Multitask Approach to Video Scene Understanding
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This thesis proposes a multitask approach to enhance video scene under-
standing by focusing on two distinct, yet complementary, aspects of video
content into a finite set of classes. The first task, action recognition, cate-
gorises the actions in the video. The second task, object detection, aims to
localise any objects in the frame and classify them. We propose a multi-task
model that utilises self-attention mechanisms to jointly output action classes,
objects, and bounding boxes. The two pre-trained models that encode task-
specific information are used as frozen feature encoders to fine-tune the
merger model. The approach is evaluated on the EPIC-KITCHENS dataset.
This integration is important for maintaining coherent spatial and temporal
information crucial for accurate video scene understanding. The multi-task
model shows promising results, as it learns well and does not overfit during
the training phase. Although the tasks are distinct, leveraging the infor-
mation leads to a more holistic understanding for each task individually.
Additionally, the multi-task model is lightweight, as only a few attention
layers are trained. The integration of action recognition and object detec-
tion tasks enhances the overall understanding of video scenes, providing a
comprehensive and efficient analysis.
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1 INTRODUCTION

Video scene understanding has significantly improved thanks to
advances in deep-learning. Understanding video scenes has a wide
range of applications, such as security surveillance, autonomous
driving, augmented reality, robot vision, and healthcare. Therefore,
itis growing in popularity. Video data is considered to be complex, as
it contains both spatial details and temporal information, requiring
an approach that integrates both.

2D-CNN models are widely used for image processing purposes;
however, they fail to adequately process videos. 3D CNNs are a
modification of the classical CNN model, where the kernel convolves
over time and space. [18]. Transformers were initially introduced to
address complicated NLP problems and have since expanded their
use case to other fields, such as computer vision. [19]. Transformers
make use of self-attention which allows the model to process the
whole input at once. Therefore, it can focus on the most important
relations, which enhances the understanding of the input.

R-CNN is a powerful two-step object detection model. The first
step entails image segmentation proposals, after which object de-
tection is performed on the extracted regions [13]. As this model
lacks the necessary speed, other models have been proposed. Faster
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R-CNN makes use of Region Proposal Network (RPN), which dynam-
ically proposes object boundaries and thus leads to a more efficient
approach [15].

This thesis proposes a holistic understanding of video scenes
through a multitask model that:

e Recognises actions within videos

e Recognises corresponding objects related with actions

o Merges the two tasks together to a single scene understanding
model

The integration of the two tasks will produce a better understand-
ing of the video. Focusing solely on the action recognition task can
lead to an incomplete understanding of video scenes. Particularly
with regards to who is performing the action. As it can solely fo-
cus on the action, valuable information on who is acting or what
object is involved is neglected. On the other hand, only utilising
object detection will solely focus on who or what is present in the
frame, but fails to capture the nature of actions being performed.
Therefore, the combination of the "Action Recognition" task and
"Object Detection" task, will lead to a complete understanding of
video scenes. The multi-task model will identify actors and objects
and interpret their actions, providing a holistic understanding.

Our central question in this work is:

Can the recognition of actions and action-relevant ob-
jects be done concurrently with a multi-task model for
holistic video scene understanding?

2 RELATED WORK
2.1 3D CNNs

Traditional approaches for extending 2D-CNNs to videos included
a two-stream approach, where temporal and spatial information is
processed in two different streams [17]. One stream utilises RGB
data and recognises objects and actors, while the other stream pro-
cesses motion using optical flow fields to capture movement between
frames. 3D Convolutional Neural Networks have advanced signifi-
cantly in video scene understanding,. It is important to mention [18],
which introduced a method to capture both spatial and temporal
features. The advantage of C3D over traditional 2D-CNN lies in its
capability to simultaneously process both visual and motion aspects
through uniform convolutional kernels.

A more efficient approach is explored in [9], which introduces
the X3D model. The following aspects are considered: temporal
duration, frame rate, spatial resolution, network width and depth.
The expansion strategy leads to a model that requires significantly
fewer resources than earlier models.

