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The Internet of Things (IoT) is growing rapidly each day. By the increase of
the number of internet-connected devices, security threats are getting more
severe as well. Different machine learning models have been trained on
malicious network traffic to detect security risks. In this study, we will test
five machine learning techniques by manipulating training data to simulate a
novel malware attack. Furthermore, we evaluate whether the trained models
retain the ability to detect instances of excluded and therefore unobserved
attacks in the training data. The Recurrent Neural Network performed best,
with a weighted accuracy of 0.8173, followed by a Multilayer Perceptron
Network with a weighted accuracy of 0.7828. This enhances our understand-
ing of which machine learning techniques are most capable of detecting
currently unknown types of attack and will improve our capabilities for
future security.

CCS Concepts: • Computing methodologies→Machine learning ap-
proaches; Machine learning algorithms;

Additional KeyWords and Phrases: IoT, anomaly detection, unknown attacks,
machine learning, IDS

1 INTRODUCTION
Smart devices such as smart-speakers and smart light bulbs are
appearing increasingly frequently in daily life. These internet con-
nected devices make up the Internet of Things (IoT). IoT-devices
develop not only in numbers, but also in complexity. One of the
hazards of this development is that a malfunction could have severe
consequences, such as a road accident due to a malfunctioning self-
driving car. Therefore, the security of IoT devices becomes more
and more important. One of the challenges in IoT security is that
preventing different attacks requires different strategies [5]. Also,
the IoT network is only perfectly secure if all devices on it are se-
cure, due to the fact that poorly secured IoT devices can be used in
for example a DDoS attack. This is theoretically appealing, but not
realistic. Machine learning (ML) models have been trained which
achieve an accuracy score of over 99.9% on the task of detecting
anomalies in IoT network traffic flows on the IoT-23 dataset [15].
One of the studies done on the IoT-23 dataset is by Kumari et al. [10].
This dataset consists of the network flow of 23 devices targeted by
a successful malware attack [13]. These models are trained on the
specific types of attacks in this database, ranging from Distributed
Denial of Service (DDoS) to horizontal port scans. Despite the high
accuracy achieved by these machine learning models, we cannot
assume that over 99.5% of all malicious attacks will be stopped. We
can only assume that 99.5% of attacks in the dataset will be stopped.
New types of attacks are quickly developed, and little research has
been done on how to detect previously unknown attacks. In this
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research, machine learning models will be trained on manipulated
training data from the IoT-23 dataset to simulate the encounter of
the model with a new style of attack on an IoT network.

2 CONTRIBUTION
Although there have been many models trained to intercept mali-
cious network flows, the study of detecting new types of attacks
against the IoT-network is not sufficient for the safety priority. Ad-
ditionally, the currently existing ML models have not been tested
sufficiently on new types of attack. These ML models have a high
performance on the IoT-23 dataset, but have not been tested on
unknown attacks in the training data. This paper will analyse the
capability of different ML models to detect and prevent new types
of attack by both training its own models on the IoT-23 dataset
and testing existing ML models on unknown attacks in the training
data. This will contribute to the currently available research since
little research about this topic exists, while the need for new attack
detection increases daily.

2.1 ResearchQuestion
What is the impact of excluding specific types of attack from the
training data on the performance of machine learning models for
anomaly detection in IoT networks using the IoT-23 dataset, and
how can we use this knowledge to safeguard against new attacks in
the future?

3 RELATED WORK
Nguyen et al. argue there are currently three big challenges in the
safeguarding of IoT networks against DDoS attacks [12]. These
challenges lie in the limited existence of capable datasets to train
an Intrusion Detection System (IDS), the inability to detect new
attacks without training data, and the possibility for attackers to
use adversarial attacks. This relates to this research since launching
a DDoS attack requires access to many IoT-devices, which can be
achieved by the attacks described in this research.

