
MSc in Computer Science

Final Project

Extensibility Of

Domain-Specific Languages:

A Case Study of

an Industrial DSL

Naum Tomov

Supervisors:
Vadim Zaytsev &
Nhat Bui

July 6, 2024

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics, and Computer Science,
University of Twente

Contents

Glossary and Abbreviations 1

1 Introduction 3
1.1 Graduation Project Task Background . 4
1.2 Problem Statement . 4
1.3 Contribution . 5
1.4 Outline . 5

2 Background 6
2.1 Relevant DSL Terminology . 7
2.2 Software Language Extensibility . 8

3 Research Questions 9
3.1 RQ1: What are factors that influence the extensibility of a DSL? 10
3.2 RQ2: What are the current challenges in extending APS? 10
3.3 RQ3: How can existing software language design and extensibility guidelines

be used to effectively evaluate the state of a DSL? 10
3.4 RQ4: What are effective and actionable guidelines for DSL extensions to

ensure maintainability? . 11

4 Related Literature 12
4.1 Meta-Literature . 13
4.2 Domain-Specific Language Design . 15

5 RQ1. Extensibility Factors of DSLs 17
5.1 Methodology . 18
5.2 Results . 18

5.2.1 DSL Construction as Software Engineering 19
5.2.2 Language Workbenches (LWs) . 21
5.2.3 Software Language Grammars . 23
5.2.4 DSL Usability . 24

5.3 Discussion . 24

6 RQ2. Current Challenges in Extending APS 26
6.1 Methodology . 27
6.2 Results . 27

6.2.1 The Challenges in the Development of APS 27
6.3 Discussion . 28

2

7 RQ3. Extraction and Application of Modern DSL Design Guidelines
from Academia 31
7.1 Methodology . 32
7.2 Results . 33
7.3 Discussion . 40

8 RQ4. DSL Extension Guidelines 41
8.1 Methodology . 42
8.2 Results . 43

8.2.1 Extension guidelines for APS . 43
8.2.2 Validation of Guidelines via Retroactive Application 43

8.3 Discussion . 47

9 Conclusion 48
9.1 Summary of Findings . 49
9.2 Contributions to the Field . 49
9.3 Threats to Validity . 52

9.3.1 Internal Validity . 53
9.3.2 External Validity . 53

9.4 Future Work . 53

A Internship Task Description 62
A.1 Background Information . 62
A.2 Assignment . 62

B Developer Interviews 63
B.1 Consent Brochure for Interview . 63
B.2 Questions for Interview . 65
B.3 Interview Answers . 66

3

Abstract

Domain-specific languages (DSLs) are software languages made for a certain domain. They
provide an interface for domain experts to write expressive, yet readable code. One major
disadvantage of designing and developing DSLs is the cost of maintenance and evolution
of the language. A DSL needs to evolve to reflect changes in the domain it represents, to
provide new functionality, and to address end-user demands. Software language engineering
is a developing discipline and systematic techniques as well as measurements are presently
lacking. This thesis aims to outline and address this gap, starting with the need for
more objective ways to evaluate languages and arriving at a set of extension guidelines
for an industrial DSL. A case study is performed on a DSL from the industry to learn
about the challenges faced in practice while developing domain-specific languages and to
provide tangible examples of how to procure relevant extension guidelines for domain-
specific languages.

Keywords : domain-specific languages, software language design, software language engi-
neering, model-driven engineering, DSL evolution, DSL extensibility, DSL evaluation, DSL
design guidelines, DSL challenges

Glossary and Abbreviations

Glossary

• Abstract Syntax Tree
An abstract syntax tree (AST) is a data structure used to represent the structure of
a program or code snippet, generally as a product of parsing.

• Back End
In the context of this thesis, the back end refers to the back end of the domain-
specific language. It is responsible for converting an abstract syntax tree into the
desired output for the project. In this case study, the back end was mainly responsible
for generating C++ code.

• Front End
The front end of a code generator is responsible for creating an abstract syntax
tree for a given input. This usually involves lexing, parsing and some form of data
representation optimisation.

• Grammarware
Grammarware comprises grammars and all grammar-dependent software, i.e., soft-
ware artefacts that directly involve grammar knowledge.

• Language Workbench
To facilitate the development of DSLs and to avoid needing to re-invent the wheel
each time a software language construction project is undertaken, language work-
benches (LWs) have been created. LW is a term popularised by Martin Fowler in
2005 [21]. Various tools out there achieve the goal of streamlining the process of DSL
development in varying degrees. In 2013, S. Erdweg et al. defined 34 features for
language workbenches [18]. To qualify as a language workbench, a tool must satisfy
a sensible, even if limited, amount of these features. The usage of LWs when building
languages is considered a good practice, as their purpose is to make the development
of new languages affordable and efficient [13] [18].

• Metaphrasing
Metaphrasing is the change in the interpretation of existing language rules, processing
old expressions in new ways. This inherently requires work on the language processor
and requires significant development effort. This terminology is borrowed from the
paper "Extensibility in programming languages" [62] by Thomas Standish.

• Orthophrasing
Orthophrasing comes from "orthogonal", in that orthogonal features are introduced
into the language. Those are features that the existing language structure cannot
capture, thus introducing them requires working on the language processor itself.

1

This terminology is borrowed from the paper "Extensibility in programming lan-
guages" [62] by Thomas Standish.

• Paraphrasing
Paraphrasing is the language extension method that modern programmers are most
familiar with as it involves using language features to define new ones. This is enabled
by meta-programming features of languages that allow the developer to define types
and operators as well as create macros and extend control structures. These types of
extensions are the most common and easiest to implement, but they are limited to
a pre-determined scope of what the language allows. This terminology is borrowed
from the paper "Extensibility in programming languages" [62] by Thomas Standish.

• Usability
The "extent to which a system, product or service can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a specified
context of use" [29] as per the International Organisation for Standardisation.

List of Abbreviations

• APS — The ASML Parameter Specification language

• ASML — The company which suggested this graduation project. They specialise in
the production of lithography machines for the semiconductor sector. The abbrevi-
ation does not stand for anything.

• AST — Abstract Syntax Tree

• CI — Continuous Integration

• DSL — Domain-Specific Language

• GPL — General Purpose Language

• LW — Language Workbench

• SLE — Software Language Engineering

• SLR — Systematic Literature Review

• SMS — Systematic Mapping Study

2

Chapter 1

Introduction

Software has proven to be incredibly versatile and useful in a plethora of fields, such as
mathematics, biology, physics, commerce, etc. While software can enable experts from
different fields to take advantage of the processing power of computers, these specialists
are rarely also apt computer scientists. Thus, software engineers have to work with do-
main experts and try to bridge the gap between abstract domain expertise and low-level
programming implementation details. This challenge makes it difficult for both parties to
ensure that desired functionalities work as intended by the abstract domain model. Devel-
opers lack the knowledge to understand changes within the domain model and experts have
a hard time ensuring that all of their abstract knowledge has been translated correctly.

Domain-specific languages (DSLs) [22] are built to describe the concepts of a certain
domain with expressive and semantically rich notation. DSL developers aim to narrow
the gap between the level of abstraction in a certain domain and the one provided by
the software language. They enable, even enforce, code reuse in a similar fashion as a
programming library would. In the context of this research, the focus is to help enable the
evolution of a DSL, leveraging existing language design patterns and best practices. The
thesis project is a task proposed by ASML as a graduation project.

3

1.1 Graduation Project Task Background

This project is an industrial case study of a DSL developed and maintained by ASML,
called ASML Parameter Specification (APS). The language serves as an interface to provide
lithography machines with input settings. A code generator then generates C++ code for
the machines. This language must continuously evolve, as more types of input settings
become available for the machines. It uses the language workbench Xtext [19].

The task, as provided by ASML, is, among other things, to devise guidelines for the
extension of the language. It was created in 2019 and has been under iterative development
ever since, with iterations being delivered every quarter. APS has grown substantially
since then. They have started to see an opportunity for it to be used outside of the
team which originally developed it. This has created the necessity for formal extension
guidelines and an examination of the impact of the language on its surrounding interfaces.
A strong emphasis is placed on backward compatibility, due to its existing usage and
processes’ dependence on it. For the details of the assignment, refer to the Internship Task
Description in Appendix A.

1.2 Problem Statement

Software language evolution studies the nature of the change in programming languages.
This change is made to expand the functionality, increasing the expressiveness and ensuring
the consistency and correctness of the language. Languages such as Java and C++ have
undergone significant changes since their initial releases [10], adding support for a plethora
of features that enable new functionality within these languages.

DSLs, as software languages, are also subject to evolution. New features can be in-
troduced, based on user demand, or changes in the represented domain. However, such
changes ideally should not have an impact on already existing instances of that language.
If there are such oversights, it would lead to needing a significant overhaul of code bases, or,
more likely, the lack of adoption for the new version of the language. As an example, the
migration of the Python language from version 2 to 3, which was not backwards-compatible,
has had an impact on adoptability more than 10 years later [46]. Some developers expend
resources on supporting two versions of their libraries and are locked out of using new,
exclusive features in the new version. Furthermore, extensions to the language should not
hinder future work, as the evolution of languages is continuous and without a final desti-
nation. This creates the need for extension guidelines, which ensure both backward and
forward compatibility, as well as minimal impact on the language core code base.

The main challenge to be tackled is the lack of language design benchmarks. No sys-
tematic framework can be followed or applied to language grammars or semantic concepts.
The state-of-the-art in DSL design will be researched, to find a way to systematically
evaluate the APS language. Moreover, software language evaluation frameworks are also
lacking, literature on extensibility is scarce and the term "extensibility" itself is ambiguous.

In this thesis, extensibility will be related to the design of the language and explored
through multiple lenses. Usability and learnability play a role in the language’s ability to
extend its potential user base. Whereas its adherence to design patterns and development
guidelines can indicate its ability to be syntactically and semantically enriched.

Finally, a modern formulation of the extensibility challenge can be found in "The
Software Language Extension Problem" by M. Leduc et al. from 2020 [44]. This paper for-
mulates the software language extension problem using the old "expression problem" [52].
That is a now-classical problem in programming languages referring to the difficulty of

4

writing data abstractions that can be easily extended with both new operations and new
data variants. This shows that the challenge of this thesis, the extensibility of languages,
is still an open problem with no systematic, research-based solution.

1.3 Contribution

This thesis makes several contributions to the field of DSLs, particularly in the context
of extensibility. Firstly, it addresses the ambiguity surrounding the definition of "exten-
sibility" by proposing a clear and comprehensive interpretation that can be used in both
academic and industrial settings. This interpretation includes various facets such as us-
ability, learnability, and the ability to syntactically and semantically enrich the language.

Secondly, the thesis highlights the lack thereof and proposes a novel, objective evalua-
tion method for assessing the extensibility of DSLs. This method leverages best practices
from DSL language engineering and reduces them to relevant criteria for a language’s de-
sign. By applying this method to the ASML Parameter Specification language, the thesis
provides a practical example of how to evaluate and improve a real-world industrial DSL.

Thirdly, the research introduces a set of guidelines for extending DSLs, ensuring that
these guidelines are both actionable and effective. These guidelines were derived through
consulting literature and using the industrial DSL in the case study. They are a stride
towards a more systematic approach to evolution-enabling design.

Finally, the thesis contributes to the currently limited library of knowledge on verti-
cal, embedded DSLs. By examining APS, an industrial DSL with specific use cases and
constraints, the research provides insights that can apply to other similar DSLs. This
case study highlights the challenges and successes of DSL extensibility and offers practical
solutions that other DSL developers can adopt.

1.4 Outline

This thesis is organised into several chapters, each focusing on different aspects of the
research and its findings. After this introductory chapter, there is a Background chapter
with additional preliminary information surrounding this thesis. This includes definitions
of key terms and concepts related to DSLs and their extensibility.

Chapter 3 presents the research questions that guide this thesis. These questions are
designed to explore the factors influencing DSL extensibility, the challenges faced in ex-
tending APS, the applicability of existing design guidelines, and the development of new,
actionable guidelines for DSL extension.

This is followed by a Related Literature chapter to help contextualise the following
chapters, which answer the research questions. Each Research Question chapter lays out
the methodology used, the result obtained, and a reflective discussion about the results
and their relation to the rest of the thesis. Finally, there is a Conclusion chapter, which
summarises the findings, includes the final list of DSL extension guidelines and proposes
ideas for future work.

5

Chapter 2

Background

This chapter contains essential foundational knowledge required to understand the sub-
sequent discussions and analyses in this thesis. Critical concepts and terminology sur-
rounding DSLs are defined, setting the stage for a deeper exploration of extensibility and
evolution in software language engineering. The background information presented here
is also useful for contextualising the industrial case study included. Understanding the
key terms and theoretical underpinnings enables the readers to grasp the complexities and
nuances of this thesis.

6

2.1 Relevant DSL Terminology

Defining the right vocabulary to meaningfully examine domain-specific languages is im-
perative. It enables the recognition and categorisation of key aspects of DSLs and their
evolution. The "Dynamic Language Embedding With Homogeneous Tool Support" [58]
paper provides useful terminology to categorise DSLs as:

• Internal [58] — DSLs built within a host language as a fluent application program-
ming interface [22]. This means they piggyback off the host language’s implementa-
tion and rely on its parser and compiler/interpreter.

• External [58] — DSLs built from scratch, with their own parser, lexer, and accom-
panying compilation technologies. They are a lot more independent and flexible than
internal DSLs but require a lot more design and development work.

• Embedded [58] — DSLs built into an environment meant for extension, such as
Xtext [19]. These environments, called language workbenches, allow for the easy
development of languages.

The language in this case study is embedded, though embedded and external languages
are similar in more ways than not.

Furthermore, DSLs fall into different camps based on their form of notation — "tex-
tual", "graphical", "tabular" and "symbolic". This, of course, reflects the way that the
end-user can define instances of that language. APS is a textual DSL, which means that
language instances are text files, reminiscent of popular programming languages. Nonethe-
less, they are still not programs, as APS is not a programming language. It is a specification
language, used for specifying options, without control-flow logic.

Other relevant terms about DSLs include "vertical" versus "horizontal" languages [39].
Vertical languages are focused on narrow use cases and are also known as business lan-
guages. Horizontal languages are focused on a broader domain with more use cases. With
the given terminology, APS can be defined as a vertical, embedded DSL. A relevant quote
from the paper "A reflection on the lack of adoption of domain-specific languages" [66],
which uses the same terminology:

“Vertical external DSLs directed to non-developers can be transformative for
an organisation. They require the deployment of a significant effort and need
the support of the whole organisation or a large unit, such as a department.
They are typically multi-year projects with far-reaching consequences in terms
of productivity. They require adequate planning as they need to be supported
in the long term. This kind of DSL is probably the least well-known by a
broader audience.”

This is an important consideration for APS, as it shows the lack of awareness around
these types of language. It also indicates that it is unlikely to be able to find examples of
similar languages to draw from.

To facilitate the development of DSLs and to avoid needing to re-invent the wheel each
time a software language construction project is undertaken, language workbenches (LWs)
have been created. LW is a term popularised by Martin Fowler in 2005 [21]. Various
tools out there achieve the goal of streamlining the process of DSL development in varying
degrees. In 2013, S. Erdweg et al. defined 34 features for language workbenches [18]. To
qualify as a language workbench, a tool must satisfy a sensible, even if limited, amount of
these features. The usage of LWs when building languages is considered a good practice, as
their purpose is to make the development of new languages affordable and efficient [18] [13].

7

2.2 Software Language Extensibility

It is important to note a central theme in this thesis — "extensibility" is overloaded and
potentially misleading in the context of software languages. The paper "Extensibility in
programming language design" [62] by Thomas Standish in 1975 gives us a framework
to define different types of extensibility, predating modern programming languages. The
paper’s age notwithstanding, it is readily applicable to this discourse at the time of writing
this thesis. Three types of extension techniques are defined, which may be relevant for
this project: paraphrasing, orthophrasing and metaphrasing. The terms are defined in the
Glossary. For this thesis, extensibility is explored under the guide of orthophrasing alone,
which is the addition of features to the language. A software language getting orthogonal
extensions over time is commonly referred to as language evolution [15]. Hence, enabling
extensibility means enabling the language to evolve.