2.2 Transformers

Transformers consist of two parts: encoders and decoders. For ac-
tion recognition, which is a classification task, it is more common
to only use the encoder. The Vision Transformer (ViT) adapts the
transformer architecture for image processing[7]. ViT segments an
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image into patches that are then flattened and embedded. Positional
encodings are applied to retain spatial relationships within images.
Subsequently, features are represented as queries, with memory
embeddings (keys and values) created through linear transforma-
tions. The attention weights, which are used to determine the query,
are calculated as a dot product between the values and the keys.
Subsequently, the transformer encoder processes these weighted
values and the classification head outputs the final class probabili-
ties. Video transformers are emerging as a powerful tool in video
understanding[1]. As the self-attention mechanism is used, it allows
the model to weigh and prioritise certain parts of the video input. On
top of spatial encodings, temporal encodings are added to maintain
the temporal ordering of the video. Consequently, tokens (patches
of the video frames) are processed concurrently using multi-head
attention. Multi-head attention differs from single-head attention by
processing different features or relationships of the input simulta-
neously. This allows the model to understand activities and actions,
as context from multiple frames can be taken into consideration.

Fig. 1. MViT model [8]

2.3 Two step object detection

Faster R-CNN has two preceding versions: R-CNN and Fast R-CNN.
Faster R-CNN introduces the Region Proposal Network (RPN), which
significantly accelerates the model. It predicts object bounds and
objectness scores through a fully convolutional network[15]. In
comparison, for R-CNN and Fast R-CNN, region proposals are gen-
erated separately using methods like Selective Search [12, 13]. Faster
R-CNN enhances this process by sharing the convolutional network
between the RPN and the detection network. Furthermore, Faster
R-CNN trains the RPN and detection network separately and fine-
tunes them together.

2.4 Existing solutions

The merging of object recognition qualities and action qualities
has been discussed in [11]. The Action Transformer model that
is introduced makes use of spatiotemporal features to accurately
predict the location of individuals and their interaction with their
environment. The model puts emphasis on critical regions, such as
faces and hands, that are likely to interact with the environment. The
model combines the spatio-temporal inflated 3D (I3D) convolutional
network with a Region Proposal Network. The model is trained
using only RGB frames and shows remarkable results, setting a new
benchmark.

The SlowFast network introduced in [10] processes video data at
two different speeds. The slow pathway captures the information

needed for object detection, whereas the fast pathway captures the
information for action recognition. As it processes the data at a
higher speed, it will be able to capture motion well.

Temporal Segment Networks (TSN) segments a video into mul-
tiple parts and samples snippets from these segments [20]. TSN
utilises a two-stream approach where one stream processes the RGB
frames and the other stream processes the optical flow.
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Fig. 2. Faster R-CNN model [15]

3 MULTI-TASK MODEL

Action encoder, this model will provide information as to what
action or activity is currently taking place in the video. It considers
not only spatial features, but also temporal features. Temporal fea-
tures show dynamics and motion between frames over time. The
MViT model will be used to encode the features [8]. The action
encoder is a 3D transformer-based model that uses its self-attention
modules to focus on certain temporal features. Furthermore, it is par-
ticularly advanced in detecting dependencies over the entire video.
The action encoder consists of different layers, such as convolution,
pooling and attention layers 1[8]. To encapsulate the features rich
in information, the feature map is extracted after the last Multiscale
block following the pooling layer.

Object encoder, the faster R-CNN model will be used to encode the
features. Object detection demonstrates the objects and actors in the
frame, so that we can access the information on who is performing
the actions. On top of that, it determines the bounding boxes for
the detected objects, such that their location becomes clear. Faster
R-CNN is a highly efficient and widely used object detection model
that determines both the objects and the bounding boxes[15]. As
it is very flexible to its input, it will be easy to apply to the chosen
data set. The Faster R-CNN model includes key components, such
as convolutional networks, the Region Proposal Network (RPN) and
the ROI pooling layer [15]. To capture high-level spatial information,
the feature map is extracted from the convolutional layer before the
ROI pooling layer.

Multi-task model, this model will integrate the feature vectors
from each model and produce classifications. We use a transformer-
based model due to its self-attention mechanisms, which are very
useful for combining the outputs of two different models. Further-
more, the transformer model is highly flexible and can be applied
to the input size and layers needed. The primary goal of the multi-
task model is combining the outputs of the object detection and
action recognition models into a cohesive output that increases
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Fig. 3. Multi-task model architecture

Video frames V with dimensions Each input video segment V has dimensions

RIXWXHXC are ysed by action encoder f, to produce

spatio-temporal features Z,, of the dimensions R? xwxhxc' Similarly, object encoder f, produces an object related feature map Z, of the
dimensions R¥*"*¢’ Both action and object encoder features are concatenated and passed to the trainable multi-task model ¢ with four
attention layers and three classification layers as shown on the right. The model ¢ outputs three vectors, namely the bounding box
coordinates, the probability distribution for the action classes and the probability distribution for the object classes.

the understanding of video scenes. The proposed strategy is to use
Faster R-CNN for object detection and to use MViT model for action
recognition. Finally, the outputs are combined using a transformer.