3.1 Related work on anomaly detection on new attacks
Several studies have attempted to solve the second challenge - the
ability to detect new attacks without training data - using machine
learning [2, 7–9, 11, 17, 19]. However, common problems occurred,
such as a too large manipulation of training data [7, 9], not suit-
able dataset [19], poor precision [11], not training on truly new
attacks [2, 9, 17], or unclear results [8]. A useful review covering
the findings of these studies is [1]. This review covered 92 experi-
ments from 11 studies and concluded a classification error rate of
50.09% which shows the need for new approaches and better meth-
ods. These studies can be used for understanding what problems
arise when defending against an unknown attack. However, none
of this research has been trained on the IoT-23 dataset.
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3.2 Related work on anomaly detection using the IoT-23
dataset

On the subject of anomaly detection in the IoT-23 dataset recent
studies have shown a successful anomaly detection rate of > 99%
[3, 18]. These studies can be used for better understanding of the
different aspects needed for successful anomaly detection. A useful
review is [15]. However, this research does not discuss performance
on new attacks.

4 METHODS OF RESEARCH
Several steps had to be taken to satisfy the research question. Firstly,
literature research has been conducted to gain understanding of
which ML models perform well for anomaly detection in IoT net-
work flows. Secondly, literature research has been done to gain
understanding of the different steps taken on detecting new attacks
without training data, and what ML models perform well on this
task. After reviewing the results, five different ML models have been
chosen that performedwell in previous research, or have potential to
perform well in this research. The models include two deep learning
models. These ML models will be trained and tested on data of the
IoT-23 dataset. The results for accuracy, recall and precision have
been logged. For each of the five ML models, an instance will be
trained on the dataset excluding one type of attack. This is repeated
for each attack. Experiments have been conducted to see the effects
of excluding different attacks on the results of accuracy, recall and
precision. After having trained all five ML models, we can simulate
a new type of attack by testing the model against the excluded type
of attack from the training data. Since the models have never seen
this type of attack before, the result of these tests will be valuable
to the understanding of countering new attacks, even though the
attacks used in this research are not truly new attacks. Lastly, an
analysis of the results of the five ML models on different types of
attack has been done to see what models perform the best against
previously unseen attacks. This will answer the research question.

5 DATASET
The dataset used for this research is the IoT-23 dataset [13]. This
dataset consists of captured network traffic of 20 malware-infected
IoT-devices, aswell as captured network traffic of three non-malware-
infected devices called ’honeypot devices’.1 The captured data is
logged in a Wireshark .pcap file as well as provided conn.log.labeled
files, in which all network entries are labeled. In this research, only
the conn.log.labeled files are used, since these files contain the rele-
vant information in a convenient format. Each of these files contain
data captured over a maximum duration of 24 hours, ranging from
238 to 73,568,982 network flows. In total the dataset consists of
294,449,255 malicious entries, and 30,858,735 benign entries. The
malicious entries are subdivided in the labels in Table 2.

5.1 Data Preparation
First, the separate conn.log.labeled files were converted to CSV-
files. Due to memory limitations, larger files had to be split into
multiple parts to allow for the creation of the CSV-files. In the
1In this dataset, honeypot devices are not used to catch intrusion attempts. Instead, the
honeypot devices in this dataset are only used to simulate normal network traffic.

Feature Description Type Selected
ts Timestamp of the capture int
uid Unique ID str

id_orig.h IP-address of the sender str
id_orig.p Port used by the sender int
id_resp.h IP-address of the receiver str
id_resp.p Port of the receiver int ✓
proto Network protocol used str ✓
service Application protocol used str ✓
duration Total time of the interaction float ✓
orig_bytes Amount of bytes sent to the device int ✓
resp_bytes Amount of bytes sent by the device int ✓
conn_state State of the connection str ✓
local_orig The connection originated locally bool ✓
local_resp The response originated locally bool

missed_bytes Number of missed bytes int
history History of connection state str
orig_pkts Packets being sent to the device int ✓

orig_ip_bytes Bytes being sent to the device int ✓
resp_pkts Packets being sent from the device int ✓

resp_ip_bytes Bytes being sent from the device int ✓
tunnel_parents Connection ID, if tunneling was used str

label Label of the capture str ✓
detailed_label Detailed label of the capture str ✓

