.org/10.1163/9789004470170_
014

[9] Stefan Hristozov, Manuel Huber, Lei Xu, Jaro Fietz, Marco Liess, and Georg Sigl.
2021. The Cost of OSCORE and EDHOC for Constrained Devices. In Proceedings
of the Eleventh ACM Conference on Data and Application Security and Privacy
(Virtual Event, USA) (CODASPY ’21). Association for Computing Machinery, New
York, NY, USA, 245–250. https://doi.org/10.1145/3422337.3447834

[10] Rikard Höglund, Marco Tiloca, Göran Selander, John Preuß Mattsson, Mališa
Vučinić, and ThomasWatteyne. 2024. Secure Communication for the IoT: EDHOC
and (Group) OSCORE Protocols. IEEE Access 12 (2024), 49865–49877. https:
//doi.org/10.1109/ACCESS.2024.3384095

[11] IETF. 2019. Object Security for Constrained RESTful Environments (OSCORE).
https://datatracker.ietf.org/doc/html/rfc8613

[12] S. L. Keoh, S. S. Kumar, and H. Tschofenig. 2014. Securing the Internet of Things:
A Standardization Perspective. IEEE Internet of Things Journal. , 43-49 pages.
https://doi.org/10.1109/JIOT.2014.2312291

[13] Jiyoon Kim, Daniel Gerbi Duguma, Sangmin Lee, Bonam Kim, JaeDeok Lim, and
Ilsun You. 2021. Scrutinizing the Vulnerability of Ephemeral Diffie–Hellman
over COSE (EDHOC) for IoT Environment Using Formal Approaches. Mobile
Information Systems 2021 (2021), 1–18. https://doi.org/10.1155/2021/7314508

[14] Thomas Kothmayr, Corinna Schmitt, Wen Hu, Michael Brünig, and Georg Carle.
2013. DTLS based security and two-way authentication for the Internet of Things.
Ad Hoc Networks 11, 8 (2013), 2710–2723. https://doi.org/10.1016/j.adhoc.2013.05.
003

[15] Hyeokjin Kwon, Jiye Park, and Namhi Kang. 2016. Challenges in Deploying CoAP
Over DTLS in Resource Constrained Environments. In Information Security Appli-
cations, Ho-won Kim and Dooho Choi (Eds.). Springer International Publishing,
Cham, 269–280.

[16] Tapio Levä, Oleksiy Mazhelis, and Henna Suomi. 2014. Comparing the cost-
efficiency of CoAP and HTTP in Web of Things applications. Decision Support
Systems 63 (2014), 23–38. https://doi.org/10.1016/j.dss.2013.09.009 1. Business
Applications of Web of Things 2. Social Media Use in Decision Making.

[17] Malwarebytes. 2023. What was the Mirai Botnet? Malwarebytes. https://www.
malwarebytes.com/what-was-the-mirai-botnet

[18] Francesca Palombini, Marco Tiloca, Rikard Höglund, Stefan Hristozov, and Göran
Selander. 2024. Using Ephemeral Diffie-Hellman Over COSE (EDHOC) with the
Constrained Application Protocol (CoAP) and Object Security for Constrained RESTful
Environments (OSCORE). Internet-Draft draft-ietf-core-oscore-edhoc-11. Internet
Engineering Task Force. https://datatracker.ietf.org/doc/draft-ietf-core-oscore-
edhoc/11/ Work in Progress.

[19] Biagio Peccerillo, Mirco Mannino, Andrea Mondelli, and Sandro Bartolini. 2022. A
survey on hardware accelerators: Taxonomy, trends, challenges, and perspectives.
Journal of Systems Architecture 129 (2022), 102561. https://doi.org/10.1016/j.sysarc.
2022.102561

[20] T. P. Santos, R. Chaves, E. Homsirikamol, M. Rogawski, and O. Adamo. 2021.
Efficient Implementation of Lightweight Cryptographic Algorithms for Securing

IoT Devices. Cryptology ePrint Archive, Report 2021/058. https://eprint.iacr.org/
2021/058.pdf