3.1 Model Architecture

Each input video segment V has dimensions RT*WXHXC Firstly,
this segment goes through the object detection encoder fp, as shown
in Figure 3. The object detection encoder is the Fast R-CNN model
which is used as a frozen encoder. We use (video) MVIiT as our frozen
encoder action encoder f4. Object detection samples one frame at a
time, while action detection considers the width W, height H and
time T, thus having one more dimension. This produces Z, = f5(V)
and Z, = f4(V), where Z, additionally has ¢’ channels.

The outputs Z, and Z, are concatenated to a single tensor over the
temporal dimension before being treated as input to the multi-task
transformer denoted by ¢. ¢ consists of 4 attention layers and three
classification layers. Furthermore, ¢ has 8 heads for each attention
layer with a feed-forward dimension of 2048. Let Z = [Zo,Z,] when
concatenated. Then during training of ¢,
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where:

e 7, represents the bounding box coordinates.

e §j, represents the probability distribution for the object class
corresponding to a set of nouns.

o 3, represents the probability distribution for the action class
corresponding to a set of verbs.

3.2 Multi-task objectives

The objective of ¢ is to detect bounding boxes for objects visible
in the frames, classify objects visible in the frame and recognise
actions in V.

To achieve these objectives, two types of loss functions are used:

(1) Cross Entropy Loss (CE):

N
CEn(fn, yn) = — Z Yn,i 1Og(gn,i)
i=1

N
CEy(§v, Yo) = — Z Yo,i log(gv,i)
i=1

where 7, and g, are the predicted labels for nouns and verbs,
respectively and y, and y, are the ground truth labels [14].
(2) Mean Squared Error (MSE) Loss:

N
N 1 N
MSE(do, o) = ;@o,i ~ Go.)?

where 7, is the predicted bounding boxes and y, is the ground
truth bounding boxes. The MSE loss measures the average of
the squared differences between the predicted value y, ; and
the truth value g, ; [6].

The final loss obtained to train ¢ is defined as:

L = CEn(§n, yn) + CEn(in, yn) + MSE(fo, Yo) (1)

The final loss combines three losses such that ¢ can learn and
optimize the tasks concurrently. This approach ensures that the
model classifies §n, §y, Jo accurately.



3.3 Optimisation

To further improve the accuracy of the multitask model, a few small
adaptations need to be made:

(1) Activation layer: Choosing the right activation layer can
impact the accuracy of the model heavily. The activation
layer will allow non-linearity through the tanh function in
the model, which will help the model learn more complex
patterns. It takes the output of the previous layer and modi-
fies the data, such that it can be taken as input for the next
layer. For the multitask model, the GELU activation layer was
chosen [2].

(2) Initialise weights: In the first iteration of the experiment,
the weights were not initialised, which caused the model to
learn less effectively. To optimise the training process, the
classification layers are initialised to values ranging from 0.1
to -0.1. The biases for these layers are initialised to zero.

(3) Separate loss backward propagation for faster computa-
tion: In the first iteration, the losses for the two classifications
and one regression head are combined and then the backward
operation is performed at once. However, this approach is
computationally very expensive. Therefore, the losses will be
computed and the backward operation will be performed on
them individually.

(4) Scheduler: A scheduler can be utilised to fine tune the learn-
ing rate, such that the loss does not stagnate. It will lead to
faster convergence and better model performance. The learn-
ing rate is slowly decayed at specific intervals with a specific
rate. When training a multitask model, it could be the case
that one task has stopped improving, but the learning rate
is not d. The ReduceLROnPlateau scheduler is designed to
reduce the learning rate when a specific task has stopped im-
proving. [3] Therefore, it allows higher learning rates when
the model is performing well and small learning rates when
it is performing worse.

Bayesian optimisation Hyperparameter tuning is widely used to
increase model performance. There is a wide range of hyperparame-
ter optimisers, ranging from grid search to bayesian optimisation. As
the multi-task transformer is quite complex, a bayesian optimisation
technique is preferred.