Table 1. Features of the IoT-23 dataset

Label Type Amount Category
Benign Benign 30,858,735 0

C&C-PartOfAHorizontalPortScan Malicious 888 1
PartOfAHorizontalPortScan Malicious 213,852,924 1

PartOfAHorizontalPortScan-Attack Malicious 5 1
C&C Malicious 21,995 2

C&C-FileDownload Malicious 53 2
C&C-Mirai Malicious 2 3

C&C-HeartBeat Malicious 33,673 4
C&C-HeartBeat-Attack Malicious 834 4

C&C-HeartBeat-FileDownload Malicious 11 4
C&C-Torii Malicious 30 5
DDoS Malicious 19,538,713 6

FileDownload Malicious 18 7
Okiru Malicious 47,381,241 8

Okiru-Attack Malicious 13,609,470 8
Attack Malicious 9,398 9

Table 2. Labels in IoT-23 dataset

original dataset, all missing values were replaced with ’-’, except
for the IP-addresses, where missing values were replaced with ’::’.
For this research, these missing values were replaced with -1, to
ensure the possibility for models to train on the data, as well as
have a unique missing data value. Next, the created CSV-files were
iterated over and placed in CSV-files based on the detailed-label
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column, following the numbering in Table 2. Attacks that shared
characteristics were grouped under the same number, resulting in
ten CSV-files numbered 0-9. This step was an important preparation
for the testing phase, saving computational time when splitting data
for train/test set.

5.2 Feature Selection
The dataset provides 23 features, as shown in Table 1. Firstly, features
that are useful for training on the dataset but have no use in real-life
scenarios had to be removed. Using id_orig.h is not recommended
in ML algorithms, since the model will over-fit on the training
data. There are interesting use cases for the IP-addresses, such as
replacing the columns with a boolean column whether the sender
and receiver IP-address are from the same country. However, since
this research focuses more on the network packets, the features for
IP-addresses were removed.

Secondly, features that had too few entries were removed. It was
rare for these features to have an impact on the classification of the
model, and therefore only increased the computational time needed.
This was the case for the features missed_bytes, tunnel_parents and
local_resp.
Lastly, features that had no impact on the classification of the

models had to be removed. This was done by calculating the SHAP
values of the features using the python library shap. This library
returns a figure for a sample of the dataset which shows the impor-
tance of each feature on that sample. By running the library on the
five models, non-impactful features could be removed. The selected
training features are listed in Table 1.2

5.3 Data Scaling
In an ideal world, all attacks would have the same number of in-
stances in training and testing. However, some attacks are oversam-
pled and some attacks are undersampled in the IoT-23 dataset. This
research did not have the time or resources to create more samples
of the undersampled data, and will therefore work with a scaled
down dataset of the oversampled data, containing undersampled
attacks. Due to hardware limitations, the data had to be scaled to
allow efficient training on forest and ANN models. Training a tree
model in batches is not recommended, as new batches will only
extend the previous branches, instead of modifying them. Also, the
imbalance in data for different attacks is clear from Table 2. To
solve both the imbalance of data and the computational time for
training, attacks with more than 10,000 instances were randomly
sampled. The benign data was also scaled down to 10,000 instances.
To make sure that all attacks were included, less represented attacks
in categories 1, 2, and 4 were included.

6 DATA ANALYSIS

6.1 Attacks
To understand the difference in accuracy among the different attacks,
it is important to understand how each attack works, and what the
characteristics of each attack is. Therefore, below is a summary of

2The feature detailed-label is used to know how to split train/test values. However,
since we are doing binary classification, this feature is not used for training.

the functionalities and characteristics of the different attacks in the
IoT-23 dataset grouped by category.