A lot of literature [17] [16] [33] focuses on the paraphrasing aspect of extensibility under
Standish’s terms [62], which is the user’s ability to extend the language. This type
of extensibility is not directly related to this research, therefore literature regarding it is
only tangential to this thesis. This differs from how extensibility is normally understood in
software engineering, which refers to the quality of being designed to allow the addition
of new capabilities or functionality [31]. In the context of this thesis, the former, user-
oriented definition is discarded, while the latter is expanded in the following capacity —
the "extensibility" of a DSL, to be evaluated and prioritised in the extension guidelines,
comprises of:

• Enriching the language vocabulary and syntax. This is the most intuitive under-
standing of extending a language and will be discussed in depth in this project.

• Increasing the tool support of the language, e.g. plugins for it, debug support, etc.
This is an important aspect of language development but not the main focus of this
project.

• Extending the language’s end-user base, This is a more liberal interpretation of the
term "extensibility", but in the context of the project, one aim is to procure guidelines
that define extensions which enable the language to be adopted.

Sebastian Erdweg et al. explore this from a more theoretical perspective in the paper
"Language Composition Untangled" [15], which gives a classification for different types of
language composition, one of which is language extension. These extensions depend on the
base language and their composition over time constitutes a language’s evolution, such as
the addition of generics and ‘foreach’ loops in Java, which were not present in the initial
language. Noteworthy is the so-called incremental extension, which is the composition of
language extensions one after another, as is seen in the evolution of languages.

Later, in 2013 S. Erdweg et al. developed A Framework for Extensible Languages [17],
which aims to transform non-extensible languages into extensible ones, allowing for cus-
tomisable syntax, static analysis, and editor support. The framework only needs the base
language’s grammar, import statement syntax, and base-language compilation method.
The generality of the framework is demonstrated through its application to several general-
purpose languages, including Java and Haskell. This paper refers to extensibility as the
user’s ability to introduce new features and is thus tangential.

8

Chapter 3

Research Questions

This thesis is carried out under a Research Question framework [56], where research ques-
tions (RQs) are defined, such that their answers shed light on the central topic of the thesis
— the evaluation and extensibility of DSLs. The RQs aim to encapsulate the task provided
by ASML (see appendix A) into questions which can be answered systematically.

9

3.1 RQ1: What are factors that influence the extensibility of

a DSL?

This is the starting point of the thesis and serves to provide a direction for the subsequent
research questions. To answer this question, this thesis will lean on the literature about
DSLs. The answer is crucial for providing research focus of the thesis and enables a more
thorough investigation of the latter portions of the research.

3.2 RQ2: What are the current challenges in extending APS?

This question delves into identifying specific challenges encountered in the process of ex-
tending APS. It aims to identify these challenges through interviews, to provide an under-
standing of what should be the focus of the extensibility guidelines. This will allow for the
guidelines to be tailored for the specific use case of the language in this case study, as well
as serve as a reference point for future readers who want to apply the extension guidelines
to their language. If the challenges identified in this case study are not experienced in the
development of another language, then the guidelines may also have limited usefulness.

3.3 RQ3: How can existing software language design and

extensibility guidelines be used to effectively evaluate the

state of a DSL?

This question explores the applicability of existing language design guidelines in assess-
ing a DSL’s state. It seeks to understand whether they can provide a robust framework
for evaluating the DSL’s design, structure, and extensibility potential. Carrying it out
requires both identifying the state-of-the-art design patterns and then applying them to
the language. This will involve a literature review, validation with the APS developers
regarding the relevance of the collected design guidelines and finally the manual identifi-
cation of APS’ compliance with the state-of-the-art design recommendation in academia.
Because this is a multi-faceted question, answering it will require answering the following
sub-questions:

RQ3.1: Are there established, systematic ways to evaluate a DSL holis-
tically?

Since this RQ aims to synthesise an evaluation method based on existing guidelines, it is
worth exploring what are the existing evaluation methods for DSLs. This sheds light on
whether or not this approach has merit, or if other established methods can be used for
DSL evaluation instead.

RQ3.2: What are the existing software language design guidelines?

Examining the state-of-the-art in academia on the topic of software language design should
produce a set of relevant guidelines which could be retroactively applied to a language to
assess its state.

10

RQ3.3: What are the existing software language extensibility guidelines?

Finding the agreed-upon extensibility guidelines in the literature is essential for this re-
search, as a central focus is placed on the notion of extensible language design.

RQ3.4: How can the answers of RQ3.1, RQ3.2, and RQ3.3 be leveraged
to evaluate the state of a DSL?

Once the guidelines and assessment methods are obtained, RQ3 must be answered — how
can they be applied, if at all, to assess the state of a DSL? If no suitable evaluation methods
are identified, the design guidelines can be turned into an evaluation framework, wherein
adherence to design standards is scrutinised.

Finding the answer to these sub-questions will provide the necessary insight into DSL
construction literature to answer the main RQ. To further assist with these questions, the
industrial DSL from this case study will be used as an example of the evaluation.

3.4 RQ4: What are effective and actionable guidelines for

DSL extensions to ensure maintainability?

This question is the culmination of this thesis and aims to devise a set of practical guidelines
that can be applied when extending a DSL. The generality of these guidelines to DSLs
outside this case study is not guaranteed and an evaluation will be carried out to assess
their external validity.

The focus is on actionable strategies that ensure the DSL’s evolution is manageable,
maintainable, and user-friendly. "Actionable" refers to them being specific enough to allow
for actions to be taken as a direct consequence of the guidelines. For them to have a net
positive effect on the process, would classify them as "effective". Answering the question
will involve collating the answers of the previous RQs to formulate a set of evidence-
backed extension guidelines. Finally, they will be validated by retroactively applying them
on past extensions and exploring what impact they would have had, if any. They can then
be adjusted to be more effective and to ensure their relevance.

11

Chapter 4

Related Literature

Domain-specific languages have existed and been a part of computer science academia’s
consciousness for over half a century [48]. However, they have been called different names,
such as "application-oriented", "specialised", "task-specific", etc. The term DSL was so-
lidified and properly defined by L. Walton in 1996, according to L. Renggli [58]. Regardless
of the definition, there is still no solid line distinguishing a DSL from a general-purpose
language. If a DSL expands and adopts new features, it can eventually evolve into a GPL,
however, this line is unclear. In fact, A. Kleppe asserts in her book "Software language
engineering: creating domain-specific languages using metamodels" that

“... I must conclude that no specific characteristics make DSLs different from
any other software language.” [39]

Thus, literature regarding generic software language engineering, design, and evaluation is
also related and applicable to DSLs.

Over this period, a significant body of literature has been built up, both about software
language engineering as a whole and DSLs in particular. The literature is sufficient for the
relatively recent emergence of systematic literature reviews (SLRs), as well as systematic
mapping studies (SMS) [7] [13] [25] [30] [43] [55] [64]; due to this abundance of research,
DSL development can be classified as a mature research field. Diving into this literature
gives the reader more context necessary to understand the rest of this thesis.

12

4.1 Meta-Literature

This section is dedicated to the aforementioned literature reviews and mapping studies —
the literature about other literature on the topic (i.e. meta-literature).

P. Gabriel et al.: Do software language engineers evaluate their lan-
guages? 2011 [25]

Although not self-prescribed as an SMS or SLR, this paper delves into SLE literature to
answer the question in its title. Due to the relatively old age of this paper, the results
are not necessarily applicable nowadays, but it is an important stepping stone in the field
of software language evaluation. The authors found that only 2 out of 36 DSL papers
reported an industrial-level assessment of the language. Similarly, 29 of the papers had no
usability evaluation reported. This led the authors to call for the SLE to include evaluation
as standard practice in the development process and concluded that the software industry
was not investing much in the evaluation of DSLs at the time.

A. Barisic et al.: Domain-specific language domain analysis and evalua-
tion: a systematic literature review, 2015 [7]

This SLR focuses on graphical DSLs, thus the findings are not necessarily generalisable to
all DSLs, nor to the specific DSL of this case study. However, it makes the case for the
importance of usability in DSLs and reports on an increase in the usability evaluation of
papers as opposed to the previous paper by P. Gabriel et al. However, it still does not
define or outline a systematic approach for usability evaluation as a part of the software
language development process.

T. Kosar et al.: Domain-Specific Languages: A Systematic Mapping
Study, 2016 [43]

This SMS digs into the research space in the field of DSLs and explores the trends of the
DSL literature. It makes a distinction between domain-specific languages and domain-
specific modelling languages (DSMLs). This is an important discussion, especially due
to the modelling community’s tendency to use the terms interchangeably, adding to the
confusion around the topic. In the paper, DSMLs are seen as a subset of software language
engineering (SLE) and remain excluded, as the paper focuses on grammar-based DSLs
and DSMLs tend to be graphical. The paper also recognises SLE as a young engineering
discipline, which can be one of the reasons for the lack of systematic approaches in design-
ing and evaluating languages. Furthermore, the SMS reports a "clear lack of evaluation
research" and suggests a need for more empirical evaluation in software modelling. This
reinforces the difficulty of evaluating the state and extensibility of a DSL, which is the
topic of this thesis.

I. Poltronieri et al.: Usability evaluation of domain-specific languages: a
systematic literature review, 2017 [55]

This SLR employed the Kitchenham protocol [38] and analysed 12 papers. All the pa-
pers included some form of usability consideration and a plethora of different evaluation
techniques were used, from which a taxonomy for DSL evaluation was extracted. Finally,
it also found no reported major issues with usability of DSLs, on the contrary, studies

13

presented advantages of DSLs over GPLs. This study also paved the way for the Usa-
DSL [54] framework for a systematic usability evaluation of DSLs, which will be relevant
in this thesis.

J. Thanhofer-Pilisch et al.: A Systematic Mapping Study on DSL Evolu-
tion, 2017 [64]

This SMS has found 34 papers relevant to DSL evolution in 2017. It concludes that
DSL evolution is a trending topic and that there is a low amount of cross-referencing in
the identified literature, indicating low awareness of existing papers. DSL evolution is a
central topic to this thesis, as DSL extensibility is defined as enabling the evolution of
a language. The study finds plenty of different approaches for DSL evolution have been
proposed, but there is no identified consensus.

A. Iung et al.: Systematic mapping study on domain-specific language
development tools, 2020 [30]

This SMS covers the different DSL development tools, also known as language workbenches,
discussed extensively in the homonymous section 5.2.2. These tools support graphical,
textual, symbolic and tabular DSL development, with some supporting multiple represen-
tations. Another noteworthy finding is that these tools tend to be predominantly non-
commercially licensed and their application domains — varied. This indicates that DSL
construction is a mature research area. Finally, it points out the lack of an established
mechanism to transform meta-metamodels, making the migration from one such tool to
another cumbersome.

G. Czech et al.: A systematic mapping study on best practices for domain-
specific modelling, 2020 [13]

Finally, this SMS covers a central topic of this thesis, which is best practices for DSL
development. This includes various guidelines, patterns and design recommendations. Out
of 143 studies analysed, a majority (72%) had a semi-formal style. The most cited source of
the best practices was industrial projects, thus indicating a relationship between academia
and industry in this field. Furthermore, they found the following success factors which
were commonly identified:

• Usability (The ease of use of the language notation and associated tools and meth-
ods): 28 contributing practices

• Development cost (Reduction of overall development costs through increased au-
tomation): 16 contributing practices

• Reliability (Increased reliability through automation, e.g., generation of source code):
15 contributing practices

• Expressiveness (Expressiveness of a language w.r.t. the domain): 12 contributing
practices

• Reusability (Increase reuse through DSL by reuse on the level of models): 12 con-
tributing practices

• Learnability (Effort to learn a new language): 11 contributing practices

14

This indicates a consensus that usability is a pivotal success factor. This study also
found no major contradiction between best practices in the 143 papers, which helps validate
the practices and shows that they build off each other and have some internal consistency.

Finally, this SMS contributes to this thesis’s critically important list of the most com-
monly cited best practices for DSL development, which can be used to evaluate the state
of a DSL based on its adherence to these practices.

4.2 Domain-Specific Language Design

There is a concrete definition [22] of DSLs, as well as an understanding of the advantages
and the drawbacks, that cause the hesitance of DSL adoption in the industry [66]. Re-
gardless, there is a common sentiment in academia that "language design is largely an art,
not a science" [71]. Martin Fowler also stated in 2010 that there are no clear features of
a good DSL design [22]. This outlines that field experts have identified the difficulty of
evaluating a language’s design. Note that while development patterns exist, no heuristics
have been defined that can be applied to an existing language’s design.

This is an area of ongoing research [51], as programming language engineers continue to
try to create actionable patterns for creation and criteria for the evaluation of languages.
The early 2000s saw a formalisation of design patterns in DSLs, encapsulating common
solutions to recurring problems in domain-specific language design. The document ti-
tled "Notable Design Patterns for Domain-Specific Languages" [61] from 2001 provides an
early foundational framework for DSL patterns. It categorises patterns into creational, be-
havioural, and structural, offering a structured approach to addressing DSL design issues.
The authors provide names, UML diagrams, classifications, and implementation guidelines
for each pattern, aiming to foster clarity and efficiency in DSL development. These are
the building blocks used to define DSL’s good practices and development guidelines. They
could be used directly for evaluating the extensibility of a language. Moreover, these pat-
terns are among the first ways to conceptualise proper DSL design and modern guidelines
have built upon this work.

The 2005 paper "When and How to Develop Domain-Specific Languages" [48] high-
lighted the nuanced needs of DSLs compared to general-purpose languages, underlining the
importance of executability and the specific domains in which DSLs are used. This paper
emphasises the complexity of DSL constructs and how they differ from general-purpose lan-
guages, reflecting an evolving understanding of the tailored nature of DSLs. The document
indicates a growing emphasis on the practicalities and specificities of DSLs, rather than
just their theoretical underpinnings. The authors define three types of patterns: decision,
analysis, and design patterns. Decision patterns are used to make key choices about the
DSL design and implementation, to evaluate the usefulness and put it against the upfront
development cost. Analysis patterns focus on understanding the problem domain of the
language, which is an essential part of DSL development. Finally, design patterns in DSL
development pertain to the actual construction of the language. This includes grammar
definition, parser development, compiler construction, etc. Among these patterns, the de-
sign patterns are the ones that have a use-case for this project, as the language already
exists and is to be evaluated. While they cannot be applied to language development, their
existence, or lack thereof, can be identified and discussed.

The "Dynamic Language Embedding With Homogeneous Tool Support" [58] paper’s
innovative approach to embedding DSLs within a host language through "Language Boxes"
serves as a practical embodiment of language extensibility principles. This technique
demonstrates a form of language extension where new functionalities are seamlessly in-

15

tegrated into the host language, resonating with the extensibility definitions and goals
highlighted by seminal works in the field. By enabling the embedding of DSLs without
altering the base language’s implementation, it aligns with the modern understanding of
language extension, focusing on enhancing language capabilities while ensuring compatibil-
ity with existing development tools. This method underscores the significance of extensible
language design, offering a direct application of theoretical extensibility concepts to ad-
dress the challenges of DSL integration in software development. While this thesis does
not aim to integrate DSLs into host languages, the paper [58] provides useful terminology
and insight into "sustainable" language extensions.

In 2014, "DSL Design Guidelines" [34] offered a more comprehensive and detailed set
of guidelines for DSL development, reflecting the accumulated experience and knowledge
in the field. The guidelines are categorised according to different aspects of language devel-
opment, including purpose, realisation, content, and syntax (both abstract and concrete).
This document represents a maturation of the field, providing a detailed road map for
DSL designers and indicating the importance of considering a wide range of factors in DSL
development. Similar to the design patterns from the paper "When and How to Develop
Domain-Specific Languages" [48], these guidelines cannot be applied directly, but their
presence, or lack thereof, in a DSL can act as a benchmark of the state of the language
and the quality of its design.

In more recent times, fewer and fewer design guidelines are being published [13]. How-
ever, there are efforts to continue moving SLE into a proper engineering discipline. R.
Gupta et al. published a paper "Towards a Systematic Engineering of Industrial Domain-
Specific Languages" [26] in 2021. The paper acknowledges the scarcity of systematic
methodologies in SLE and proposes a novel approach to graphical DSL development. Lever-
aging the power of reusability, DSL Building Blocks are used to support industrial language
engineers in developing better DSLs. While this is limited to graphical DSLs, it highlights
a consensus on the lack of objective and systematic methodologies in SLE.