Multi-arm bandit is a state-of-the-art optimisation algorithm that
finds the most efficient hyperparameters for the model being trained
[16]. The multi-arm bandit algorithm can be easily integrated into
the training logic that has already been defined. The core compo-
nents needed to start the tuning of the hyperparameters are:

e Parameters dictionary: This dictionary contains the parame-
ters that will be tuned. The following parameters were chosen
with the following space:

— Attention layers: Adding layers can enhance the model’s ca-
pabilities to learn complex patterns. However, too many lay-
ers can lead to overfitting and therefore negatively impact
the model’s performance. Furthermore, if too many layers
are added, the computational complexity of the model will
significantly increase.

— Optimisation algorithm: Different optimisation algorithms
can have different effects on how the model is trained ac-
cording to the loss function. The choice of optimisation
algorithm can influence the convergence speed and the
performance of the model.

— Learning rate: The learning rate is extremely important to
reach a high performing model, because it determines the
speed the model learns at. If the learning rate is too high, it
will cause the model the overshoot and it will not achieve
its optimal performance. If the learning rate is too low, it
will be computationally expensive to achieve any results.

Objective specification: This function will evaluate the model’s
performance with the hyperparameters given for that itera-
tion. The objective function will contain the training of the
module. During training the module will take the different
parameters and return the summed loss of the action recog-
nition, object detection and bounding boxes.
Tuner: The tuner will find the best hyperparameters with the
use of the minimise and maximise functions. As the objective
function will return the loss, it will be task of the tuner to
minimise this loss. Therefore, the tuner will be set to the min-
imise function. After which it will return the best-performing
hyperparameters.

4 RESULTS

In section 4.1, we will discuss the evaluation metrics used to mea-
sure the model’s performance. In section 4.2, we will cover the
experimental setup, including variables such as the dataset split and
preparation. In section 4.3, we will present the results measured for
action recognition, and in section 4.4, we will discuss the results for
object detection. Section 4.4 will cover the bayesian optimisation
applied to ¢, along with the results of the model with the optimi-
sation. An ablation study is performed and analysed in section 4.5.
Finally, in section 4.6, qualitative analysis is conducted to assess the
model’s performance further.

4.1 Evaluation metrics

The performance of ¢ was evaluated using multiple metrics to assess
the accuracy of 4y, y, and yp,.

Validation accuracy indicates the accuracy of the model on unseen
data. It specifies the percentage of correct predictions out of the
total number of predictions.

Number of Correct Predictions

Al = ?
ccuracy Total Number of Predictions @

The Intersection over Union (IoU) metric was used to assess the
accuracy of the bounding boxes relative to the ground truth. The
ToU measures the overlap between the predicted bounding box and
the ground truth.

Area of Overlap
IoU= ——— ®3)
Area of Union
Mean Average Precision (mAP) is often utilised to assess the ac-
curacy of object detection models. mAP calculates the average pre-
cision for different recall values. AP is the area under the precision-

recall curve. Often mAP is used in combination with IoU, where a



prediction is considered correct when the IoU value crosses a certain
threshold. The mAP is calculated for the following threshold: 0.25,
0.50, 0.75. For each threshold, the AP values are averaged to get the
mAP value.

The Average Precision (AP) for a single class is given by:

AP =" (Ry —Rp-1)Pn )

where Py, is the precision at the n-th threshold and R, is the recall
at the n-th threshold.
The Mean Average Precision (mAP) is calculated as:

C
1
mAP = — AP 5
P ©)

where C is the number of classes and AP, is the average precision
for class c.

Finally, the precision and F1 scores were also used for action
recognition and object detection. Precision offers insight into the
proportion of true positives among all the made detections. The
precision metric will show the number of false positives a model
makes. F1 scores combine recall and precision and offers insight
into the balance between the false positives and the false negatives.

. True Positives
Precision = — .. (6)
True Positives + False Positives

Precision X Recall
F1Score =2 X —MMMM8M8@™M— 7)
Precision + Recall

4.2 Experimental setup

The models were run on Jupyter Notebook servers with NVIDIA
A10 GPU’s. Furthermore, the PyTorch library is used to import f;
and f, models.