6.1.1 PartOfAHorizontalPortScan. Port Scanning is an attackmethod
used to prepare for a mass attack. There are two types of port scan-
ning; Horizontal port scanning and vertical port scanning. In hori-
zontal port scanning, the attacker sends requests to the same port
on a large amount of devices, to find vulnerabilities. In vertical port
scanning, the attacker sends requests to a large amount of different
ports on the same device.
In the IoT-23 dataset, the PartOfAHorizontalPortScan attack is

simulated by repeating requests many times on the same port of
the target device.

6.1.2 C&C. Command & Control attack. Taking over a network of
devices after breaching a point of entry. From this entry point, the
attacker can take over other devices in the network and get data/
other valuables from it. This server can be used as a center of a
botnet. Multiple types of C&C attacks; Botnets, Ransomware, APT,
DDoS.

6.1.3 C&C-Mirai. Mirai is a Command & Control attack that fo-
cuses on IoT devices using the ARC Processor. This processor has a
flaw that enables a Mirai attack to take over the device if the default
user/password combination has not been changed. Notably, there
are only two instances of the Mirai attack in the IoT-23 dataset.

6.1.4 C&C-HeartBeat. The HeartBeat attack is a type of Command
& Control attack that keeps the connection between the host and the
infected device active. This is achieved by periodic calls en responses
between the host and device, the name of the attacked is derived by
this periodic behaviour.

6.1.5 C&C-Torii. The Torii attack is a type of Command & Control
attack that is similar to the Mirai attack. However, the Torii attack
is better developed to exploit more vulnerabilities and to avoid
detection by the host. Torii achieves this by disguising the intrusion
as a CSS file download, or by using telnet attacks.3 Notably, there
are only 30 instances of the Torii attack in the IoT-23 dataset.

6.1.6 DDoS. The Distributed Denial Of Service attack is executed
by a large number of devices to overflow the network capacity of
the targeted device or server. To launch a DDoS attack, the attacker
needs to have access to many malware infected devices under their
control. By having all these devices repeatedly requesting informa-
tion from the target, the target is likely to go out of service. In the
IoT-23 dataset, the network flows labeled as a DDoS attack are the
malware infected device performing a DDoS attack. A DDoS attack
can be recognized by many requests to the same target, as well as
the requests being sent on a regular basis.

6.1.7 FileDownload. The FileDownload is an attack where instead
of data, a file is sent to the target device. Notably, there are only 18
instances of the FileDownload attack in the IoT-23 dataset.

6.1.8 Okiru. The Okiru attack is a type of Command & Control
attack that has characteristics of the Mirai attack. The Okiru attack
3A Telnet attack is a technique that uses the Telnet executable on an older Windows
OS. This is used for connecting to a TCP port on a device.
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also focuses on devices with the ARC processor. This attack is dif-
ferent from the Mirai attack since Okiru uses different exploits to
intrude their target device.

6.1.9 Attack. The label Attack is used on network packets that can
not be identified as a known attack or as benign network traffic.
Therefore the Attack label contains many different instances with
different characteristics. This group of instances is useful for this
research because it is the only labeled group that does not have
a shared characteristic. Therefore, it will behave differently in the
testing phase.

6.2 Models
This research will be performed on five classification models. These
were selected from well performing models in previously done
research. Both the Random Forest model [18] and Support Vector
Machine model [3] performed well with an accuracy of 99.5% and
96.7% respectively. To increase the range of different properties of
machine learning techniques to enhance the results of this study, the
Histogram Gradient Boosting model, and Recurrent Neural Network
model were chosen.

6.2.1 Random Forest. A decision tree is used for classification by
creating branches based on difference in features. Once the tree has
been traversed, the model will predict the outcome of an instance.
The Random Forest (RF) classifier uses the average of a number of
different decision trees to predict the class variable [4]. The advan-
tage of using many decision trees is that it protects against over
fitting. Selecting correct features is important for RF classifiers, since
they build decision trees based on a random sub selection of features,
resulting in less efficiency if features do not impact the result. The
disadvantage of the Random Forest classifier is the relatively high
computational time, which disallowed training on more data.