A recent evolution in the discussion is presented in "Tara: Streamlining DSL Devel-
opment through Syntactic Patterns" [51] from 2023. This paper introduces a mother lan-
guage, Tara, designed to underpin DSLs, advocating for a unified approach that leverages
syntactic patterns across a wide range of domains. This represents a significant evolution
in DSL design thinking, aiming to simplify the development process and enhance consis-
tency among DSLs. The framework includes a comprehensive analytical structure and
compiler architecture, indicating a move towards more sophisticated, integrated systems
in DSL development. While this is not directly applicable to this project, it is an insight
into novel approaches to DSL design and shows that this field is still active.

All of these papers focus on DSL design and development. They show how academia
has been active over decades on this topic. Due to the existence of this literature, as well
as the meta-literature based on it, the research questions in this thesis can be answered
and substantiated.

16

Chapter 5

RQ1. Extensibility Factors of DSLs

The opening research question of the thesis — "What are factors that influence the exten-
sibility of a DSL? — paves the way for this research, by providing focus points for the latter
research questions. The aim is not exhaustively listing all such factors, but rather provide
research direction through discussion. Due to previously discussed (see Section 2.2) confu-
sion around the term "extensibility", the fact it is also called "modifiability" and is closely
linked to "maintainability", little literature exists around it, much less so in the context
of SLE. Therefore, this chapter explores this topic to identify extensibility factors and jus-
tify their importance. This exploratory research question aims to knit together academic
knowledge and contextualise this topic in a way conducive to answering the subsequent
research questions.

17

5.1 Methodology

Answering RQ1 requires consulting different pieces of literature, from various fields, to
find extensibility factors of software languages and software projects. The methodology
consisted of the following steps:

1. Literature Review:
A review of existing literature on DSLs was conducted. This leads to the finding of the
inconsistent definition of the term "extensibility" and broadens the search to include
the keywords "maintainability" and "modifiability. Consequently, the scarcity of
specific literature relating these terms to DSLs leads to borrowing knowledge from
the general field of SLE, and further SE.

2. Selection Criteria:
Papers were selected based on their relevance to the general topic of this thesis —
DSL extensibility. Standardisation documents and papers were consulted to define
the surrounding terminology. Only peer-reviewed articles were considered to ensure
the inclusion of high-quality research.

3. Data Extraction:
From the reviewed papers, relevant data was extracted, if it was found to impact
extensibility. This involved grouping similar ideas to form coherent themes, which
were then analysed to create a list of relevant factors.

4. Validation Through Expert Feedback:
The identified factors were discussed with experts in the SLE field, namely this thesis’
supervisors, as well as with the developers of the industrial DSL of this case study.
Through informal discussions, these factors were validated and properly formulated,
as their impact was contextualised.

The literature review includes consulting the SLE field, as well as SE for maintainability
standards and standardisation documents for the definitions of the terms "maintainability",
"extensibility", "modifiability", etc. As discussed in a later section, DSL development is a
branch of software engineering, thus best practices can be borrowed from the broader field.
The proximity of the term "extensibility" to "maintainability" and its close relationship
to "software evolution" in the context of software language engineering are leveraged to
broaden the inclusion of relevant literature. As an exploratory RQ, much reflection is
required to accompany potential identified factors.

5.2 Results

Extensibility [31], as defined in this thesis is equivalent to the modifiability aspect of
maintainability defined by the ISO [28]. Thus, maintainability standards can be applied to
achieve extensibility as well. Many quality attributes relate to maintainability — module
coupling, component independence, unit complexity, etc. More generally, this research
article about the impact of DSL tools on maintainability of language implementations [41]
explores this subject by applying the principle that language implementations are software
engineering projects and generalising dimensions of software system maintainability to DSL
projects: Volume, Structural complexity, and Duplication.

While these factors are undoubtedly important, in this case study, there is no frame
of reference to make use of them. Thus, delving into them is not fruitful for this research.

18

Nevertheless, this article shows that language implementations can be explored as software
engineering projects and that their maintainability has been studied.

The following are identified factors in DSL extensibility:

• Implementation Volume [41] — from software system maintainability

• Implementation Structural Complexity [41] — from software system maintainability

• Implementation Duplication [41] — from software system maintainability

• Documentation Quality [47] — from software system maintainability

• Regression Testing [23] — from software system maintainability

• Choice of Language Workbench [13] — specific to DSL development

• Language Grammar [12] — specific to textual DSL development

• DSL Usability [13] — specific to DSL development

The factors denoted with bold text are discussed in detail below.

5.2.1 DSL Construction as Software Engineering

The notion that constructing software languages is a form of software engineering is not
novel; P. Klint et al. popularised the term "grammarware" in 2005 to promote the engineer-
ing discipline of building grammar-involving software [40]. This notion has been adopted,
as in 2016 M. Voelter et al., in the paper "Automated testing of DSL implementations:
experiences from building mbeddr" [57] states that:

“In a sense, they [language workbenches] move language development from the
domain of computer science into the domain of software engineering.” [57]

By automating the parsing, editor environment creation, and other complex tasks,
DSL construction tools have solidified SLE as a form of software engineering. They have
made it possible for developers without expertise in SLE to develop languages actively.
Therefore, it is reasonable to expect that common best practices from SE will also apply
to DSL projects, including the industrial DSL from this case study. Since the terminology
is a bit inconsistent, literature regarding software extensibility is lacking. However, there
is a large degree of overlap between maintainability and extensibility, with extensibility
being a subset of what comprises maintainability. The aforementioned attributes such as
Volume, Structural Complexity and Duplication play a significant role, but they are not
useful in this case study. Ergo, the role of higher-level and more process-oriented practices
— documentation and continuous integration are discussed, as they are more abstract
and widely applicable than cyclomatic complexity. Namely, documentation quality and
continuous integration are discussed, in the context of their importance in extensibility.

Documentation Quality

Not without its criticisms [2] [47], documentation in software development is an industry-
wide adopted practice. Software becomes more usable and maintainable through different
types of documentation. There are multiple dimensions to documentation and each affects
extensibility in some manner.

19

• User Documentation:
User documentation targets DSL end-users providing comprehensive guidance on
effectively utilising the language. This can include tutorials, workshops, exercises,
and reference manuals to elucidate the syntax, semantics, and usage conventions of
the language. This can greatly boost its learnability and the consistency of APS
specifications across different end-users.

• Developer Documentation:
There is plenty of discussion to be had about the value of developer documentation in
general. Arguments can be made that in practice, it can clutter the code readability,
it fails to stay up to date with changes and does not justify its cost in development
and review times. However, this is outside the scope of this thesis. As the project in
this case study is developed with the Xtend [14] framework, it supports Javadoc —
a widely-used code documentation generator which enables the generation of HTML
pages with code documentation. It has been regarded as highly beneficial, especially
in the context of public APIs [47]. If used in a project, it should be used consistently,
conforming to a project-wide standard and included wherever applicable. The quality
of developer documentation can affect how engineers interact with portions of the
code base that are new to them. Moreover, it can make it easier for novice developers
to use a new code base. The trade-off is that it increases development time, but it
has an overall positive effect on extensibility

• Tooling Documentation:
Tooling documentation focuses on the tools and utilities associated with the DSL.
Namely, the language plugin for development with the DSL is essential, as its envi-
ronment may require external knowledge to be utilised effectively. Similarly to user
documentation, tooling documentation enables higher learnability of the end prod-
uct and can — if up to date — assist end users with adopting new features, thereby
positively affecting extensibility.

High-quality documentation on all levels will lead to a language that is easier to adopt,
use and develop, improving the experience of both end-users and developers. Documenta-
tion extensions need to accompany all language implementation extensions correspondingly.

Continuous Integration

Continuous Integration (CI) and regression testing are established practices in modern
software development, known for enhancing the extensibility and maintainability of soft-
ware projects [23]. They are popular in the industry with over 93% of large enterprises
involved in some form of DevOps [60]. By automating build processes, detecting regres-
sions early, and ensuring code stability, CI and regression testing contribute significantly
to the scalability and agility of software systems. Furthermore, iterative development itself
is recognised as an important practice within the DSL construction community [13].

In SLE, reliability and regression monitoring are especially important. Existing ver-
sions of the language in production have instances written for them, and developers need
assurance that updates do not cause regression. Employing CI tools such as Jenkins [35],
as done in the development of APS, provides developers with confidence about the reliabil-
ity of their projects. This means that extending the language requires less manual effort.
This heavily impacts extensibility and should receive plenty of attention in SLE projects.

20

Co-evolution of DSL and its environment

Software co-evolution or coupled evolution refers to the phenomenon of two software arte-
facts needing to accommodate each other’s changes when they have a dependency. Vertical
DSLs are often situated within a larger system and are only responsible for a portion of
its functionality, as is the case with APS. This creates a co-evolution pretext for the DSL
and the wider system it inhabits, impacting the extensibility of the language. There may
be vulnerable parts in the generated code, which depend on outside calls. Changes to the
outer code might have a significant impact on the generator.

Conversely, it is relatively easy not to adjust parts of the generator which have depen-
dencies of their own, but it is also a consideration that needs to be consistently accounted
for. These types of considerations are common in software engineering and are just as
important (if not more) in the context of DSL engineering. The impact of changes in the
code generator on the interfaces enabling the generated code to interact with the entire
system is vast. An analysis of this impact has to be performed and it needs to be regularly
considered, whenever changes are made. A DSL should have as little dependencies on
components likely to change as possible.

5.2.2 Language Workbenches (LWs)

Language workbenches are tools meant for DSL development. They are defined in detail
in the Glossary and as previously discussed, their existence moves DSL construction into
an engineering discipline [57]. Such a tool was indeed used in the development of APS.
The LW employed is Xtext [19], which was recognised as a very mature tool by A. Iung et
al. in this systematic mapping study of LWs [30]. It has existed since 2006 and has been
popular in the field for almost 2 decades.

Figure 5.1: Daily Google searches of the term ‘Xtext’ 2006-2024, worldwide
(Sourced from Google Trends)

21

Figure 5.2: Yearly citations of "Xtext: implement your language faster than the
quick and dirty way" [19] in April 2024

(Sourced from Google Scholar)

Impact of Xtext

Choosing a particular language workbench can affect a language over its lifetime. Firstly,
different tools have varying functionality and support, as seen in the study by A. Iung
et al. [30], which can make certain tools incompatible with the goals of a project, e.g.,
tools for graphical notation cannot be used for textual DSLs. Another consideration is the
evolution of the language and whether or not the tool will be suitable for future extensions.
Modularity and reusability are the focus of all LWs. Nonetheless, some lack certain out-
of-the-box functionality, which may arise as a requirement as the language evolves. Thus,
great care should be put into choosing the correct language construction tool, as recognised
in the systematic mapping study by G. Czech et al. on the best practices in domain-specific
modelling [13].

Xtext supports 32 of the 34 features defined for language workbenches [30]. It is based
on the Eclipse Modelling Framework [63], has a non-commercial license, and has received
significant attention in the field, both by researchers and industry [30]. However, the DSL
scene is evolving and potentially shifting away from Xtext. The overall interest in the
framework is dwindling as seen in Figure 5.1. Note that this does not necessarily represent
a relevant decline, as Xtext continues to receive academic interest (Figure 5.2). Still, the
development team of Xtext itself has recognised this as an existential threat to the frame-
work and created a call to action [1] on Xtext’s GitHub development repository. Relying
on open-source software always carries an underlying risk of the project losing steam and
going out of support. This can have serious consequences, as updating the underlying
development environment becomes more costly and these updates can be critically impor-
tant. Moreover, there is an LW lock-in, due to the lack of an established way to transform
meta-metamodels [30]. There has been some research in model interoperability [37] in the
form of M3 bridges. M3 refers to the "meta-meta" level of modelling and proposes a sys-
tematic way to migrate from one meta-modelling tool to another. This is however largely
incomplete, as it is not automated and still requires expertise and resources to perform,
making it economically challenging in an industrial context.

Notwithstanding the current development state of Xtext itself, this section explores its
impact on the development and state of APS. The tool provides the DSL with a reasonably
user-friendly interface for defining APS files. This is done largely via the Xtext-enforced
BNF [42]-derivative grammar, modified to capture semantics and through the interfaces
generated by Xtext for defining language server [49] features. It also comes in a package
with the Xtend [14] framework — a dialect of Java, itself developed with Xtext, specially
tailored for code generation, employing template expressions to support templated code
generation [22]. Xtext and Xtend are considered parts of a whole package, which together
make up the LW and referrals to "Xtext" in this thesis are used to refer to the entire
package. Using Xtext forces developers into patterns and provides a structured way to
approach the task of parsing and code generation. This results in structured and main-

22

tainable code, a strong positive effect of having employed the LW (refer to Section 7.2, to
see how many patterns Xtext has contributed to).

Furthermore, the tool support Xtext provides out-of-the-box such as syntax highlight-
ing, code folding and auto-completion have a direct positive impact on the usability of
the language. These features are readily available to use inside of the Eclipse IDE, the
Xtext environment. Still, they are compatible with other code editors because they are
implemented largely through the Language Server Protocol (LSP) [49], which means that
the tool support can be extended to other code editors that support LSP with relative
ease.

Finally, engineers who have worked on APS have identified Xtext and Xtend as useful
(see Chapter 6), specifically on account of reducing the necessary effort to achieve the
necessary goals. The language developers expressed gladness that it was not necessary
to build the language from scratch, as that would require a lot of extra work. Even if
this benefit is only perceived, that is still a substantial benefit, as the perception of the
development cost of DSLs remains a major hurdle in their adoption in the industry [66].
Furthermore, most of the engineers working on APS do not have any background in SLE —
further solidifying the concept that LWs have shifted language construction to the domain
of SE.

Co-evolution of DSL and its LW

As previously mentioned, co-evolution is observed when two pieces of software have a
dependency, causing a requirement for change in one, when the other undergoes evolution.
In this context, a DSL and a LW need to co-evolve as the DSL exists within the environment
of the LW. As previously discussed, using a particular LW often means locking the language
into its environment, meaning co-evolution is particularly relevant for the maintainability
of a specific language.

Moreover, DSLs — especially vertical, embedded ones like APS — rarely exist in a
vacuum. They play a role in a broader system, which is itself a software artefact that
undergoes evolution. The DSL has an impact on the system it is a part of and vice versa.
This is an area that has already received some attention in the recent 2023 paper "Evalu-
ating Tool Support for Co-Evolution of Modeling Languages, Tools and Models" [65]. It
presents a framework for evaluating an LW’s capabilities for the co-evolution of graphi-
cal modelling languages. This shows that not only do LW have an impact, but also that
different ones have varying effects.

5.2.3 Software Language Grammars

A final aspect to naturally touch on when discussing the ability to extend a textual language
is its grammar. Textual languages, such as APS, generally have a grammar defined to
describe their syntax. Introducing new syntax, therefore, requires modifying the grammar
of the language to incorporate it. Depending on the extension, this can lead to grammar
ambiguities — cases where the parser has more than one option to parse a given text. This
can lead to unpredictable and unwanted behaviour and slow down development.

To address this, academia has proposed numerous extensible, composable, modular,
and modifiable grammars [12] [20] [32] [67]. This is a testament to the importance of
grammars in language extensibility. Another way to handle this ambiguity is to do away
with the grammar altogether — as is done in the language workbench MPS [11], which
uses a so-called Projectional Editor, instead of a formal grammar. This allows for adding
new syntax without the risk of introducing ambiguities. Still, Xtext uses a classic BNF-

23

style grammar and this grammar has an impact on the language. Migrating away from
it is economically unfeasible, thus considerations have to be made regarding the grammar
whenever syntax extensions are made. Grammar ambiguities need to be considered and
prevented during the planning phases of extension development. This is something that
the extension guidelines in RQ4 need to consider.

5.2.4 DSL Usability

Usability, as defined by the International Organisation for Standardisation (ISO) [29], is
the "extent to which a system, product or service can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context of use".
The usability of DSLs is paramount for their successful adoption [13] [55]. Thus, it has to
be a key factor to consider when trying to extend a language, as extensions tend to impact
usability.

This systematic literature review by Ankica Barisic et al. from 2015 [7] has highlighted
the importance of evaluating the usability of DSLs, suggesting that a systematic approach
must be developed and employed. The SLR emphasises the importance of involving end-
users in evaluating DSLs for usability and quality in use. However, it notes a general
lack of systematic approaches, guidelines, and comprehensive tool sets for DSL evaluation,
indicating a gap in the current (at the time of the paper’s writing) practice. It is important
to note that this review only focused on visual domain-specific languages, however, there
is no reason to believe that graphical DSLs differ in the importance of usability.