The dataset used for the experiment is the EPIC-Kitchens 55
dataset[5], which consists of a large amount of video data. In total,
there are 125 verb classes and there are 325 noun classes. The dataset
contains videos of actors cooking recorded with a camera. The
dataset contains annotations, not only for the actions performed
and the objects present in the frames, but also for the bounding
boxes. The EPIC-Kitchens dataset contains both a bigger 100 and a
smaller 55 version. Due to resource constraints, the EPIC-Kitchens
55 was chosen. 80% of the dataset with ground truth is loaded as
the training dataset, whereas 20% is loaded as validation data.

The frames of the video will be resized to 224, and a center crop
will be performed to 224.

Furthermore, for each annotated action, 16 frames were uniformly
sampled, as that is the required input for f,. From the 16 samples
that were sampled, 4 frames were subsampled for f;.

Z is normalized by simply taking the mean. Finally, it is converted
into a pickle file, which is saved in the dataset. After all the Z have
been aggregated, it is loaded using a custom dataset and a dataloader.

The Adam Optimiser (Adaptive Moment Estimation) has gained a
lot of attraction for its high performance with respect to deep learn-
ing models [4]. The Adam optimiser computes adaptive learning
rates and includes bias correction.

The model is initialised to the following hyperparameters:

(1) Learning rate: 0.0001
(2) Batch size: 100

(3) Number of Epochs: 20
(4) Optimizer: Adam

(5) Dropout rate: 0.1

4.3 Action Recognition

In Table 1 it can be seen that the highest accuracy for action recog-
nition (denoted with verb) is 41%, which is a slight improvement
when compared to the baseline of 40%. Precision and F1 scores are
slightly under the baseline. This suggests challenges with recall,
resulting in fewer correctly identified positive cases.

The validation loss continuously decreases for action recognition
in Figure 4, which shows that the model is still learning until the
20th epoch. The model is not overfitting until then as the loss is
decreasing, which shows the ability of the model to generalise to
new unseen data.

Metric Val Acc Verb | Val Precision Verb | Val F1 Verb
Highest Value 0.41 0.34 0.34
Baseline Verb 0.40 0.40 0.38

Table 1. Validation Metrics for Verb-Related Performance

Validation Metrics for Verbs over Epochs
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Fig. 4. Performance action recognition over 20 epochs.
Metrics for the first 20 epochs on the EK-55 val set. The validation
loss is indicated with red. The accuracy, precision and f1 scores are

denoted with blue, orange, brown respectively.

4.4 Object Detection

The highest validation accuracy for object classification is 16% com-
pared to the baseline of 27% which is a significant decrease as can be
observed in Table 2. Furthermore, there is also a significant decrease
for precision and the F1-score compared to the baseline.

There is a huge difference between the accuracy, precision, and F1
score of the action recognition tasks and object detection tasks. The
difference can be explained by the fact that there is a huge difference
in amount of classes for the two tasks. The action recognition tasks
only has 125 classes, whereas the object detection class has 325
classes. As object detection task is more complex, it leads to training
over more epochs to obtain better performance.



Metric Val Acc Noun | Val Precision Noun | Val F1 Noun
Highest Value 0.16 0.13 0.14
Baseline Noun 0.27 0.29 0.27

mAP for Different Thresholds over 20 Epochs

Table 2. Validation Metrics for Noun-Related Performance

The validation loss is plotted in red in Figure 5 and can be seen
decreasing consistently from epoch 1 to epoch 20. The graph shows
a small plateau around the 5th epoch, which quickly turns into a
descending loss again. This indicates that the model is still learning
and improving on the dataset.

Validation Metrics for Nouns over Epochs
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Fig. 5. Performance object detection over 20 epochs. Performance
metrics for the first 20 epochs. Red represents the validation loss. Green,
purple, and pink, respectively, indicate the accuracy, precision, and F1 scores.

The highest value for the mAP value is 0.06, measured at the 19th
epoch, which is an improvement on the baseline in Table ??. The
mAP has been showcased for different thresholds over 20 epochs
6. The blue line showcases the mAP value for the 0.25 threshold. It
can be seen that the model is consistently learning and the predic-
tions for the bounding boxes are getting better. However, the red
line, showcasing the 0.75 threshold, does not show any significant
improvements.

The mAP for the bounding boxes is quite low in Table 3. However,
it can be seen that the graph has an increasing trend until approxi-
mately the 20th epoch. The low precision at the beginning indicates
the model struggling to localise the bounding box coordinates and
therefore resulting in a low IoU. As the multi-task transformer is
quite simple, it is hard for the model to learn more complex struc-
tures. Utilising weighted losses or a combination of losses could
lead to a better performance.