6.2.2 Histogram Gradient Boosting. Instead of using random deci-
sion trees, each decision tree will correct the errors of the previous
tree in a Histogram Gradient Boosting model (HGB). The classifier
uses a histogram to check for feature importance, and to select the
useful features for later trees. This classifier is memory-efficient
due to this feature selection, and computes fast on large amounts of
data.

6.2.3 Support Vector Machine. A Support Vector Machine (SVM)
uses statistical analysis to optimize a hyperplane, the space in be-
tween classes in data. The algorithm finds this optimal plane by
using so called ’support vectors’, which are the data points closest
to the hyperplane [6]. A SVM works well with different data types.
However, it requires a large amount of memory, as does it have a
high computational time.

6.2.4 Recurrent Neural Network. ARecurrent Neural Network (RNN)
is a deep learning model that is used to train on sequential data.
The model stores an amount of internal data from previous inputs
to more accurately predict the next input [16]. Since the data in
this experiment will be randomized, there will be less sequential
information for the model to use. However, finding the optimal
value for the amount of previous inputs saved in the machine will
improve performance.

6.2.5 Multilayer Perceptron. A Multilayer Perceptron (MLP) is a
deep learning model that consists of multiple layers of nodes con-
nected to each other [14]. The model processes input data inde-
pendently, making it suitable for the randomized data used in this
experiment. These hidden layers make it possible for the model to
discover complex feature connections and will therefore make the
model more accurate.

7 RESULTS

7.1 Experiment Environment
The models were trained on a Dell PowerEdge R7515, enabled by
the Jupyter server of the University of Twente. This CPU enables
the use of 64 cores, 128 threads and 1024GB of memory.
The HGB, SVM, and RF models were implemented using the

scikit-learn library in Python.
For the Recurrent Neural Network, a three-layer model was used.

The input layer consisted of an Embedding Layer with 14 input di-
mensions, and 64 output dimensions. The Long Short-TermMemory
Layer had 128 units. The last layer was a Dense Output Layer with
2 units and the Sigmoid activation function.

For the Multilayer Perceptron, a four-layer model was used. The
input layer consisted of a Dense Layer with 14 units. The first hidden
layer consisted of a Dense Layer with 28 units. The second hidden
layer consisted of a Dense Layer with 56 units. The output layer
consisted of a Dense Layer with 2 units, and the Sigmoid activation
function. For both hidden layers, the ReLU activation function was
used. Both Deep Learning models were implemented using the keras
library and trained for 30 epochs.

Each of the five ML models was trained on eight attack categories
and 80% of the benign data, before being tested on the excluded
attack category and the remaining 20% of benign data. Both the
benign data from malware infected devices as well as honeypot
devices was split separately. This approach resulted in 45 models
total. The Accuracy, Benign Accuracy, Precision, Recall and F1-Score
of each model is logged in Appendix A4.

7.2 General attack analysis
To analyze how the different attack categories behave in the models,
wewill look at the recall metric. The importance is the % of malicious
instances correctly detected out off all malicious instances, therefore
we use the following formula:

Recall = True Positives
True Positives + False Negatives (1)

4Results denoted with * imply a low amount of samples.
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HGB RF SVM RNN MLP
1 0.1411 0.4080 0.4063 0.5399 0.4141
2 0.1961 0.2551 0.3919 0.9976 0.4134
3* 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.6453 0.6542 0.6449 0.9472 0.6970
5* 0.0000 0.9667 0.2333 0.9667 0.2333
6 0.9375 0.7954 0.9986 0.9970 0.9417
7* 1.0000 1.0000 1.0000 1.0000 1.0000
8 0.2195 0.9996 1.0000 1.0000 1.0000
9 0.8849 0.2924 0.9999 0.2897 0.9900

Table 3. Recall of different models

The table shows correlations between different attack categories.
Firstly, we notice that the models have an overall low performance
when the test set contains attack 1. The PartOfAHorizontalPortScan
does not have shared characteristics with other attacks from the
dataset. Therefore, the models classified many False Negatives. The
RNN model performed best, with a recall of approximately 0.54.