As a first step in addressing this gap of usability evaluation of DSLs the Usa-DSL
framework [54] was created. It comprises four phases: Planning, Execution, Analysis, and
Results (PEAR). Each phase consists of specific steps, such as defining evaluator profiles,
ethical and legal responsibilities, data types, empirical study methods, and evaluation met-
rics. In summary, the Usa-DSL framework marks a beginning in the systematic evaluation
of DSLs, integrating diverse methodologies and insights from previous studies.

Usability plays a pivotal role in the maintainability of a DSL [4], especially the adopt-
ability. End-user demands can dictate extensions to the language and if usability is not
considered throughout the development cycle, it can increase the amount of work required
for extending the language. This is why usability in DSLs is still a trending topic in
academia [53].

Like other aspects discussed in this chapter, this is deeply relevant to vertical DSLs,
especially if the end users are not software developers. The usability of a DSL artefact
includes the ease with which it can be understood, edited and interacted with. To achieve
its goal, a DSL needs to have a tangible productivity boost and usability is how this can
be achieved. Ergo, these considerations need to be made a part of the development cycle
and make their way into DSL extension guidelines.

5.3 Discussion

This chapter has highlighted areas important in DSL construction regarding extensibility.
Some factors are derived from the general maintainability standards for software engineer-
ing. Others are unique to DSL development. Some of the factors were discussed more
in-depth, due to their relevance to the case study in this thesis. The subsequent research
questions make use of these insights, by focusing on the effects of the discussed factors.
Evolution in DSLs is very common in practice with 86% of surveyed DSL practitioners
reporting at least one case of evolution in a recent survey of established DSL practices [8].

24

There is, however, a noteworthy sparseness of literature on this topic. A systematic
mapping study on the subject of DSL evolution in 2017 [64] found only 34 papers relating
to DSL evolution. Furthermore, it found a low amount of cross-citations within those
34 papers. This can be speculatively attributed to the inconsistency of the language
used in the field. The evolution of the language, e.g., the repeated extensions to the
language, is enabled by a maintainable language implementation. This can be viewed as
the extensibility of the language under the classical definition of the term in the context
of software engineering [31]. However, in the DSL domain, extensibility carries often a
different meaning, relating to languages with a focus on the user’s ability to extend the
language. Moreover, the confusion around DSL and DSML further causes difficulty in
finding relevant papers [43]. The SMS on DSL evolution concludes that general software
evolution practices may be worth examining in the context of DSL, corroborating the
discussion on SLE as SE.

Language workbenches successfully achieve their task of making DSL development eas-
ier and the resulting language implementations more maintainable [41]. It has been shown
to successfully aid the transition of SLE into a proper engineering discipline and they’ve
enabled language development to become a branch of the broader field of software engi-
neering. This means that LWs have had a profound impact on DSLs and their extensibility.
Both directly, as they make languages a subject for co-evolution and indirectly, by enabling
language development in an industrial context. This motivates the subsequent research to
assess the impact Xtext has had on APS, to help validate the identified research.

The identified extensibility factors mark a new development in the field, as they are the
first (to the knowledge of the author) such collection to date. Furthermore, in the context
of this thesis, they enable a more comprehensive approach to answering the subsequent
RQs. Firstly, the questions for the interview performed for RQ2 (see B.2) to obtain the
developers’ perspectives on these topics were influenced by these factors. Secondly, guide-
lines identified in RQ3.1, consider these factors and their impact on relevancy. Lastly, the
extension guidelines — the culmination of this thesis — take these factors into account, to
ensure that extensions do not negatively impact them.

25

Chapter 6

RQ2. Current Challenges in

Extending APS

In this chapter, the second research question will be addressed — "What are the current
challenges in extending APS?". That includes the methodology undertaken, as well as the
obtained results and their relation to the rest of this research. The results are described
in detail, in this chapter, while a summary can be found in Appendix B.1. These results
guide the succeeding questions by providing a research focus.

26

6.1 Methodology

The APS developers were directly queried to understand the challenges in the iterative
development of the DSL. Seven domain expert interviews were performed, as a reliable way
of obtaining relevant information, especially in this context, where the research question
pertains, at least partially, to the subjective experience of the developers. To ensure the
respect, privacy and safety of all participants in the research, before each interview, the
interviewee was informed about the purposes of the interview, the way their data will be
handled and their consent was obtained formally via the ethics-board-approved consent
brochure, attached in Appendix B.1. An ethics proposal for conducting the interviews was
submitted to the University of Twente’s Ethics Board and received approval thereafter.
The interview was conducted under a semi-structured format and the questions asked can
be found in Appendix B.2. These questions have been chosen specifically to fit the scope
of this research, and thus have not been borrowed from other papers. They focus on
answering RQ2 by understanding where the main development effort is spent, what the
priorities are and what issues have occurred hitherto. However, several questions also serve
to simply contextualise the project and assist the other research questions — by querying
about the impact of the meta tooling employed, as well as the impact of regression testing
— a common software engineering practice. They have been added, due to them being
identified as important factors in extensibility in RQ1.

6.2 Results

6.2.1 The Challenges in the Development of APS

A table with the aggregation of interview answers can be found in Appendix B.3. After
conducting seven interviews with the developers important insights were obtained into the
challenges associated with the DSL development, as well as into the positive elements of
their development process. Since APS is a relatively large and mature project, having
undergone five years of iterative development, the complexity of the project is high and
thus the answers were varied. Nonetheless, there was a level of internal consistency, which
is a sign of the alignment of the goals of all the interviewed developers.

Four out of seven interviewees expressed that they spend more time reading specifi-
cations than writing them, with two spending more time writing and one seeing them as
equally time-consuming. Nevertheless, each participant claimed to value readability in the
language highly.

Furthermore, while the front end and back end both receive attention during extensions,
the main development efforts, everyone agrees, are spent on the back end. Another area
in which all developers arrived at the same answers was the focus on extensions — always
feature-driven. The main focus of additions to the language is to include new functionality,
introducing keywords and adding use cases. An emphasis is placed on value for money,
meaning that each extension must justify the development efforts with productivity boosts.
This means that to undertake an extension, the extension has to be seen as value-adding
from an economic standpoint

The APS developers also all agreed on the usefulness of regression testing and con-
tinuous integration, reinforcing that classic software engineering best practices are also
applicable to modern software language engineering projects. The frameworks used in
the project, Xtext and Xtend, received significant praise from each of the interviewees.
The economic viability of the project without such a tool was rated dubious at best and
completely infeasible at worst.

27

The last unanimous consensus amongst the developers was the lack of a formal feedback
loop mechanism. Everyone recognised defining a formal process for obtaining, processing
and integrating user feedback into the development cycle is imperative. This is a high
priority, as it should exist before the language roll-out to external users.

There were, however, some discrepancies in the answers. There were no contradictions
per se, but rather different perspectives on some topics, stemming from the different roles
and responsibilities of the interviewees. On the topic of usability, everyone considered it
a consideration in the development cycle, with three people expressing it as an "indirect"
consideration. Nevertheless, every respondent had a different interpretation of how these
considerations of usability manifested in the development of the language. Notwithstanding
the differences in the answers, all participants mentioned that great care is put into choosing
keywords. The domain space of the end-users is considered and great attention is put into
avoiding using overly specific constructs, which does indeed display a concern for usability.
Regardless, there were no mentions of systematic measurements of the usability of the
language and all considerations made concerning usability are intuition-based.

Interviewees were also not unanimous in their views of failed past extensions. This is
again attributed to their difference in experience and roles. Two developers believed that
due to the strong software impact analysis performed prior to development, extensions
never "miss the mark". However, more veteran developers had examples of needing to
remove keywords, change where they are placed within the language, and shift from implicit
behaviours to explicit specifications. Structural challenges arise in the development process,
often due to a lack of specific knowledge. An example named by three interviewees was
the introduction of legacy support. Due to the criticality of the project’s reliability and
backward/forward compatibility between the different versions of the language and the
different machines, a lot of legacy considerations need to be made.

As a consequence of the project’s size and the domain’s particular nature, challenges
were also named by two developers regarding maintaining consistency across the language
with the numerous extensions, which are sometimes developed in parallel. This is also
manifested in extensions which are developed from the engineer’s perspective with highly
specialised knowledge of the back end and the underlying processes. These concerns relate
to the language’s usability and learnability and thus should be addressed systematically.

Overall, the interviews gave an insight into the specific challenges encountered as well
as the inner workings of the company structure and how it contributes to the development
process. The insights highlight both the positive current practices that must be maintained
as well as the potential pitfalls and missing elements.

6.3 Discussion

The results show that the development effort is focused on the back end. That is both
a testament to Xtext’s efficiency in the definition of a front end, as well as to the design
of the front end, which enables them to insert keywords and constructs easily whenever
necessary. This indicates that the extensibility of the grammar, e.g. the front end, is in a
good state and that extension guidelines should aim to maintain the current structure of
the front end and improve the back end’s modifiability.

Furthermore, it becomes clear, both from past and future extension focus, that new
functionality is the top priority. Value-for-money is a unique consideration to make, only
relevant in the industrial context. It shows that there is a particular economic challenge
in the development of the language — chosen extensions must be directly economically
viable and justifiable before implementation. This means that in the industry, extension

28

guidelines cannot merely focus on some internal measurement of quality; extensions also
need to be "useful" from a corporate standpoint.

The different answers on the topic of usability can be attributed to the broad definition
of usability and people’s interpretation of it. However, people with more managerial roles
tend to believe an emphasis is placed on usability, whereas people with more hands-on
development experience seem to believe it is indirect. This is a common separator of
opinions in this study and it exemplifies that the proper processes are followed and people
perform their respective roles. This is further reinforced when you look at the difference in
answers concerning the prominence of technical and structural challenges. This is another
example of the structure within the development group working as intended, with people
having different focuses and views on the overall development.

The interviews showed that, while a consideration, usability is not measured system-
atically. This is not necessarily an incorrect approach, but it does indicate that developer
bias can negatively impact usability. This was also recognised by several of the intervie-
wees. Thus, maintaining objectivity in this context is also challenging in the development
process.

As for the named challenges — legacy features seemed particularly trouble-inducing,
due to a common challenge surrounding legacy — a lack of understanding of the cur-
rent employees. This further reinforces that modern compilers can be treated as software
projects when discussing maintainability.

Overall, these interviews have shed light on the practical challenges encountered in the
development of a DSL in the industry. Moreover, they have also highlighted the aspects of
the projects that are going smoothly and should be maintained. They have reinforced key
points in this research, such as highlighting the importance of language workbenches and
also indicating that DSL construction projects benefit from classic software engineering
best practices, such as regression testing and continuous integration. As pointed out by
the developers themselves, their bias with respect to usability needs to be addressed by
relying on objective measurements of these qualities.

Although this research question focuses on the challenges, some positive practices were
observed from the interviewees’ answers. The good practices indicate that general soft-
ware evolution techniques successfully apply to DSL development as well. This answers a
question proposed by an SMS on DSL evolution [64]. These practices were identified as
beneficial to the development of the DSL and should be preserved:

• The proper distribution of different responsibilities amongst the different roles of the
developers

• The usage of a meta-modelling tool, namely Xtext

– This has partly contributed to the good, easily extendable Xtext grammar

• The emphasis placed on the readability of the specifications

• The rigorous impact analysis performed before the implementation of extensions

• The beneficial regression test suite

As for the challenges in the development of APS, these were identified from the inter-
views:

• Implementation-related challenges:

– Implementing legacy extensions

29

– Performing restructurings of the language

• Usability-related challenges:

– Maintaining objectivity when evaluating usability as developers

– Preserving internal language consistency across numerous extensions and use
cases

– Ensuring decoupling between the specialised knowledge of the language devel-
opers and the language constructs themselves

∗ Choosing the correct keywords with considerations for the domain of the
end-users

• General challenges:

– Ensuring extensions are future-proof

– The lack of a formal mechanism for obtaining, analysing, and integrating feed-
back into the development process

– Ensuring the economic viability of an extension

Answering the second research question of this thesis is important because it positions
the researcher to procure relevant guidelines for the DSL. Thus, the following work in this
thesis focuses on these challenges. This increases both the internal and the external validity
of the thesis. The internal validity — via ensuring that the guidelines in the answer to
the final research question apply to the language. And the external — by indicating the
circumstances under which the guidelines are pertinent. They may be less relevant to the
extension of a DSL with different obstacles in its development.

30

Chapter 7

RQ3. Extraction and Application of

Modern DSL Design Guidelines from

Academia

This chapter delves into the best practices as recognised by academia in DSL development
and aims to translate theoretical DSL design insights into a tailored set of guidelines for
APS. The goal is to answer RQ3 "How can existing language design and extensibility
guidelines be used to effectively evaluate the state of a DSL?" This is done by extracting a
set of relevant design guidelines, extensibility standards, and evaluation methods from the
literature and scrutinising APS against them. There is a significant amount of literature
on the topic, as explored in Chapter 4, however, a lot of it may not be relevant to a given
DSL.

31

7.1 Methodology

Due to the wide scope of this research question, it was split up into four sub-questions. The
first three sub-questions are explanatory research questions, as they entail a literature
review to synthesise a summary of the existing body of knowledge. The final sub-question
is exploratory and it involves using the answers from the other ones to propose a novel,
curated method of DSL evaluation.

RQ3.1: Are there established, systematic ways to evaluate a DSL holis-
tically?

Despite being a yes-or-no question, this research sub-question prompts a non-trivial probe
into the academic literature. This topic, the evaluation of DSLs, has been touched upon
in the Related Literature Chapter 4. The term "holistically" in the question refers to a
complete evaluation of all the language’s attributes, not just aspects of it. As mentioned
before, usability evaluation within the DSL community is a trending topic [53] as of 2021,
but that is not a holistic approach to DSL assessment. It has also been discussed in
Chapter 4 that software language engineers did not report evaluations of their languages
as of 2011 [25]. Moreover, while ad-hoc evaluations have reported productivity boosts, there
is still no external validity to such claims, due to the lack of systematic measurements [6].
Yet still, an SMS of DSLs in 2016 [43] cites a “clear lack of evaluation research” in the
DSL field. There is a lack of more modern meta-literature on the topic to lean on, thus
an exhaustive analysis has to be performed to answer RQ3.1. The following query was
executed in the Google Scholar search engine:

allintitle: (evaluation OR assessment) "domain-specific language" OR "domain-
specific languages" -usability

It specifically seeks these terms in the paper’s title, as otherwise, too many false posi-
tive results are returned, because "assessment" and "evaluation" are ubiquitous words in
literature. There is a need to limit the results so that they can feasibly be exhaustively
analysed. Furthermore, "usability" was excluded from search results to find holistic eval-
uation frameworks. Lastly, the time frame of the query was set to be the last decade, to
obtain modern, relevant results. With all these constraints, the query returns 24 results
(as of early 2024). After removing duplicates, the number becomes 15. Of these, five are
false positives not concerned with DSL evaluation, but rather employ DSLs to evaluate
something else. The remaining 10 contain six case studies, which do not report a method
for general DSL evaluation, and hence are excluded. The last four are discussed in the
results section of this chapter.

RQ3.2: What are the existing domain-specific language design guidelines?

Although DSL design has been categorised as an art, rather than a science in the past [50],
there have been strides towards moving the field into an engineering discipline [39] [40].
Systematic methods need to be defined to shift from the domain of art to science, therefore
plenty of objective guidelines have been devised for domain-specific language design in the
past 30 years. To identify them, the following search query was employed in the Google
Scholar search engine:

("domain-specific" OR "domain specific" OR "DSL" OR "DSLs") AND ("lan-
guage" OR "languages" OR "modelling") AND ("design patterns" OR "best
practices" OR "guidelines")

32

The query was further tightened to only retrieve papers from the year 2000 to the present
day (early 2024). With this constraint, the query yielded 18,200 results. A large portion
of the surveyed ones were irrelevant, but performing an exhaustive, systematic literature
review on this scale is outside of the scope of this thesis. From the first 20 matches,
the papers with a direct focus (expressed in the title or abstract) on design guidelines,
patterns or best practices were selected [24] [34] [36] [48] [61] [68]. Given their volume,
they provide a sufficient library of best practices to choose from for this sub-question.
While search engines are imperfect and miss relevant papers, the results were enriched via
"snowballing" — selecting relevant papers and then, for each one:

• Scanning the references bibliography

• Scanning papers which have used it as a reference

This is the methodology employed in discovering the existing DSL design guidelines.