Metric mAP@0.25 | mAP@0.5 | mAP@0.75
Baseline 0.00 0.00 0.00
Multi-task 0.06 0.03 0.00

Table 3. AP and mAP values for object detection performance.

Fig. 6. mAP over IOUs thresholds for object detection.
Metrics for the first 20 epochs on the EK-55 val set. Thresholds
{0.25,0.5,0.75} are used for the IOU between predicted and ground
truth boxes.

4.5 Results Bayesian Optimisation

The results of the bayesian optimisation algorithms are showcased
in Table 7 and Figure 8. The bayesian optimisation algorithm Multi-
arm bandit was utilised to find the right number of attention layers,
the right learning rate and optimisation algorithm. It can be seen
in Figure 7 that there is a slight decrease in the loss when the
amount of attention layers increases. Furthermore, as the learning
rate increases in Figure 8, the loss also slightly increases.

les Attention Layers vs. Loss

4 3 s 10 © 1 16 18
Attention Layers

Fig. 7. Attention Layers vs Average Loss
Performance measured by the loss as the attention layers increase
as the result. The trend line is represented by the blue line and can
be seen increasing as the number of layers increases.

In Figure 7 the lowest losses can be measured around layer 4 and
layer 6. However, ¢ already consist of 4 layers meaning that it is
already optimised.
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Fig. 8. Learning Rate vs Average Loss
The trend line is represented by the blue line, and it shows that
increasing the learning rate increases the loss per epoch.

Figure 8 shows that 0.009 causes ¢ to have the smallest loss.
Therefore, after adjusting the hyperparameter learning rate to 0.009,
the following results were obtained.

The results are summarised in Table 4. It is surprising that ¢
performs worse when trained with the learning rate 0.009. Further-
more, the validation loss reported is higher than reported earlier.
This can be explained by the fact that the steps are simply too big
and therefore it misses the minima.

4.6 Ablation

Table 5 summarises the results of the ablation studies evaluated
over a multitude of metrics. Each ablation removes or modifies an
element of the model, such that the impact of that particular element
can be tested.

The first entry in the table showcases the model as it is working.

The second entry in the table indicates the reducing of the trans-
former layers from 4 to 2. The reduction of the attention layers does
not show any significant changes in the performance of the model.
Therefore, the model seems to be extremely lightweight, needing
only two attention layers to achieve similar performance.

Moreover, when removing the dropout and activation functions,
we can observe a significant decrease in all metrics. When no
dropout is applied, the changes of the model overfitting on the
training data will increase. Furthermore, without an activation layer,
it will be harder for the model to learn non linear representations.

Furthermore, the model was run for 50 epochs. When the model
is trained for a longer period, it can be seen that the performance
does not get better. This indicates that the model is not learning and
therefore it is overfitting on the training data.

The use of dropout in the multi-task transformer should avoid
the case of overfitting, as it randomly sets input neurons to zero and
therefore makes sure that the model learns robust features. Even
with the use of the dropout function, overfitting can be observed.
This could be due to several reasons, such as a too low dropout rate
or a necessity for other regularisation techniques.

Finally, removing the scheduler from the multi-task model does
not seem to have any significant impacts on the performance of
the model as well. However, all the metrics decrease slighty, which
indicates the learning rate adjustments have effect. It could be that a

different learning rate scheduler must be choosen or the parameters
need to be improved for better performance.

4.7 Qualitative Analysis

In order to analyse on what frames the model performs well, four
frames have been selected, shown in Figure 9, that were correctly
classified by the model and four frames were chosen that were
incorrectly classified.

For Action Recognition, the frames that were identified (9a, 9b)
correctly are well-lit and the action is happening in the middle of the
frame. The poor classification of frames (9g, 9h), can be attributed
to the poor visibility of the action due to bad lighting conditions.
Furthermore, the actions predicted well are often recurring actions
in the dataset. Therefore, the model will be able to detect it better. Fi-
nally, some actions are partially disturbed due to either pre-existing
factors or the center-crop being performed.

For Object detection, ¢ performs significantly better when it is
detecting an object that is in a well-lit environment 9d, ¢ performs
well. However, 9f shows a poorly angled frame shot and therefore ¢
struggles to classify the objects. 9e is a poorly lit frame and therefore
the objects are detected correctly.