Secondly, we notice there is a correlation between the Command
& Control attacks, consisting of category 2, 3, 4 and 5. Category 3
only has 2 instances, which all models correctly identified. However,
the HGB, RF and SVM model all struggled with the other C&C
categories, scoring 0.20-0.39 and approximately 0.65 for categories
2 and 4 respectively. The RNN model scores high on these C&C
attacks, approximately 0.97. The MLP model struggles with the C&C
attacks, scoring low recall. However, this model scores excellent on
attack category 6-9.

All models except HGB perform exceptionally on category 8. We
see a notable difference between the performance of the HGB, SVM
and MLP model, and the RF and RNN model on category 9. As said
before, category 9 is all the attacks that could not be labeled, and
therefore contain a broad variance of attacks.

7.3 Model result analysis
Weighted averages for each metric are used to analyse model per-
formance. The results are displayed in this table:

HGB RF SVM RNN MLP
Accuracy 0.6064 0.6601 0.7310 0.8173 0.7828

Benign Accuracy 0.9962 0.9989 0.6673 0.8844 0.9568
Precision 0.9952 0.9993 0.9101 0.9597 0.9835
Recall 0.5001 0.5706 0.7375 0.8005 0.7400

F1-Score 0.6005 0.6872 0.7905 0.8436 0.8191
Table 4. Weighted averages for each model

7.3.1 Histogram Gradient Boosting. The Histogram Gradient Boost-
ing model has the worst performance out of all tested models. The
weighted accuracy is approximately 0.61. Although the model has
an extremely high benign accuracy of > 0.99, the model has a poor
recall that indicates many false positives. Due to the tree structural
nature of the model that includes feature selection and regulariza-
tion, it performs extremely well on benign data but not on malicious
data. Therefore, the F1-score of 0.60 indicates poor generalization.

7.3.2 Random Forest. The Random Forest model scored a moderate
weighted accuracy of approximately 0.66. The model performed well
on low sample categories, and performed worse on high sample
categories. The model excelled at Benign Accuracy, scoring > 0.99.
However, the recall score of 0.57 indicates many false positives. RF
also has a tree structural nature with feature selection and regu-
larization. Overall the RF model has a solid performance with a
F1-score of 0.69. The model shows a capability to generalize, though
accuracies differ per attack.

7.3.3 Support Vector Machine. The Support Vector Machine model
achieved a weighted accuracy of approximately 0.73, showing its
relatively good performance across different attack types. However,
the model had a significantly lower benign accuracy of approxi-
mately 0.67. Despite this, the SVM scored high in precision, achiev-
ing a score of approximately 0.91, which suggests that when it does
classify an attack, it is likely to be correct. The recall score of ap-
proximately 0.74 shows that the model successfully identifies a large
portion of attacks. This balance between precision and recall results
in a solid F1-score of approximately 0.79. Overall, the SVM model
shows potential, although the low benign accuracy will result in
problems in a real life scenario.

7.3.4 Recurrent Neural Network. The Recurrent Neural Network
model achieved the highest weighted accuracy of approximately 0.82
among the models, highlighting its effectiveness in handling differ-
ent attacks. It also scored a high benign accuracy of approximately
0.88. However, this is not as high as the HGB and RF model. The
precision of approximately 0.96 suggests that the RNN model is reli-
able when it identifies an attack. The recall score of approximately
0.80 shows that it detects a large proportion of actual attacks. With
a F1-score of approximately 0.84, the RNN model shows promise for
generalization, which is also noticeable by the accuracy and benign
accuracy being relatively similar. One important notice is that the
RNN model performed the worst of all models on category 9, even
though the model has a large generalization capability. Also, the
model performed poorly on low-sampled categories.