RQ3.3: What are the existing software language extensibility guidelines?

The answer to the antecedent sub-question alludes to some sort of extensibility considera-
tions in academia (‘Design for language evolution’ [13]); regardless, none of the guidelines
instructs how to achieve this evolution-enabling design. Therefore, the literature has been
probed to look for an answer. The following search query was employed in the Google
Scholar search engine, the results of which are discussed in the dedicated section:

("domain-specific" OR "software" OR "domain specific" OR "DSL" OR "DSLs")
AND ("language" OR "languages" OR "modelling") AND ("extensibility stan-
dards" OR "extensibility guidelines" OR "evolution guidelines" OR "extensibility-
centered design" OR "evolution-centered design")

RQ3.4: How can the answers of RQ3.1, RQ3.2, and RQ3.3 be leveraged
to evaluate the state of a DSL?

Using the results from the previous sub-questions, RQ3.4 is answered empirically, by eval-
uating the industrial DSL from this case study. This evaluation involves careful examina-
tion of the language implementation, leaning on discussions with the developers themselves.
The evaluation is systematic and objective and serves as an answer for the overarching RQ3
— "How can existing language design and extensibility guidelines be used to effectively
evaluate the state of a DSL?"

7.2 Results

RQ3.1: Are there established, systematic ways to evaluate a DSL holis-
tically?

The four papers identified to potentially answer the RQ are the following:

• Domain-specific language domain analysis and evaluation: a systematic literature
review [7] — previously explored in the Related Literature Chapter 4, considers only
visual DSLs and does not propose a systematic way of DSL evaluation

• A framework for qualitative assessment of domain-specific languages [33] — a viable
candidate for a systematic framework for DSL evaluation, which will be discussed
in-depth below.

33

• AgentDSM-Eval: A framework for the evaluation of domain-specific modeling lan-
guages for multi-agent systems [3] — focuses on a narrow scope and thus does not
apply to this research sub-question.

• Heuristic evaluation checklist for domain-specific languages [59] — concerns usability
evaluation only, despite not being mentioned in the title, therefore it is also not
applicable

From the above findings, a single paper was found to satisfy the requirements for
a holistic evaluation method — the framework for qualitative assessment of DSLs [33]
(FQAD). The framework describes the quality characteristics of a DSL, with accompanying
sub-characteristics that should each be evaluated to obtain a comprehensive evaluation.
The paper instructs the evaluator to prioritise the quality characteristics most important
to them if they need to narrow the scope. However, the paper provides no information
on how the evaluation should be performed and is ultimately left to the performer. The
authors acknowledge a valid criticism of the framework — that it constitutes late feedback.
As discovered in RQ2, economic viability is a consideration, especially for industrial DSLs.
From this perspective, investing in ways to guide a software language engineer in the
decision-making process pre-development is far more sensible. This is also reflected in the
large volume of guidelines identified in academia, which specifically address the need for
careful analysis and decision-making prior to implementation, as opposed to the scarce
literature on DSL evaluation.

In conclusion, while the FQAD paper makes a significant step in the right direction by
defining the relevant quality attributes for a DSL, the answer to the sub-question is no.
At least for inexperienced evaluators, as FQAD leans on the experience of the evaluator to
have them make the decision. None of the papers identified describe a systematic, objective
way of evaluating a domain-specific language. This suggests that finding and using the
state-of-the-art DSL guidelines for a language evaluation is a valid approach, due to the
lack of other established, objective assessment methods.

RQ3.2: What are the existing domain-specific language design guidelines?

Via the employed methodology, a particularly relevant study on the best practices in
domain-specific modelling [13] was found. It is a systematic mapping study carried out on
this precise topic in 2020. This is ideal for this sub-question because it already includes all
the hitherto identified papers, out of a total of 143 studies. This SMS itself answers this
sub-question by providing the 10 most cited guidelines, which is a great starting point for
a list of guidelines. Some literature has come out since on the matter (i.e., [27] [69]), but
none that pushes forward novel design guidelines. Consequently, this sub-question leans
heavily on this SMS, which notes that the majority (70%) of guidelines were defined before
2011, exemplifying a slowdown in the field. It compiles a list of the ten most cited good
practices for DSL development. These are the consensus in the field of DSL construction, so
adherence to them indicates a language’s quality. Some best practices listed are generic and
inapplicable post or during development. This reflects the overall state of the literature,
where a significant portion of the guidelines are general considerations to make before
development, rather than practical advice. This is expected — after all, they are written
for prospective DSL engineers and are not intended as an evaluation benchmark.

Ultimately, this sub-question aims to condense a list of the most relevant DSL guide-
lines. While the ten found in the SMS are a good starting point, they can be expanded,
especially with more specific development patterns, to ensure that the final list of guide-
lines is relevant in an industrial context. There is a considerable amount of papers with

34

a set of guidelines which were reviewed [22] [24] [34] [36] [48] [61] [68] [70], which have
considerable overlap and were already included in the SMS. To supplement the first ten
most-cited guidelines practical patterns need to be added. Martin Fowler’s pivotal work
on DSLs [22] has been chosen for its uniquely specific implementation patterns. None of
them are in the most cited ten best DSL practices, reinforcing their uniqueness. Checking
if a DSL employs these patterns is insightful as some are mutually exclusive, such as model
aware and model ignorant code generation. Thus no DSL exists that does not employ any
of them. The book includes 46 DSL patterns, which provide more practical insight into
how DSLs should be developed. 15 of them are meant for internal DSLs and consequently
are excluded. Seven are also concerned with the parser and lexer development, thus are
likewise omitted, as APS is developed with the Xtext [19] tool.

Lastly, a set of applicable and specific best practices was included, emanating from
the paper by G. Karsai et al. on design guidelines for DSLs [34]. It is chosen over others
because its guidelines are exhaustive, it directly cites other high-quality papers from the
list and provides examples of where and how these guidelines can be applied. Moreover,
unlike others on the list [68] [70], it is not based solely on the author’s experience, so it
complements the patterns of Fowler nicely, ensuring the final list is representative of the
DSL community, rather than a couple of persons. Five out of the ten most cited practices
appear in the 26 provided by this paper.

The guidelines are compiled from the top ten most cited best practices from the SMS
by G. Czech et al. [13], Martin Fowler’s "Domain-Specific Languages" [22], and the design
guidelines from G. Karsai et al. [13] The following are omitted, grouped by the reason for
omission, along with the list they are from:

• Omitted, due to targeting internal DSLs:
→ From Martin Fowler’s [22] patterns:

– Expression Builder, Function Sequence, Nested Function, Method Chaining,
Object Scoping, Closure, Nested Closure, Literal List, Literal Map, Dynamic
Reception, Annotation, Class Symbol Table, Parse Tree Manipulation, Textual
Polishing, Literal Extension

• Omitted, due to targeting parsing/lexing techniques, which are handled by Xtext:
→ From Martin Fowler’s [22] patterns:

– Recursive Descent Parser, Parser Combinator, Delimiter-Directed Translation,
Syntax-Directed Translation, Embedded Interpretation, Alternative Tokenisa-
tion, Context Variable, Symbol Table, Nested Operator Expression

• Omitted, due to referring to the planning phase of DSL development:
→ From G. Karsai et al.’s design guidelines [34]:

– Identify Language Uses Early, Ask Questions, Make your language consistent,
Decide carefully whether to use graphical or textual realisation, Compose exist-
ing languages where possible, Reuse existing language definitions, Reuse existing
type systems

→ From the SMS by G. Czech et al. [13]:

– Carefully choose the form of notation

• Omitted, due to APS developers’ choice regarding relevancy:
→ From the SMS on the best practices in domain-specific modelling [13]:

35

– Reuse language definitions, Balance genericity and specialisation, Design must
have a purpose

→ From Martin Fowler’s [22] patterns:

– Decision Table, State Machine, Production Rule System, Macro

→ From G. Karsai et al.’s design guidelines [34]:

– Keep it simple, Use syntactic sugar appropriately, Use descriptive notations

This results in the following answer to RQ3.2 — design guidelines, curated for APS,
grouped into:

• Language Layout — Guidelines concerned with the vocabulary, syntax and layout of
the DSL instances

1. Adopt existing domain notations [13] [34]

2. Foreign Code [22] — Embed some foreign code into an external DSL to provide
more elaborate behaviour than can be specified in the DSL

3. Syntactic Indentation [22] — Recognising the level of indentation as a part of
the syntax

4. Adaptive Model [22] — Arrange blocks of code in a way that captures data
structure to implement an alternative (non-imperative) computational model

5. Introduce interfaces [34]

6. Prefer layout which does not affect translation from concrete to abstract syn-
tax [34]

7. Align abstract and concrete syntax [34]

• Development Process — Meta guidelines which direct how the development should
be carried out

8. Importance of meta-tooling [13]

9. Iterative development [13]

10. Domain engineering team [13]

• Design — Guidelines regarding the design of the Language itself from a high level

11. Design for language evolution [13]

12. Use the same style everywhere [34]

13. Identify usage conventions [34]

14. Balance compactness and comprehensibility [34]

15. Provide organisational structures for models [34]

16. Avoid conceptual redundancy [34]

17. Avoid inefficient language elements [34]

18. Enable modularity [34]

• Back end — Guidelines centred around code generation

36

19. Transformer Generation [22] — Generate code by writing a transformer that
navigates the input model and produces output

20. Templated Generation [22] — Generate output by handwriting an output file
and placing template callouts to generate variable portions

21. Embedment Helper [22] — minimise embedded code in templating systems by
providing the necessary functionality as helper functions, which are invoked in
the templates

22. Model-Aware Generation [22] — Generate code with an explicit simulacrum
of the semantic model of the DSL, meaning that in the target environment,
scaffolding exists to support the generation of more understandable code

23. Model Ignorant Generation [22] — Hardcode all logic into the generated code
so that there is an explicit representation of the Semantic Model

24. Generation Gap [22] — Separate generated code from non-generated code by
inheritance

• Front end — Guidelines for the translation of DSL instances into abstract syntax
trees

25. BNF [22] — Formally define the grammar of your language in Backus-Naur
Form

26. Parser Generator [22] — Build a parser driven by a grammar file

27. Tree Construction [22] — The parser creates and returns a syntax tree repre-
sentation of the source text that is manipulated later by tree-walking code

28. Notification [22] — Collects errors and other messages to report back to the
caller

• User-centric — Guidelines that primarily aim to enhance the end-user experience of
the DSL

29. Importance of DSL tooling [13]

30. Limit the number of language elements [34]

31. Make elements distinguishable [34]

32. Permit comments [34]

RQ3.3: What are the existing software language extensibility guidelines?

The search employed regrettably only returns 125 results, none of which are relevant,
notwithstanding efforts to expand the breadth of the query by including plenty of logical
disjunctions, including the general term "software" to find literature about "software lan-
guages". This shows that there is little in the way of explicit extensibility standards for
software languages, let alone for DSLs, not to mention vertical, embedded DSLs such as
APS. This indicates that extensibility in DSLs is an area that lacks research and justifies
the contributions of this thesis as a viable contribution to the field.

As discussed in the Related Literature Chapter 4, an SMS has been performed on the
topic of DSL evolution. It has found 34 relevant papers — a relatively scarce library to
begin with. Furthermore, these papers are classified into the following categories:

• DSL creation [64]

37

• DSL grammar [64]

• Challenges in DSL evolution [64]

• Co-evolution of domain vs. DSL [64]

• Tool for DSL evolution [64]

• General approach for DSL evolution [64]

• Practical example of DSL evolution [64]

• References to GPLs [64]

Thus, this SMS has also not found papers which contain guidelines or design patterns
to enable DSL evolution. The category "General approach for DSL evolution" could po-
tentially contain such papers, but there are none. This corroborates the findings from
the earlier query and indicates that the central topic and final research question of this
thesis — extensibility guidelines for DSLs — is a novel contribution to the field of DSL
engineering.

RQ3.4: How can the answers of RQ3.1, RQ3.2, and RQ3.3 be leveraged
to evaluate the state of a DSL?

The answers to the previous sub-questions show that despite DSL construction being a
mature research field, evaluation research is lacking (see RQ3.1, RQ3.3). Nonetheless,
the value of the ability to evaluate the state of a DSL is undisputed. Since guidelines
favour the iterative development of languages, having an objective measure of DSL quality
would be hugely beneficial for regression monitoring. However, the challenge here requires
more than mere effort, as it is conceptual. Consequently, such an objective manner of
language assessment must be established. To evaluate the state of a DSL, one can examine
the language’s adherence to a set of relevant guidelines (see RQ3.2). The higher the
adherence, the better that reflects on the DSL. Lack of adherence to guidelines prompts a
need for investigation, such that gaps and areas of improvement can be identified. To show
this, the procured guidelines from RQ3.2 will be used on APS for this exact purpose. In
Table 7.1 APS is scrutinised under the identified guidelines. They are colour-coded, with
blue indicating the guideline was followed, red indicating it was not and yellow for partially
applied guidelines. Justifications are provided for the decision, sometimes accompanied by
a quick reflection on why the guideline was (not) followed.

38

3/7 Language Layout

A
Adopt Existing Domain

Notations
The developers are closely linked with the domain itself. Moreover, the interviews from RQ2 show great
care is put into choosing correct keywords, respecting the domain of the end-users.

A
Prefer Layout without

Impact on Parsing
The APS parser gives no significance to whitespace characters, which means that language instances
have no enforced consistent formatting.

A*
Align Abstract and Concrete

Syntax
The AST does not undergo transformations. This is partly because of Xtext binding syntax and
semantics on the grammar level.

NA Foreign Code
APS does not allow any embedding of foreign code. This is, however, something that can be beneficial
and reduce the amount of work required after code generation.

NA Syntactic Indentation
As this contradicts the guideline for a layout without an impact on parsing, the same justification
applies here.

NA Adaptive Model Due to the language’s nature, no computational models are necessary in its context.
NA Introduce Interfaces There is no necessity for paraphrasing features in APS, because it is a specification language.

2.5/3 Development Process

A* Importance of Meta-Tooling The language uses a mature LW that is suitable for the use case.
A Iterative Development The company employs a scrum methodology for its projects, including APS.

PA Domain Engineering Team
Despite all manner of engineers working on the language, they all come from the same team within
the company. They do, however, actively consider the perspective of the domain of the end-users

3/8 Design

A Avoid conceptual redundancy The language of APS does not provide multiple options for the same use case.

PA Use the Same Style Everywhere
This is intended by the language designers, however the developer interviews revealed that it has been
violated when different parts of the language used different syntax for boolean operators. This can be
addressed by extracting grammar commonalities, rather than reliance on ad-hoc intervention.

PA Design for Language Evolution Both its presence in APS and lack thereof is evident in the project proposal for this thesis.

PA
Balance compactness and

comprehensibility

A difficult-to-quantify guideline, due to its genericity. However, the interviews performed for RQ2 have
shown that the language designers have put consideration into both aspects, seeing them as complementary
attributes.

PA Enable modularity
In APS, complex specifications can be broken down into multiple files, as APS allows for cross-file
references, there is no explicit import mechanism, which limits the modularity.

NA Identify Usage Conventions
Due to very limited user base, comprised only of the language developers, there are no standard usage
conventions defined. Employing them could be useful for distribution to end-users.

NA
Provide organisational
structures for models

Multi-file specifications are possible in APS, but there is no explicit ‘import‘ keyword or any equivalent,
therefore also no mechanism to refer to other directories.

NA
Avoid inefficient language

elements
The performance of the generated code has never been expressed as a focus of the development team.
This does not imply that the generated code is inefficient, but there no visible optimisation yet.

4/6 Back end

A Embedment Helper
To aid the readability and simplicity of the template expressions in Xtend, helper functions are defined
and called from within the templates.

A* Templated Generation Enforced by Xtend, the template paradigm for code generation is heavily employed in APS.
A Model Ignorant Generation As per the previous row, circumstances impose the usage of this pattern.