5 FUTURE WORK

¢ shows difficulties adapting to frames that have poor lighting, and
therefore data preprocessing methods will be helpful. For exam-
ple, data augmentation techniques can be applied to improve the
robustness and the ability to generalise. Furthermore, augmenting
the dataset to address underrepresented classes will enhance the
model’s ability to generalise and improve performance.

6 CONCLUSION

This thesis explored the possibility of combining action recognition
with object detection using a multitask model. This study used
the EPIC-KITCHENS 55 dataset, and Faster R-CNN and MViT for
preprocessing the data. Experimental data shows improvement over
20 epochs, as the validation loss decreases consistently.

However, there are significant differences between the two tasks.
The action recognition task with 125 classes is more difficult than
the object detection task with 325 classes. The reason for this can be
accredited to the added complexity that comes with more classes.

The mAP values over the three thresholds remain low, which
shows the inability of the multi-task model to accurately localise
the object. Despite these challenges, the mAP showcased that there is
an increasing trend. It indicates the model is learning and localising
objects better.

The added complexity of object detection in the form of extra
classes and having to localise and classify the objects is a challenge.
Balancing the loss between the action recognition task and the
object detection task could be useful to address the challenge with
object detection. For example, weighted losses where the object
detection loss has a higher weight can help the model learn the
features for this task better.

The research question defined above is the following.



Validation Loss

Validation Accuracy Validation Precision

Validation F1 Score

Verb
Noun

7.46 0.22
7.46 0.05

0.06 0.10
0.01 0.01

Table 4. Highest Values for Verb and Noun Metrics

Can the recognition of actions and action-relevant ob-
jects be done concurrently with a multi-task model for
holistic video scene understanding?

From the experimental results, it can be concluded that it is pos-
sible to combine action recognition and object detection using a
multi-task model. The concurrent recognition of actions and action-
relevant objects was achieved through Faster R-CNN and MViT.
The multi-task model is defined to be a transformer model utilising
self-attention mechanisms. The model demonstrated the ability to
learn and improve over time.

However, the noun-related performance metrics (accuracy, preci-
sion, and F1 score) showed significant declines compared to their
baselines, highlighting difficulties in noun classification. Addition-
ally, the action recognition metrics showed only slight improve-
ments in accuracy and declines in precision and F1 scores. These
difficulties occur because the model is optimising three tasks at
once. Although there is potential, further refinement is required to
calibrate the tasks into one coherent objective. However, the object
detection metrics showed significant decline compared to the base-
lines, and therefore indicating the poor performance. Additionally,
the action recognition metrics only showed slight improvement
compared to the baseline. Thus, small adjustments and refinements
are necessary for the multi-task model to be accurate. Augmenting
the dataset to address underrepresented classes and poor-quality
frames can help increase the model’s performance.
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. Verbs Nouns
Ablation Accuracy Precision F1Score Loss Accuracy Precision F1Score Loss mAP@0.25
Multi-task Model 0.41 0.34 0.34 6.50 0.16 0.13 0.14 6.50 0.06
Reduce to two Attention Layers 0.36 0.37 0.34 6.36 0.16 0.14 0.14 6.36 0.03
Remove Dropout + Activation 0.22 0.07 0.10 7.50 0.05 0.00 0.01 7.50 0.0007
Increase to 50 epochs 0.36 0.38 0.34 6.60 0.15 0.16 0.15 6.60 0.03
Remove Scheduler 0.36 0.33 0.31 6.48 0.14 0.12 0.12 6.48 0.04

Table 5. Action Recognition Metrics for Different Ablation Studies

A ADDITIONAL DETAILS

Due to cropping of the images, it can be the case that no bounding
boxes are available for that set of frames. If this is the case, then
a tensor of zeros will be outputted. The bounding boxes are only
considered when they are fully visible in the cropped frame.
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C ABLATION
D QUALITATIVE ANALYSIS

(a) Well performing frame for ob-
ject detection.

(b) Well performing frame for ob-
ject detection.

(c) Well performing frame for ac-
tion recognition.

(d) Well performing frame for ac-
tion recognition.

(e) One of the frames that per-
forms less when used for object
detection.

(f) Frames with less performance
with regards to object detection.

(g) Frame with less performance
for action recognition.

(h) Less performing frame for ac-
tion recognition.

Fig. 9. Performance of frames in object detection and action recognition
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