7.3.5 Multilayer Perceptron. TheMultilayer Perceptronmodel achieved
scores similar to the RNN model. It performed worse on attack cate-
gory 2, while outperforming the RNN model on attack category 9.
The MLP model showed excellent benign accuracy, approximately
0.96. The precision of approximately 0.98 shows that the model is
likely correct when it classifies an attack. However, the recall of
approximately 0.74 is a bit lower compared to the RNNmodel, show-
ing that the model classified more false negatives. the MLP model
has the second highest F1-score, of approximately 0.82, therefore the
model can generalize well. Importantly, the MLP model scored the
highest accuracy on attack category 9. The nature of attack category
9 shows an even higher potential for generalization than the RNN
model.

8 DISCUSSION
Among the tested models, the RNN model performed the best with
the highest weighted accuracy, recall, and F1-score. The large LSTM
layer enabled the model to capture feature dependencies in the data.
The RNN model has even more potential to perform in real life

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Jelke Schröder

scenarios, if the model is able to learn from real time sequential data.
The MLP model performed slightly worse, even despite its great
performance on attack category 9. This performance does show
generalizing capability, making it perhaps more suited than the
RNN model. The performance of the MLP model could be increased
even more by better hyperparameter tuning.

Both of these performances were based on the weighted average.
However, the RF model outperformed other models on both benign
accuracy, precision and F1-score on non-weighted averages. This
shows that the RF model might be a solid option detecting new
attacks, although more research on this is needed due to insufficient
sample size of some attacks. Both the HGB and SVM model had
issues that resulted in low performance. The HGB model had a low
recall and low F1-score, while the SVM model had a low benign
accuracy and low precision.

9 CONCLUSIONS
To answer the research question, the impact of excluding specific
types of attack from the training data has a negative influence
on machine learning models that are bad at generalizing, while
having less impact on machine learning models that are good at
generalizing. This will especially impact model performance in
real life, where the attacks are not limited to the nine categories
used in this research. It is important to train models on attacks
with different characteristics, to ensure the best possible protection
against malicious network traffic.

9.1 Future Research
For future research, this method can be extended to include more
types of attacks outside of the IoT-23 dataset. Also, to further im-
prove the results of this method, the number of underrepresented
attacks could be increased to ensure validity. The results can further
be improved by including more data for model training, which was
not enabled in this research due to computational power.
Instead of simulating a new attack by excluding data from the

training set, it would have been better to compute a new type of
attack specifically designed to test the generalizing capability of
models. This is not only more realistic, but will also ensure more
data for model training.

Additionally, experimentation on this method by using different
machine learning and deep learning models with more accurate
hyperparameter tuning could further increase accuracy, as well as
combining the average classification results of multiple models.

One of the improvements is to modify the Multilayer Perceptron
network, since a MLP model should theoretically work better on
non-sequential data than a RNN. In this research, the MLP model
showed more promise for generalization. However, this did not
reflect on the metrics.

By addressing these points of improvement, future research can
improve the results of the method described in this study.
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A APPENDIX: MODEL RESULTS

A.1 Accuracy

HGB RF SVM RNN MLP
1 0.3035 0.5213 0.4377 0.6034 0.5185
2 0.3707 0.4212 0.4694 0.9722 0.5240
3* 0.9975 0.9992 0.6924 0.9119 0.9473
4 0.7122 0.7203 0.6549 0.9322 0.7470
5* 0.9850 0.9983 0.6847 0.9063 0.9383
6 0.9494 0.8344 0.9369 0.9779 0.9431
7* 0.9983 0.9987 0.6950 0.8756 0.9585
8 0.3688 0.9994 0.9519 0.9787 0.9920
9 0.9528 0.4496 0.9487 0.4145 0.9836