A Generation Gap
The current state of the generator allows for only trivial specifications to be fully generated. For the
other use cases, interfaces are generated, to be implemented by the developers. This is a proper
separation of generated and hand-written code using inheritance.

NA Transformer Generation
Due to relative closeness of the concrete and abstract syntax, as well as the tools provided by Xtext
and Xtend, the code generation does not require tree transformations,

NA Model-Aware Generation
Owing to a lack of an ontological analysis, the underlying semantic model in APS is undefined. Hence,
no simulacrum of the model can be defined to enable model-aware generation.

4/4 Front End

A* BNF As enforced by Xtext, the grammar of the language is defined in a BNF-derivative form.
A* Parser Generator This is done by virtue of Xtext, which itself employs ANTLR to generate a parser for APS.
A* Tree Construction Likewise enforced by the usage of Xtext.
A* Notification Due to Xtext’s interface for validation, errors are collected and reported together, as per this pattern.

3.5/4 User-centric

A* Importance of DSL Tooling
The usage of Xtext enables out-of-the-box DSL tooling that enables good functionality to develop APS
instances.

A
Limit the Number of Language

Elements
The language is focused on providing a specification interface. Thus, it does not attempt to provide
other functionality to the end-user.

A Permit Comments C-like comments, both single- and multi-line, are included in APS.

PA Make Elements Distinguishable
At slight odds with the "Use the Same Style Everywhere" guideline, here the elements struggle to be
unique, as the language elements follow the same naming conventions, affecting distinguishability

Table 7.1: Evaluation of APS.
This table is organised into groups, denoted by the grey rows, which further state how many guidelines

from this group were applied. The rows are colour-coded, to indicate application status, as follows:
• Applied (A), denoted by blue; A* signifies tie to Xtext

• Partially Applied (PA), denoted by yellow; counts as 0.5 in grey row totals
• Not Applied (NA), denoted by red

39

7.3 Discussion

Answering this question has resulted in a set of relevant to APS design guidelines gathered
from existing literature. These design patterns were then applied to the language as a
form of evaluation, due to the lack of established methods. It has been shown that there
is neither an academic consensus on how to achieve extensible software language design,
nor systematic ways to evaluate DSLs. Consequently, a method for objective, specifically
tailored evaluation has been proposed and employed — the usage of existing best practices
as an objective benchmark of the state of a DSL.

There is abundant literature on best practices in DSL development, which was utilised
in this chapter to find a set of guidelines, relevant to this thesis. Relevancy was judged
based on objective measures (whether it applies to the correct type of DSL — embedded,
vertical), alongside subjective decisions made by the language developers. Afterwards,
from the set of 32 relevant guidelines, APS was found to utilise, partially or fully, 23 of
them. It is important to note that there’s three pairs of mutually exclusive guidelines, and
a two that aren’t beneficial to APS, meaning that 27 is the highest number APS could
cover. This indicates a healthy state of the language. It is also a further testament to
the efficacy of employing language workbenches and how they enable the development of
software languages without the need for a team specialising in compiler construction.

Two of the best practice categories can be seen as problematic, e.g. less than half of the
guidelines being applied (counting partially applied ones as half an application). They are
the "Design" and "Language Layout" categories. Some of these practices simply do not fit
the context of the language, i.e., they are concerned with computational models, whereas
APS has no computational functionality at all. Other not applied practices are due to the
genericity making judgement difficult. Regardless of these reasons, unused best practices
reveal places for improvement in the language over time. The extension guidelines in the
final research question specifically aim to address these areas of the language.

Simultaneously, the categories "Development Process", "Front End", and "User-centric"
employ, partially or fully, all of the identified guidelines. This shows that there is a rea-
sonable emphasis placed on achieving a robust front end, which satisfies end-user needs,
through proven development processes. Furthermore, the "Back End" ones, which are all
from Martin Fowler [22], are also all employed, if you exclude mutually exclusive pairs —
Transformer vs. Template generation and Model-Aware vs. Model Ignorant Generation.
Their full application is a testament to a well-implemented back end.

The implications for the general topic of this thesis are that the language is already
in a good state from a high-level perspective. Currently understood best practices are
employed to a reasonable degree and this has a positive effect on the extensibility of the
language. Moreover, future extensions need to be done with the overall design and layout
of the language in consideration, to achieve a higher degree of adherence to the relevant
guidelines.

40

Chapter 8

RQ4. DSL Extension Guidelines

This chapter is the culmination of the thesis, answering the question “What are effective
and actionable guidelines for DSL extensions to ensure maintainability?” — a contribution
to the field of DSL engineering in the form of extension guidelines for iterative language de-
velopment. These guidelines are devised for APS — an embedded, vertical DSL, which has
been scrutinised in this case study. They are based on the findings from all the previous
research questions. Despite the common terminology with the development guidelines
(design patterns) of the previous research question, in RQ4 the guidelines are novel, de-
signed for directing the extension of an already developed language and, moreover, curated
specifically for APS.

41

8.1 Methodology

To answer the final research question, all the knowledge acquired from the former RQs is
utilised. Hitherto, DSL extensibility factors, challenges (and positive practices) in APS
development have been identified. Furthermore, the DSL has been scrutinised under the
best practices from academia, highlighting objective strengths and weaknesses in the lan-
guage. Combining all these findings will result in a list of extension guidelines — each of
which will be related to at least one of the research questions, as substantiation for their
inclusion and source for their relevance. The format for the answer to this RQ will be a set
of decision-guiding soft rules, providing a direction for the software development processes
of the language iterations. They are separated into 3 groups, based on the phase in which
they are relevant — iteration planning (pre-implementation), development (implementa-
tion), and retrospective analysis (post-implementation). The steps included in devising
the guidelines are:

1. Synthesis of Previous Findings:
The previous findings are summarised to leverage the acquired knowledge from the
prior research. Then, overarching themes are identified by collating:

• The identified factors influencing DSL extensibility

• The challenges of APS development

• The low-friction areas of APS development

• The adherence to language design patterns

2. Formulation of Actionable Guidelines:
The synthesis of the previous findings was integrated to create guidelines, which ad-
dress identified gaps in the language (challenges from RQ2 and missed design pattern
applications from RQ3). Extensibility factors from RQ1 were emphasised, and the
continuation of good practices was included. Here, the guidelines were also separated
into categories, regarding when they are relevant to an extension’s development.

3. Expert Validation:
Experts were consulted to ensure the relevancy of the devised guidelines. As the
aim of this research question is to arrive at effective and actionable guidelines, the
supervisors of the thesis helped to ensure the correctness and effectiveness of the
guidelines, whereas the language developers were queried so that the final guidelines
are indeed relevant and actionable.

4. Retroactive Application and Impact Analysis:
Further validation is done by retroactively applying the guidelines on a past language
extension. To retroactively apply the guidelines, the extension proposal was examined
with a lead APS developer to reflect on the pre-implementation guidelines. The
code was then analysed, comparing the difference before and after the extension,
to validate the implementation guidelines. The post-implementation guidelines
could be directly applied, however, they require an end user to contact, which was
not available at the time of writing the thesis. Still, they were partially applied and
reflected upon. This process requires high-level abstraction and analysis of how the
guidelines could have impacted important factors such as development time, usability,
and maintainability. Based on the expected impact, adjustments are made to lower
the intrusiveness and increase the desired impacts of the guidelines.

42

8.2 Results

8.2.1 Extension guidelines for APS

Firstly, to summarise the findings of the thesis, there are 4 categories of relevant results:

• Extensibility factors for DSLs (RQ1)

– Documentation quality, regression testing, LW impact, language grammar,
DSL usability

• Challenges in APS development (RQ2)

– Legacy extensions, language restructurings, maintaining objectivity con-
cerning usability, preserving language consistency, proper domain knowledge
context, designing for evolution, lack of feedback integration, the economic vi-
ability of extensions

• Low-friction areas in APS development (RQ2)

– Proper responsibility distribution, usage of LW, emphasis on readability, im-
pact analysis of extensions, regression testing

• State of APS under scrutiny of academic development guidelines (RQ3)

– The front end, back end, development process and user-centric features are all
up to standard, following academic convention. However, the overall design and
language layout are potential points for improvement

The bold entries are ones which appear more than once, reinforcing their validity and
helping to draw common themes. Using these findings, guidelines are created to preserve
the good areas of the language, simultaneously emphasising improving identified issues and
relating them to the extensibility factors and challenges.

As established in (RQ3), iterative development is considered good practice in DSL
development [13], and is furthermore employed in the development of APS. Thus, the ex-
tension guidelines are tailored to this process, with a categorisation of guidelines concerning
planning (pre-implementation), development (implementation) and the retrospective pe-
riod (post-implementation). Each guideline is supported by findings of at least one prior
RQ. They aim to supplement the development process, helping to address potential weak
points of the language and ensuring the continuation of good practices.

For the sake of brevity and to avoid ambiguity, the tentative guidelines developed,
which were refined in the next section are not included. Instead, the final guidelines can
be found in the conclusion chapter, as the main contribution of this thesis.

8.2.2 Validation of Guidelines via Retroactive Application

After collating all the findings of the previous research questions, a tentative list of guide-
lines was devised. Though substantiated and detailed, their effectiveness and impact were
uncertain. To validate and refine them for future use, they were retroactively applied to a
previous extension of the language.

This requires abstraction and guessing — ultimately, dealing with a hypothetical al-
ways does. The extension chosen for the validation was a recent one, which focused on
adding functionality to the language, the most common type of extension as per developer

43

interviews in RQ2. Namely, 4 constructs in the language received an additional optional
specification block, which enabled the usage of the Generation Gap pattern [22].

This validation led to the following refinement of the guidelines:

• Addition of a pre-implementation guideline about ensuring backward compatibility:
Looking at a real-world extension the language went through, a missing consideration
was identified. Though the focus of the guidelines and this thesis is evolution-first
design, no emphasis was placed directly on backward compatibility. Though the
extension was backwards compatible, as it added an optional specification block
to elements of the language, it highlighted that such additions need to be optional.
Otherwise, all language instances in production would need to be updated, massively
impacting the extension cost.

• Removal of pre-implementation guideline due to lack of specificity:
One of the tentative pre-implementation guides was “Treat conceptual problems like
you would in other software engineering contexts (from RQ1 [40] [57]).” While sound
advice, this guideline does not fall under the umbrella of "actionable", which is the
aim of this RQ. This remains solid advice to follow during extensions but was found
to fail in delivering an action plan.

• Adjustment of pre-implementation guideline regarding using patterns from RQ3.4:
The extension used was found to apply a pattern from the previous research ques-
tion, namely Generation Gap [22]. This led to a change to the pre-implementation
guideline advising developers to consider using unapplied patterns from the previous
research question if they have an opportunity. The aim was to improve the state of
the language from that lens. However, patterns often can be re-applied, thus one
must consider them all, rather than focusing only on the ones which had not been
used. Thus the word "un-applied" was removed from the guideline

• Adjustment of the explanation of the implementation guideline about the language
grammar construction:
This guideline was found to be too vague and was elaborated upon to increase the
specificity. To make the guidelines actionable, there needs to be an explanation of
how they can be directly used to enrich the development process.

• Specifying rules for documentation maintenance during implementation:
To facilitate a proper state of the user and developer documentation, rigid rules were
added, which would make it clear which parts of the documentation to monitor. This
was added as a result of inconsistencies in the documentation being observed, which
would not necessarily be addressed by the guideline without more rigid rules.

• Introduction of a usability questionnaire template for the Formal Feedback Loop
guideline:
After an extension is complete, a usability questionnaire is advised to be sent out to
end users. However, this is not specific enough to facilitate smoother development,
especially considering the gap in DSL usability evaluation methods. Thus, a template
was found to be necessary to feasibly apply this guideline.

Overall, out of 13 guidelines, 6 were found to have been at least partially carried in
this extension’s development, with two unused ones needing end users that simply were
not available at this stage of the language’s development. Namely, the extensions concern-
ing impact analysis, employing DSL design patterns, leveraging continuous integration,

44

language grammar construction, maintaining documentation, and performance monitoring
were a part of the extension process. However, without a rigid process, there is no guaran-
tee they will be followed in other extensions. Thus, the collection of these guidelines helps
to ensure consistency in adherence to best practices.

After the refinement, each guideline is both actionable and specific. The final result of
this RQ can be found in the Conclusion for the sake of emphasising on the guidelines as
the main contribution of this thesis to the field of DSL engineering.

Usability Questionnaire

As established during the refinement, to be actionable the formal feedback loop post-
implementation guideline needs to be accompanied by a usability questionnaire template
for new language extensions. While usability in DSLs is a researched topic [53], no DSL
usability questionnaire has been formally defined yet. However, DSLs can be treated as
user interfaces to apply common methodologies for usability evaluation. Two frameworks
have already done this, USE-ME [5] and Usa-DSL [54], and in a similar fashion, here we
repurpose the widely adopted and validated System Usability Scale (SUS) [9]. We adapt it
for language extensions and extend it to include questions regarding DSL quality attributes
(readability, expressiveness). The SUS contains a collection of usability-related statements
with a Likert scale [45] for the user to express their stance. Hence the following usability
questionnaire template was developed. The first 10 statements are adapted by substituting
‘system’ for ‘feature’, to make the scale applicable to language extensions. The latter two
statements are added on top, to query specifically about readability and expressiveness
— important DSL-specific quality attributes. This is a template, which can of course be
adjusted should the circumstances require it, e.g. if a language extension did not introduce
a new feature but rather constituted other changes.

45

Strongly

disagree

Disagree Neutral Agree Strongly

Agree

I think that I would like to use this feature frequently. ⃝ ⃝ ⃝ ⃝ ⃝

I found the feature unnecessarily complex. ⃝ ⃝ ⃝ ⃝ ⃝

I thought the feature was easy to use. ⃝ ⃝ ⃝ ⃝ ⃝

I think that I would need the support of a technical

person to be able to use this feature.

⃝ ⃝ ⃝ ⃝ ⃝

I found the feature well integrated into the language. ⃝ ⃝ ⃝ ⃝ ⃝

I thought this feature introduced inconsistency in the

language.

⃝ ⃝ ⃝ ⃝ ⃝

I would imagine that most people would learn to use

this feature very quickly.

⃝ ⃝ ⃝ ⃝ ⃝

I found the feature very cumbersome to use. ⃝ ⃝ ⃝ ⃝ ⃝

I felt very confident using the feature. ⃝ ⃝ ⃝ ⃝ ⃝

I needed to learn a lot of things before I could get

going with this feature.

⃝ ⃝ ⃝ ⃝ ⃝

I found this feature negatively affected the readability

of my specifications.

⃝ ⃝ ⃝ ⃝ ⃝

I found this feature sufficiently expressive for the lan-

guage.

⃝ ⃝ ⃝ ⃝ ⃝

Table 8.1: Usability Questionnaire for DSL
(adapted SUS [9])

46

8.3 Discussion

In this RQ, all previous findings were leveraged to develop DSL extension guidelines, which
ensure usability and maintainability. While curated for APS, these guidelines nonetheless
mark a significant step in DSL extensibility. They were devised in a systematic approach,
yielding key insights and general recommendations for DSL development.

Integration of Extensibility Factors

The factors influencing DSL extensibility identified in RQ1 were used as a foundation to
understand what contributes to a maintainable DSL. These factors provided a direction
for the final extension guidelines and helped substantiate many of them.

Addressing APS Challenges and Maintaining Beneficial Practices

As opposed to the extensibility factors, these challenges and good practices from RQ2
served as a way to make the guidelines more specific to APS. All the identified issues were
addressed in at least one guideline. On the other hand, the good practices identified were
leveraged as well, to make sure that the strengths are maintained.

Application of Existing Guidelines

The application of design patterns from RQ3 provided a theoretical framework which was
validated and refined through practical insights gained from the case study. This approach
combined the state-of-the-art in academia with the language from this case study to deliver
both a general direction for DSL design, as well as specificity to APS, corroborating both
previous RQs. Moreover, it provides a collection of best practices that are relevant to APS,
which further serves as a benchmark which can be monitored over time.

Retroactive Application

Applying the guidelines to a past APS extension provided a demonstration of their potential
impact. This analysis revealed points for improvement in the guidelines, but also in the
development process itself, as intended. This served to show their effectiveness and improve
their specificity.