[21] G. Selander, J. Preuß Mattsson, and F. Palombini. 2024. Ephemeral Diffie-Hellman
Over COSE (EDHOC). Internet Requests for Comments. https://doi.org/10.17487/
RFC9528

[22] Sensative. 2020. End-to-End Security for Constrained IoT Environments Based on OS-
CORE. https://sensative.com/iot_use_cases/end-to-end-security-for-constrained-
iot-environments-based-on-oscore/

[23] Zach Shelby, Klaus Hartke, and Carsten Bormann. 2014. The Constrained Appli-
cation Protocol (CoAP). Internet Engineering Task Force (IETF). https://www.rfc-
editor.org/rfc/rfc7252

[24] S. Singh, P.K. Sharma, S.Y. Moon, et al. 2024. Advanced lightweight encryption
algorithms for IoT devices: survey, challenges and solutions. Journal of Ambient
Intelligence and Humanized Computing 15 (2024), 1625–1642. https://doi.org/10.
1007/s12652-017-0494-4

[25] William Stallings and Lawrie Brown. 2007. Computer Security: Principles and
Practice.

[26] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An Overview of Security
Support in Named Data Networking. IEEE Communications Magazine 56, 11 (2018),
62–68. https://doi.org/10.1109/MCOM.2018.1701147

8

https://doi.org/doi:10.2478/picbe-2018-0013
https://doi.org/doi:10.2478/picbe-2018-0013
https://arxiv.org/abs/2209.03599
https://arxiv.org/abs/2209.03599
https://hal.science/hal-04382397
https://ieeexplore.ieee.org/document/9142731
https://doi.org/10.1145/3267955.3267967
https://doi.org/10.1145/3267955.3267967
https://doi.org/10.1016/j.iot.2020.100333
https://doi.org/10.1016/j.iot.2020.100333
https://doi.org/10.1163/9789004470170_014
https://doi.org/10.1163/9789004470170_014
https://doi.org/10.1145/3422337.3447834
https://doi.org/10.1109/ACCESS.2024.3384095
https://doi.org/10.1109/ACCESS.2024.3384095
https://datatracker.ietf.org/doc/html/rfc8613
https://doi.org/10.1109/JIOT.2014.2312291
https://doi.org/10.1155/2021/7314508
https://doi.org/10.1016/j.adhoc.2013.05.003
https://doi.org/10.1016/j.adhoc.2013.05.003
https://doi.org/10.1016/j.dss.2013.09.009
https://www.malwarebytes.com/what-was-the-mirai-botnet
https://www.malwarebytes.com/what-was-the-mirai-botnet
https://datatracker.ietf.org/doc/draft-ietf-core-oscore-edhoc/11/
https://datatracker.ietf.org/doc/draft-ietf-core-oscore-edhoc/11/
https://doi.org/10.1016/j.sysarc.2022.102561
https://doi.org/10.1016/j.sysarc.2022.102561
https://eprint.iacr.org/2021/058.pdf
https://eprint.iacr.org/2021/058.pdf
https://doi.org/10.17487/RFC9528
https://doi.org/10.17487/RFC9528
https://sensative.com/iot_use_cases/end-to-end-security-for-constrained-iot-environments-based-on-oscore/
https://sensative.com/iot_use_cases/end-to-end-security-for-constrained-iot-environments-based-on-oscore/
https://www.rfc-editor.org/rfc/rfc7252
https://www.rfc-editor.org/rfc/rfc7252
https://doi.org/10.1007/s12652-017-0494-4
https://doi.org/10.1007/s12652-017-0494-4
https://doi.org/10.1109/MCOM.2018.1701147

	Abstract
	1 Introduction
	1.1 Background
	1.2 Research Questions
	1.3 Structure

	2 Related Work
	3 Methodology
	3.1 Hardware setup
	3.2 Software setup
	3.3 Research Metrics

	4 Results
	4.1 RQ1
	4.2 RQ2
	4.3 RQ3

	5 Discussion
	5.1 Answering RQ1
	5.2 Answering RQ2
	5.3 Answering RQ3

	6 Conclusions
	7 Future Work
	Acknowledgments
	References