Table 5. Accuracies of different models

A.2 Benign Accuracy

HGB RF SVM RNN MLP
1 0.9886 0.9996 0.6072 0.8713 0.9591
2 0.9983 0.9983 0.7100 0.8722 0.9582
3* 0.9975 0.9992 0.6906 0.9118 0.9473
4 0.9945 0.9992 0.7073 0.8688 0.9582
5* 0.9975 0.9987 0.6906 0.9055 0.9473
6 0.9996 0.9987 0.6022 0.8975 0.9489
7* 0.9983 0.9987 0.6906 0.8747 0.9582
8 0.9987 0.9987 0.6906 0.8890 0.9582
9 0.9975 0.9987 0.6873 0.9093 0.9582
Table 6. Benign Accuracies of different models

A.3 Precision

HGB RF SVM RNN MLP
1 0.9812 0.9998 0.8482 0.9465 0.9771
2 0.9980 0.9984 0.8801 0.9684 0.9749
3* 0.2500 0.5000 0.0035 0.0095 0.0157
4 0.9980 0.9997 0.9229 0.9682 0.9860
5* 0.0000 0.9063 0.0121 0.1146 0.0530
6 0.9999 0.9996 0.9315 0.9762 0.9884
7* 0.8182 0.8571 0.0306 0.0571 0.1538
8 0.9986 0.9997 0.9461 0.9744 0.9902
9 0.9993 0.9990 0.9422 0.9268 0.9895

Table 7. Precision of different models

A.4 Recall

HGB RF SVM RNN MLP
1 0.1411 0.4080 0.4063 0.5399 0.4141
2 0.1961 0.2551 0.3919 0.9976 0.4134
3* 1.0000 1.0000 1.0000 1.0000 1.0000
4 0.6453 0.6542 0.6449 0.9472 0.6970
5* 0.0000 0.9667 0.2333 0.9667 0.2333
6 0.9375 0.7954 0.9986 0.9970 0.9417
7* 1.0000 1.0000 1.0000 1.0000 1.0000
8 0.2195 0.9996 1.0000 1.0000 1.0000
9 0.8849 0.2924 0.9999 0.2897 0.9900

Table 8. Recall of different models

A.5 F1-Score

HGB RF SVM RNN MLP
1 0.2467 0.5795 0.5494 0.6876 0.5817
2 0.3278 0.4064 0.5423 0.9828 0.5806
3* 0.4000 0.6667 0.0070 0.0188 0.0309
4 0.7838 0.7840 0.7593 0.9576 0.8167
5* 0.0000 0.9355 0.0230 0.2049 0.0864
6 0.9677 0.8859 0.9639 0.9865 0.9645
7* 0.9000 0.9231 0.0594 0.1080 0.2666
8 0.3599 0.9996 0.9723 0.9870 0.9951
9 0.9386 0.4524 0.9702 0.4414 0.9897

Table 9. F1-Score of different models

A.6 Averages

HGB RF SVM RNN MLP
Accuracy 0.7376 0.7714 0.7191 0.8414 0.8391

Benign Accuracy 0.9967 0.9989 0.6752 0.8889 0.9548
Precision 0.7826 0.9177 0.6130 0.6602 0.6810
Recall 0.5583 0.7079 0.7417 0.8598 0.7433

F1-Score 0.5472 0.7370 0.5385 0.5972 0.5902
Table 10. Averages for each model

A.7 Weighted Averages

HGB RF SVM RNN MLP
Accuracy 0.6064 0.6601 0.7310 0.8173 0.7828

Benign Accuracy 0.9962 0.9989 0.6673 0.8844 0.9568
Precision 0.9952 0.9993 0.9101 0.9597 0.9835
Recall 0.5001 0.5706 0.7375 0.8005 0.7400

F1-Score 0.6005 0.6872 0.7905 0.8436 0.8191
Table 11. Weighted averages for each model
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