The methodology employed in this RQ successfully synthesised the findings from all
previous research questions and delivered practical and effective guidelines for APS ex-
tensions. By integrating insights from literature, addressing APS-specific challenges, and
validating through retroactive application, the guidelines were ensured to be both robust
and relevant. This comprehensive approach can be reused for other industrial languages to
develop relevant therein guidelines. The final result is curated to APS, but also leans on
academic DSL literature, thus can be made use of for other languages. However, relevancy
in that case cannot be guaranteed.

47

Chapter 9

Conclusion

In this thesis, the extensibility of DSLs has been explored, with a focus on a DSL from the
industry. Multiple research questions were devised to tackle the challenge of composing
DSL extension guidelines. The extensibility of software languages was researched to find
general insights and APS was examined to establish relevancy. In this chapter, we discuss
and reflect on the entire process. The extension guidelines are provided, as the main con-
tribution of this thesis. Furthermore, threads to the validity of the research are discussed.
Finally, suggestions for future work are given.

48

9.1 Summary of Findings

The research questions guiding this thesis were systematically addressed through a lit-
erature review, interviews with industry developers, and rigorous analysis of the APS
language. The key findings from each research question are summarised below:

1. Extensibility Factors of DSLs (RQ1):
Identified critical factors influencing the extensibility of DSLs, leaning on software
engineering practices and software language engineering literature, including DSL-
specific papers. It was found that software extensibility factors extended to DSL
development and the importance of documentation, regression testing, and usability
was highlighted.

2. Challenges in Extending APS (RQ2):
Uncovered specific challenges faced in the iterative development of APS, such as
maintaining language consistency, implementing legacy support and ensuring us-
ability. Furthermore, the successes of the development experience were highlighted.
These findings corroborated the previous claims of software engineering practices
extending to DSL development and the importance of language workbenches.

3. Existing Design Guidelines and Evaluation Methods (RQ3):
Outlined a gap in DSL literature in the realm of DSL evaluation. Consequently iden-
tified the existing state-of-the-art design guidelines and leveraged them to perform
an objective language evaluation. This produced an overview of the state of APS,
allowing the final extension guidelines to address any gaps in the language.

4. Devised DSL Extension Guidelines (RQ4):
All the previous findings culminated in the creation of novel extensibility guidelines,
which were further validated and refined via a retroactive application to a past APS
extension. The final guidelines can be found below — a collection of actionable and
specific directions for extending APS.

9.2 Contributions to the Field

The world of software language engineering is mature but still evolving. Branches like
DSL engineering have significant and extensive literature, but also notable gaps and in-
consistencies. This thesis highlighted the equivocal definition of "extensibility", outlined
gaps in the literature regarding evolution-centric DSL design, and shed light on the state
of rarely-mentioned in academia vertical, embedded DSLs. Moreover, a systematic and
objective DSL evaluation method was devised and employed, which relies on determining
the adherence of a language to the existing design standards in academia.

Finally, the main contribution is a list of DSL extension guidelines, as well as the
method for their synthesis. While they are tuned for APS, they can be relevant to other
DSLs, especially other vertical, embedded ones. They are split into categories, which
indicate when they should be employed.

Each category of guidelines is sorted by priority, denoted by [H] for High, [M] for
Medium and [L] for Low. Naturally, all the guidelines are conducive to developing an ideal
extension, but time and resource constraints often do not allow for the perfect extension
process. Hence, the priorities are meant to guide a developer under such constraints.

49

Pre-implementation

1. [H] Rigorous Impact Analysis (from developer interviews in RQ2)

• Cost-Benefit Analysis is mandatory before expending resources on an extension.
The economic viability of extensions is a key challenge in language development
and, therefore should be a first consideration before implementation.

• Software Impact Analysis before development was identified as beneficial by the
developers. It allows for assessing the risk of implementing an extension and
provides a moment to ensure backward compatibility of the proposed changes
with the older language version. The continuation of this practice is heavily
encouraged.

• Consistency Checks are a low-cost method of avoiding expensive problems.
Reaching out and discussing potential extensions with all development teams
for language consistency is heavily encouraged.

2. [H] Consider Usability Impact of Extensions (from RQ1 [13] [55], developer inter-
views in RQ2)

• Usability has been established to be a pivotal aspect of DSLs, enabling their
adoption. It is important to consciously consider the impact of potential
extensions, especially ones that offer new functionality to the user. This ap-
pears again in the Formal Feedback Loop post-implementation guideline, where
usability data is gathered, which can provide valuable insights for future exten-
sions.

3. [H] Preserve backward compatibility and aim for forward compatibility (from devel-
oper interviews in RQ2, RQ3 [13])

• Whenever new constructs are added to the language if they belong to other
constructs, they need to be an optional addition, to ensure all previous code
remains compilable. Conversely, additions of new constructs must carefully
analyse whether some mandatory option will need to be defined, as it can only
be done with its addition to ensure forward compatibility. These considerations
need to be made with great care, or the language will suffer.

4. [M] Define a usage convention (from RQ3 [34])

• Usage convention refers to the established practices for writing and structuring
software language instances. These conventions help make the code more read-
able, maintainable, and consistent across users and use cases. When adding
a new language feature, envision a usage convention for it. As the language
evolves, this allows for a language-wide consistent usage convention.

5. [M] Co-evolution Planning (from RQ1 [64])

• As previously discussed, a vertical, embedded DSL, such as APS, has dependen-
cies. When external code changes impact interfaces, this can force changes in
the generated code and vice versa. If this is not considered on time, it can cause
expensive problems for the developers. Maintaining a knowledge base with in-
terfaces the DSL interacts with is recommended, such that timely updates can
be made whenever relevant external changes require it and vice versa.

50

6. [L] Consider using DSL design patterns for large extensions (from the evaluation in
RQ3.4)

• As was found in RQ3, some opportunities for DSL pattern application are missed
(Foreign Code, Organisational Structures for Models, Usage Conventions, etc.).
Awareness of their existence and consideration is beneficial. When time allows,
deeper reflection on the abstractions required to extend the language can lead to
an opportunity to apply these patterns and improve the state of the language.

Implementation

1. [H] Leverage continuous integration and regression testing (from RQ1 [23], developer
interviews in RQ2)

• Automated testing helps catch issues early and increases the confidence develop-
ers can have in the stability of the project. This is supported by the prevalence
of this practice within the field of software engineering and by direct accounts
of the APS developers.

2. [H] Optimise the construction of the language grammar (from RQ1 [32], developer
interviews in RQ2, RQ3 [34])

• One challenge in the language’s development found in the interviews in RQ2
was a case where two semantically identical concepts were implemented with
two different syntactic structures. This violates two patterns from RQ3 (avoid
conceptual redundancy [34], use the same style everywhere [34]). Extracting
grammar commonalities into non-terminals for reuse is recommended, which is
conducive to avoiding such violations. It furthermore makes maintenance easier,
enabling easier changes of the syntax and more readable constructs.

• The grammar in textual DSL can be a significant bottleneck to language ex-
tensions. As explored in RQ3, introducing new syntax involves modifying the
grammar, which may lead to unintentional grammar ambiguities. This leads to
unpredictable and unwanted behaviour, which can require significant effort to
remedy. While this is an eventuality in grammarware, mindfulness of the risks
can prevent larger issues from occurring.

3. [M] Maintain Comprehensive Documentation (from RQ1 [2] [47])

• User Documentation: Develop clear and thorough user manuals and reference
guides for all changes to the language. This is crucial for improving usability
and facilitating user adoption.

• Developer Documentation: Ensure consistent and pervasive usage of Javadoc
(or other applicable documentation tools) to document the code; Integrate de-
veloper documentation in the code review process, to establish the ubiquity
and quality of the documentation. Follow and enforce a consistent documenta-
tion convention for the development team.

4. [L] Prefer optimal implementations (from developer interviews in RQ2, RQ3 [34])

• Performance is not a focus of specification languages (such as APS). However,
as the language continues to mature, the performance of the code generator
increasingly becomes a hurdle in development efforts. The build times for the

51

tool can affect the productivity of developers. Furthermore, the efficiency of the
generated code can become increasingly important as the language develops.
Neglecting this aspect can build up a need for significant refactoring, which has
been found in the RQ2 interviews to be a major challenge.

Post-implementation

1. [H] Formal Feedback Loop via Usability Questionnaire (from RQ1 [55], developer
interviews in RQ2)

• One week after rolling out an extension to clients, send a usability questionnaire
as a feedback form. Some time needs to have passed to allow users to familiarise
themselves with the changes to provide unbiased feedback.

• This provides an opportunity to collect and analyse feedback, a crucial necessity
identified by the developers in the interviews for RQ2. This feedback can be
integrated into the next iteration planning and usability can be tracked over
time.

2. [M] Update Documentation (from RQ1 [2] [47])

• Update user documentation based on the feedback to address issues and gaps
identified. This helps to avoid a documentation backlog, dedicating time to
implementing documentation feedback after each extension.

3. [L] Performance Monitoring and Optimisation (from RQ2, RQ3 [34])

• Monitor the performance metrics of the DSL and the extension’s impact. Con-
sider both the performance of the generated code and the code generator.

• Flag any potential performance pitfalls introduced and prioritise removing them
in future iterations.

These guidelines impact the development process in a minimally intrusive manner while
achieving a more maintainable code base, conforming to the discovered DSL extensibility
standards. For APS extensions examined, this would mean achieving the same practical
outcomes, but with more care put into planning and future-proofing the design, as well as
defining and sticking to a usage convention. Furthermore, the quality of the documentation
can improve, by increasing its ubiquity and consistency. Finally, the guidelines set up the
APS development for client distribution, by defining a course of action for rolling out
extensions to end clients.

On a higher level, addressing a notable gap in the literature, this thesis provides a
systematic way of evaluating and extending a DSL. This furthers our understanding of
DSL extensibility and paves the way for the construction and refinement of systematic
SLE approaches. Outside the scope of APS, these guidelines represent a first attempt to
formalise the process of extending DSLs. Although they may not apply to other languages,
this research can serve as a reference point for creating further, more general guidelines.

9.3 Threats to Validity

In this section, any threats to the validity are discussed. By acknowledging these threats
and explaining the undertaken measures, this thesis aims to provide a transparent analysis
of the extensibility of DSLs, contributing to a genuine advancement of the field.

52

9.3.1 Internal Validity

1. Interview Bias:

• Threat: The data collected from the interviews in RQ2 may be subject to bias,
either from the interviewer’s influence or the interviewee’s subjective perspec-
tives.

• Mitigation: To mitigate this, a semi-structured format was used to enforce con-
sistency between the interviews. Moreover, multiple developers from different
roles and experience levels were interviewed to obtain a balanced perspective.

2. Subjectivity in Qualitative Analysis:

• Threat: The analysis of interview data could introduce subjectivity, influencing
the drawn conclusions.

• Mitigation: A systematic approach was employed in the analysis, using expert
validation by the thesis supervisors to draw general conclusions from the data

9.3.2 External Validity

1. Generalisability:

• Threat: As acknowledged during the research, the main contribution of the
thesis, the extension guidelines, is curated for one specific DSL. Ergo, their
external validity (applicability outside of APS) is uncertain.

• Mitigation: To combat this, the research meticulously documented the type of
language they were devised for (vertical, embedded, specification language) and
also the specific challenges and gaps in the language design, which the guidelines
were based on. Therefore, external readers can juxtapose their language with
APS, to determine if the guidelines will align.

2. Case Study Limitations:

• Threat: The research is partially based on a single case study, further limiting
the generalisability of the findings.

• Mitigation: The method for their derivation, along with the objective eval-
uation framework has been documented such that it can be reused for other
languages. Furthermore, the literature was cross-referenced heavily to corrobo-
rate all practical findings.

9.4 Future Work

This research has exposed gaps in the DSL literature, namely terminological inconsistencies
and scarcity in DSL evaluation and evolution- and usability-centered design. Therefore,
future work to follow up this thesis can include establishing clearer definitions of terms such
as "extensibility", "maintainability", "language evolution", "modifiability", and "domain-
specific modelling".

53

Moreover, the evaluation method of measuring adherence to academic guidelines can
be used in broader case studies, for different types of DSLs. Likewise, the method for
devising fine-tuned extension guidelines can be reused and its merits to general approaches
are discussed.

Moreover, the usability questionnaire developed in RQ4 can be validated and more
similar templates can be developed. For the sake of the adoption of usability in the
field of DSL engineering, methods for quantifying the usability of languages need to be
standardised and provided to DSL developers.

54

Acknowledgements

The author of this thesis extends their gratitude to all persons involved in the research
process, for making it possible, frictionless and enjoyable. The cooperation of APS devel-
opers helped shed light on an under-researched world of business DSLs. Special thanks
to Jarno van der Sanden, whose continuous support and expertise helped bridge the gap
between the author and the industrial DSL. Warm appreciation is given to the university
supervisors — Vadim Zaytsev and Nhat Bui — without whom this thesis would not have
been possible in any capacity. Lastly, many thanks to Edgars Gaisin

,
š for the feedback and

suggestions provided in the writing process.

55

Bibliography

[1] "Call To Action: Secure the future maintenance of Xtext", 2020. Last Accessed:
2024/03/20. URL: https://github.com/eclipse/xtext/issues/1721.

[2] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. Software documentation issues
unveiled. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 1199–1210. IEEE, 2019.

[3] Omer Faruk Alaca, Baris Tekin Tezel, Moharram Challenger, Miguel Goulão, Vasco
Amaral, and Geylani Kardas. Agentdsm-eval: A framework for the evaluation of
domain-specific modeling languages for multi-agent systems. Computer Standards &
Interfaces, 76:103513, 2021.

[4] Diego Albuquerque, Bruno Cafeo, Alessandro Garcia, Simone Barbosa, Silvia
Abrahão, and António Ribeiro. Quantifying usability of domain-specific languages: An
empirical study on software maintenance. Journal of Systems and Software, 101:245–
259, 2015.

[5] Ankica Barišić, Vasco Amaral, and Miguel Goulão. Usability driven dsl development
with use-me. Computer Languages, Systems & Structures, 51:118–157, 2018.

[6] Ankica Barišic, Vasco Amaral, Miguel Goulão, and Bruno Barroca. Evaluating the us-
ability of domain-specific languages. In Software Design and Development: Concepts,
Methodologies, Tools, and Applications, pages 2120–2141. IGI Global, 2014.

[7] Ankica Barisic, Vasco Amaral, and Miguel Goulão. Domain-specific language do-
main analysis and evaluation: a systematic literature review, 09 2015. doi:10.5281/
zenodo.265487.

[8] Holger Stadel Borum and Christoph Seidl. Survey of established practices in the life
cycle of domain-specific languages. In Proceedings of the 25th International Conference
on Model Driven Engineering Languages and Systems, pages 266–277, 2022.

[9] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189(194):4–7, 1996.

[10] Tibor Brunner and Zoltán Porkoláb. Programming language history: Experiences
based on the evolution of c++. In Proceedings of the 10th International Conference
on Applied Informatics, pages 63–71, 2017.

[11] Antonio Bucchiarone, Antonio Cicchetti, Federico Ciccozzi, and Alfonso Pierantonio.
Domain-specific languages in practice: with JetBrains MPS. Springer Nature, 2021.

56

[12] Luca Cardelli, Florian Matthes, and Martín Abadi. Extensible grammars for language
specialization. In Database Programming Languages (DBPL-4) Proceedings of the
Fourth International Workshop on Database Programming Languages—Object Models
and Languages, Manhattan, New York City, USA, 30 August–1 September 1993, pages
11–31. Springer, 1993.

[13] Gerald Czech, Michael Moser, and Josef Pichler. A systematic mapping study on
best practices for domain-specific modeling. Software Quality Journal, 28(2):663–692,
2020.

[14] Eclipse Foundation. Xtend is a flexible and expressive dialect of Java, which compiles
into readable Java 8 compatible source code. https://eclipse.dev/Xtext/xtend/,
2024. Last Accessed: 2024/03/26.

[15] Sebastian Erdweg, Paolo G Giarrusso, and Tillmann Rendel. Language composition
untangled. In Proceedings of the Twelfth Workshop on Language Descriptions, Tools,
and Applications, pages 1–8, 2012.

[16] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. Sug-
arJ: Library-based syntactic language extensibility. In Proceedings of the 2011 ACM
international conference on Object oriented programming systems languages and ap-
plications, pages 391–406, 2011.

[17] Sebastian Erdweg and Felix Rieger. A framework for extensible languages. In Pro-
ceedings of the 12th international conference on Generative programming: concepts &
experiences, pages 3–12, 2013.

[18] Sebastian Erdweg, Tijs Van Der Storm, Markus Völter, Meinte Boersma, Remi
Bosman, William R Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex
Loh, et al. The state of the art in language workbenches: Conclusions from the
language workbench challenge. In Software Language Engineering: 6th International
Conference, SLE 2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings 6,
pages 197–217. Springer, 2013.

[19] Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster than the
quick and dirty way. In Proceedings of the ACM international conference companion
on Object oriented programming systems languages and applications companion, pages
307–309, 2010.

[20] Rodney Farrow, Thomas J Marlowe, and Daniel M Yellin. Composable attribute gram-
mars: Support for modularity in translator design and implementation. In Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 223–234, 1992.

[21] Martin Fowler. Language workbenches: The killer-app for domain specific languages,
2005.

[22] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

[23] Martin Fowler and Matthew Foemmel. Continuous integration, 2006.

[24] Ulrich Frank. Domain-specific modeling languages: requirements analysis and design
guidelines. Domain engineering: Product lines, languages, and conceptual models,
pages 133–157, 2013.

57

[25] Pedro Gabriel, Miguel Goulao, and Vasco Amaral. Do software languages engineers
evaluate their languages? arXiv preprint arXiv:1109.6794, 2011.

[26] Rohit Gupta, Sieglinde Kranz, Nikolaus Regnat, Bernhard Rumpe, and Andreas Wort-
mann. Towards a systematic engineering of industrial domain-specific languages. In
2021 IEEE/ACM 8th International Workshop on Software Engineering Research and
Industrial Practice (SER&IP), pages 49–56. IEEE, 2021.

[27] Rohit Gupta, Sieglinde Kranz, Nikolaus Regnat, Bernhard Rumpe, and Andreas Wort-
mann. Towards a systematic engineering of industrial domain-specific languages. In
2021 IEEE/ACM 8th International Workshop on Software Engineering Research and
Industrial Practice (SER&IP), pages 49–56. IEEE, 2021.

[28] International Organization for Standardization. Systems and software engineering —
Systems and software Quality Requirements and Evaluation (SQuaRE) — System
and software quality models. ISO/IEC 25010:2011, 2011. Available online: https:

//www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en.

[29] International Organization for Standardization. Ergonomics of human-system interac-
tion – Part 11: Usability: Definitions and concepts. ISO 9241-11:2018, 2018. Available
online: https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:ed-2:v1:en.

[30] Aníbal Iung, João Carbonell, Luciano Marchezan, Elder Rodrigues, Maicon
Bernardino, Fabio Paulo Basso, and Bruno Medeiros. Systematic mapping study
on domain-specific language development tools. Empirical Software Engineering,
25:4205–4249, 2020.

[31] Niklas Johansson and Anton Löfgren. Designing for extensibility: An action research
study of maximizing extensibility by means of design principles. B.S. thesis, 2009.

[32] Adrian Johnstone, Elizabeth Scott, and Mark van den Brand. Modular grammar
specification. Science of Computer Programming, 87:23–43, 2014.

[33] Gökhan Kahraman and Semih Bilgen. A framework for qualitative assessment of
domain-specific languages. Software & Systems Modeling, 14:1505–1526, 2015.

[34] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Design guidelines for domain specific languages. arXiv preprint
arXiv:1409.2378, 2014.

[35] Kohsuke Kawaguchi. https://www.jenkins.io/. Last Accessed: 2024/04/26.

[36] Steven Kelly and Risto Pohjonen. Worst practices for domain-specific modeling. IEEE
software, 26(4):22–29, 2009.

[37] Heiko Kern. Model interoperability between meta-modeling environments by using M3-
level-based bridges. PhD thesis, Universität Leipzig, 2016.

[38] Barbara Kitchenham, Stuart Charters, et al. Guidelines for performing systematic
literature reviews in software engineering, 2007.

[39] Anneke Kleppe. Software language engineering: creating domain-specific languages
using metamodels. Pearson Education, 2008.

58

[40] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline
for grammarware. ACM Transactions on Software Engineering and Methodology
(TOSEM), 14(3):331–380, 2005.

[41] Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. On the impact of dsl tools on the
maintainability of language implementations. In Proceedings of the Tenth Workshop
on Language Descriptions, Tools and Applications, pages 1–9, 2010.

[42] Donald E Knuth. Backus normal form vs. backus naur form. Communications of the
ACM, 7(12):735–736, 1964.

[43] Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific languages: A sys-
tematic mapping study. Information and Software Technology, 71:77–91, 2016.

[44] Manuel Leduc, Thomas Degueule, Eric Van Wyk, and Benoit Combemale. The soft-
ware language extension problem. Software and Systems Modeling, 19(2):263–267,
2020.

[45] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

[46] Brian A Malloy and James F Power. An empirical analysis of the transition from
python 2 to python 3. Empirical Software Engineering, 24:751–778, 2019.

[47] Robert C Martin. Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009.

[48] Marjan Mernik, Jan Heering, and Anthony M Sloane. When and how to develop
domain-specific languages. ACM computing surveys (CSUR), 37(4):316–344, 2005.

[49] Microsoft. Language Server Protocol. https://microsoft.github.io/

language-server-protocol/. Accessed: 2024-03-05.

[50] Steven Muchnick. Advanced compiler design implementation. Morgan kaufmann, 1997.

[51] José Évora Gómez et al. Octavio Roncal Andrés, José Juan Hernández Cabrera. Tara:
Streamlining dsl development through syntactic patterns. December 2023. doi:10.

21203/rs.3.rs-3758685/v1.

[52] Bruno C d S Oliveira and William R Cook. Extensibility for the masses: Practi-
cal extensibility with object algebras. In European Conference on Object-Oriented
Programming, pages 2–27. Springer, 2012.

[53] Ildevana Poltronieri, Allan Christopher Pedroso, Avelino Francisco Zorzo, Maicon
Bernardino, and Marcia de Borba Campos. Is usability evaluation of dsl still a trending
topic? In Human-Computer Interaction. Theory, Methods and Tools: Thematic Area,
HCI 2021, Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual
Event, July 24–29, 2021, Proceedings, Part I 23, pages 299–317. Springer, 2021.

[54] Ildevana Poltronieri, Avelino Francisco Zorzo, Maicon Bernardino, and Marcia
de Borba Campos. Usa-dsl: usability evaluation framework for domain-specific lan-
guages. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing,
pages 2013–2021, 2018.

59

[55] Ildevana Poltronieri Rodrigues, Márcia de Borba Campos, and Avelino F Zorzo. Us-
ability evaluation of domain-specific languages: a systematic literature review. In
Human-Computer Interaction. User Interface Design, Development and Multimodal-
ity: 19th International Conference, HCI International 2017, Vancouver, BC, Canada,
July 9-14, 2017, Proceedings, Part I 19, pages 522–534. Springer, 2017.

[56] Simmi K Ratan, Tanu Anand, and John Ratan. Formulation of research question -
stepwise approach. J. Indian Assoc. Pediatr. Surg., 24(1):15–20, January 2019.

[57] Daniel Ratiu and Markus Voelter. Automated testing of dsl implementations: expe-
riences from building mbeddr. In Proceedings of the 11th International Workshop on
Automation of Software Test, pages 15–21, 2016.

[58] Lukas Renggli. Dynamic language embedding with homogeneous tool support. Lukas
Renggli, 2010.

[59] Ildevana Poltronieri Rodrigues, Avelino Francisco Zorzo, Maicon Bernardino da Sil-
veira, Bruno Medeiros, and Marcia de Borba Campos. Heuristic evaluation checklist
for domain-specific languages. HUCAPP, 2021, Brasil., 2021.

[60] SlashData. State of Continuous Delivery Report 2023: The Evolution of Software
Delivery Performance. https://cd.foundation/state-of-cd-2023/, 2023. Last
Accessed: 2024/04/22.

[61] Diomidis Spinellis. Notable design patterns for domain-specific languages. Journal of
systems and software, 56(1):91–99, 2001.

[62] Thomas A Standish. Extensibility in programming language design. In Proceedings
of the May 19-22, 1975, national computer conference and exposition, pages 287–290,
1975.

[63] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse
modeling framework. Pearson Education, 2008.

[64] Jürgen Thanhofer-Pilisch, Alexander Lang, Michael Vierhauser, and Rick Rabiser.
A systematic mapping study on dsl evolution. In 2017 43rd Euromicro Conference
on Software Engineering and Advanced Applications (SEAA), pages 149–156. IEEE,
2017.

[65] Juha-Pekka Tolvanen and Steven Kelly. Evaluating tool support for co-evolution
of modeling languages, tools and models. In 2023 ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and Systems Companion (MODELS-C),
pages 914–923. IEEE, 2023.

[66] Federico Tomassetti and Vadim Zaytsev. Reflections on the lack of adoption of domain
specific languages. In STAF Workshops, pages 85–94, 2020.

[67] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: An extensible
attribute grammar system. Science of Computer Programming, 75(1-2):39–54, 2010.

[68] Markus Völter. Best practices for dsls and model-driven development. Journal of
Object Technology, 8(6):79–102, 2009.

[69] Andrzej Wąsowski and Thorsten Berger. Domain-Specific Languages: Effective mod-
eling, automation, and reuse. Springer, 2023.

60

[70] David Wile. Lessons learned from real DSL experiments. Science of Computer Pro-
gramming, 51(3):265–290, 2004.

[71] Vadim Zaytsev. Language design with intent. In 2017 ACM/IEEE 20th International
Conference on Model Driven Engineering Languages and Systems (MODELS), pages
45–52. IEEE, 2017.

61

Appendix A

Internship Task Description

A.1 Background Information

The Machine Control & Infrastructure (MCI) department is responsible for the definition
and handling of various Machine input settings. These settings are used by customers
of ASML to define the structure and layout of a wafer along with all settings needed to
correctly process wafers in the Lithography Machine.

Extending the software with new input settings has become a repetitive and time-
consuming task, while many clusters within ASML depend on this for adding new func-
tionality to the machine. To reduce the effort and lead time of adding new settings, the
MCI department has developed a data-driven Code Generator to automate the addition
of new settings. For this purpose, a Domain Specific Language (DSL) has been created in
which input settings can be defined. The definitions are stored in ASML Parameter Speci-
fication (APS) files. The Code Generator has been developed with the latest technologies,
using Xtext to design and create the DSL and Xtend to implement the Code Generator.
The Code Generator itself generates state-of-the-art C++ code.

A.2 Assignment

The Code Generator tool is being developed iteratively, adding new functionality with each
iteration. Meanwhile, the working parts of the Code Generator tool are already being used
by clients. This makes it challenging to extend the DSL with new language features while
keeping client impact to a minimum.

This task consists of the following:

1. Investigate current DSL and its extensibility;

2. Investigate the impact of DSL on internal/external interfaces;

3. Provide guidelines for DSL extensions (from client and development perspective);

4. Propose DSL optimisations and demonstrate them in a proof of concept.

Author’s note: Of these 4 sub-tasks, 1 and 3 are directly related to this
research, while the others are tangential and may not be
documented

62

Appendix B

Developer Interviews

B.1 Consent Brochure for Interview

B.2 Questions for Interview

1. Can you briefly describe your involvement in the development of APS?

2. Do you, as a user (or as a developer) of APS spend more time reading or writing
APS code?

3. Are APS extensions mainly focused on the front end or the back end?

4. Have you had instances where an extension does not meet its intended goal (had to
be removed or redone)?

5. Do you recall any examples of challenges you’ve had with the development of APS?

6. In your experience, have the challenges encountered during APS extensions been pre-
dominantly technical (algorithms, framework constraints, etc) or structural (syntax,
abstraction level, design choices)?

7. When you initiate an extension to APS, what is your primary focus? Is it enhancing
the syntax, improving tool support or expanding the vocabulary?

8. During the extension process, has the impact on usability and learnability been a
consideration?

• If yes, how has it impacted the development process?

• If not, why do you think it has been overlooked?

9. How do you decide which extensions to prioritise for development within APS? E.g.
out of proposed extensions, what priorities (such as technical feasibility, or alignment
with future goals) go into choosing one extension over the others?

10. When extending APS, have you found the usage of regression testing via the Jenkins
CI/CD a useful asset?

11. How have the Xtext and Xtend impacted your experience with the development of
the APS language.

12. Do you get feedback on implemented extensions? How is this feedback evaluated and
integrated into future extensions?

65

B.3 Interview Answers

You will find below in table B.1 and table B.2 the answers from all the conducted interviews.
The two tables are parts of a whole, separated on the horizontal axis to be on 2 pages for
legibility. Each column corresponds to a question asked as reflected in the list of questions
above, whereas each row is representative of the answers of an interviewee. These results
are discussed in Chapter 6.

1 2 3 4 5 6

Joined development Both Back end
Inconsistency introduced
by different extensions

of APS

Structural and
domain-related

Back end function
shadowing

Joined development Writing Back end
No such recollections

due to rigorous
impact analysis

Both Ensuring consistency

From conception Reading Back end
Does not recognise

such instances, rigorous
process to avoid them

Structural
Extracting commonalities
from different interfaces

From conception Writing Back end

Recalls several instances,
linked to realisations

keywords are not
needed, or they are put

in the wrong place

Both, depending on
developer experience

Legacy issues, oversight
during planning

From conception Reading Back end

Recalls changing implicit
behaviours to be

explicit and also needing
to retroactively patch

legacy support to
some extensions

Structural
Interoperability between

the DSL and other projects
within the same context

High-level Reading Back end

No recollections, but
anticipation of future
such instances, as the
tool becomes adopted

Technical issues were
common in early stages,

now predominantly
structural

None come to mind

High-level Reading Back end

Legacy extensions not
matching their structures;

implicit legacy specs
needed to be redone;
knowledge of legacy

code was lacking

Technical challenges
are more common,

but easier to address
Legacy issues

Table B.1: Aggregated, summarised interview answers (part 1)

66

7 8 9 10 11 12

Feature-driven Yes
Based on

direct necessity
Useful Positive

No official feedback
collection mechanism;

sees value in such
an investment

Feature-driven Indirect
Responsibility
of the architect

Useful Positive
No feedback due to
the current lack of

end-users

Feature-driven Yes
User demand

(when delivered)
Useful Positive

Feedback from external
teams; no formal way

to process it

Feature-driven Indirect Brainstorming Useful Positive
Only from developers,

informal, recognises need
for formalisation

Feature-driven;
value-for-money

Yes
Alignment with

future goals
Useful Positive No official feedback

Feature-driven Indirect
Adding more
functionality

Useful Positive
Only from developers,

informal, recognises need
for formalisation

Feature-driven Yes
Adding more
functionality

Useful Positive

A round every month
from all the development

teams; no end-user
feedback

Table B.2: Aggregated, summarised interview answers (part 2)

67

	Glossary and Abbreviations
	Introduction
	Graduation Project Task Background
	Problem Statement
	Contribution
	Outline

	Background
	Relevant DSL Terminology
	Software Language Extensibility

	Research Questions
	RQ1: What are factors that influence the extensibility of a DSL?
	RQ2: What are the current challenges in extending APS?
	RQ3: How can existing software language design and extensibility guidelines be used to effectively evaluate the state of a DSL?
	RQ4: What are effective and actionable guidelines for DSL extensions to ensure maintainability?

	Related Literature
	Meta-Literature
	Domain-Specific Language Design

	RQ1. Extensibility Factors of DSLs
	Methodology
	Results
	DSL Construction as Software Engineering
	Language Workbenches (LWs)
	Software Language Grammars
	DSL Usability

	Discussion

	RQ2. Current Challenges in Extending APS
	Methodology
	Results
	The Challenges in the Development of APS

	Discussion

	RQ3. Extraction and Application of Modern DSL Design Guidelines from Academia
	Methodology
	Results
	Discussion

	RQ4. DSL Extension Guidelines
	Methodology
	Results
	Extension guidelines for APS
	Validation of Guidelines via Retroactive Application

	Discussion

	Conclusion
	Summary of Findings
	Contributions to the Field
	Threats to Validity
	Internal Validity
	External Validity

	Future Work

	Internship Task Description
	Background Information
	Assignment

	Developer Interviews
	Consent Brochure for Interview
	Questions for Interview
	Interview Answers

