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ABSTRACT

Heart disease is the leading cause of death in middle-upper-income
countries, which makes heart and heartrate tracking technologies and
methods a vital part of human health monitoring. Past research was
able to track a subject’s heart rate from Wi-Fi’s Channel State
Information (CSI) by focusing the signals on their chest. However,
antennas in a dynamic environment can not always focus on the
subject’s chest. Therefore, this research aims to analyze the possibility
of heart rate tracking using existing signal processing algorithms by
focusing the Wi-Fi signals on a sitting subject's chest, neck, thighs/hips,
and back of the knees. This is done by testing the best antenna
positioning and orientation to focus the signals on a specific body area.
The findings are then used to target the different mentioned body areas.
The data collected from five test subjects shows that existing heart rate-
tracking algorithms best predict the heart rate from the chest area
followed by the thighs/hips, whereas the neck and back of the knees
perform the worst. Furthermore, based on the collected data and wave
propagation theory, it is found that the most important characteristic of
a body area is its surface area for heart rate prediction accuracy.

Additional Key Words and Phrases: Channel State Information, health
sensing, heart rate monitoring.

1 INTRODUCTION

According to the WHO, the number one leading cause of death
is ischemic heart disease, which causes about 12.8% of deaths
[7]. With heart disease being more prevalent in older people
[10], invasive HR (heart rate) tracking techniques might not be
applicable as they might not suit their lifestyle. Wearable
trackers might not be comfortable to wear while sleeping or be
forgotten after the user has taken them off.

In recent years nontraditional pervasive HR tracking methods
have been emerging including video-based HR tracking [11],
Millimeter Wave Radar HR tracking [16], and Wi-Fi signal-
based HR tracking [9]. All these approaches have their upsides
and downsides.

Video-based HR tracking’s biggest drawback is the need for
light to record video, making it unusable in low light conditions
for example when the users would like to sleep.

Millimeter wave radars are expensive and specialized
equipment that is not easily accessible on the market, thus
making some users unable to afford such solutions.

Wi-Fi  signal-based tracking does not incur the
aforementioned downsides that video-based and mm-wave
radar have. It can be used in any lighting conditions and Wi-Fi
equipment is cheap and easily purchasable. These factors would
seem to make it ideal for the mass adoption of HR tracking
applications.
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However, Wi-Fi-based tracking suffers from reliability and
robustness issues. Different body positions and locations of the
receiver, transmitter, and subject all greatly influence how the
Wi-Fi signal bounces, thus greatly affecting the reliability of CSI
data [13] for HR predictions. The main challenge comes from
the tools used, CSI was created to describe the propagation of
the signal through a multipath environment and not to monitor
hardly noticeable physical changes in the environment as
someone’s heartbeat. However, signal propagation theories as
the Fresnel zone theory can be leveraged to assist. Using
Fresnel’s theory, the effects of small environmental changes on
CSI data can be amplified and small unnoticeable heartbeat
movements magnified to a noticeable change in the CSI data
[13].

The current research about CSI HR tracking revolves around
tracking chest movements of a subject that are generated by the
systole and diastole phases of cardiac cycles. This paper
expands the research by diverting from the chest area and
trying to record HR signals from different body areas. Exploring
the possibility of tracking a subject’s heart rate from various
body areas would make it possible to create more robust
solutions that do not require the user to sit or lay down in one
specific position and strive toward more general heart-rate-
tracking systems. It may be possible to track the heart rate on
different body parts because the systole phase of the cardiac
cycle creates pressure in the Aorta and the attached Arteries,
which expand and contract them [8] which then expand and
contract the surrounding tissues, creating micro-physical
pulsations. These periodic micro-physical pulsations might be
noticeable in the CSI data. This research aims to target this
effect and discover the feasibility of predicting the subject’s HR
by focusing the Wi-Fi signals on different body areas. This aim
gave rise to the following Research Question:

How accurately can the human heart rate be tracked using CSI
data from commodity Wi-Fi devices focusing the signals at their
neck, thighs/hips, and back of the knees compared to their chest?

To create adequate tests for each of the body areas, test
environments had to be optimized to target each body part for
an accurate representation of its performance. This need gave
rise to a sub-research question:

What antenna orientation and position relative to the subject's
targeted body part yields the most accurate heart rate predictions?

2 RELATED WORKS AND PRELIMINARIES

This section discusses the related works in the field of pervasive
heart rate tracking systems and goes in-depth about the
theories and technologies used for CSI heart rate tracking in
this paper.
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2.1. Wi-Fi OFDM and CSI protocols
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Fig. 1. Wi-Fi OFDM channel data encoding in different
frequencies representation. (Taken from [2])

Orthogonal frequency-division multiplexing (OFDM) is a data
encoding technique that encodes a byte stream into multiple
subcarrier frequencies. This enables the data stream to handle
subpar channel conditions. The standard Wi-Fi signal is usually
divided into 64 different subcarriers as seen in Fig. 1. Out of the
64 subcarriers 12 are used as Guard bands, 4 as pilots (for phase
and frequency training and tracking), and only 48 carry data

[2].
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Fig. 2. Phase offset illustration with wave propagation.

An estimate of how the subcarrier travels through a complex
environment is calculated for each data-carrying and pilot
subcarrier. This calculation is called its channel state
information (CSI) which is composed of two values that
represent the amplitude change and the phase shift the signal
experienced when traveling from the transmitter to the receiver
[12]. CSI can be better understood by this formula:

R=H*T+n

R and T represent received and transmitted signals, n being
noise, and H representing the CSI matrix. Changes in the CSI
data represent changes in the environment the Wi-Fi signal
propagates through. This environment representation in CSI
data has been used in numerous human sensing applications
including fall detection [4], driving fatigue [3], gestures [1] and
many more. For heart rate tracking, only the phase shift part of
CSI data is used as it is more sensitive than the amplitude.
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Fig. 3. Heart-beat induced phase shift difference on the signal.
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Fig. 4. Fresnel zone boundaries affect the signal phase shift

A signal experiences a phase shift as it travels through the
environment, after traveling one sinusoidal cycle (one
wavelength) the offset is again zero as shown in Fig. 2. Small
environmental changes create a phase shift in the signal which
can be detected in CSI data. Fig. 3 represents how the
contraction and expansion of a subject’s chest caused by the
heartbeat creates a phase shift in the received signals.

These heart rate-induced periodic phase shifts have already
been used in studies to monitor a subject's heart rate. PhaseBeat
[14] used a Wi-Fi 5 GHz signal to track the HR of its subject in
different poses (standing, sitting, laying) and variant positions
in the room. They switched to a directional antenna at the
transmitter to improve received data accuracy and use a 400Hz
sampling rate.

CSI data is not only a Wi-Fi-based technology as other
technologies use it for sensing applications. Using millimeter-
wave radar [16] researchers achieved an average of 1.281 mean
absolute error. They further took the research to estimate the
subject’s breathing and heart rates with an obstructed LOS from
the radar to the subjects with a cardboard obstacle, which still
yielded high accuracy results.

2.1. Fresnel Zones

Fresnel Zones and boundaries always have a strong effect on
propagating signals and must be considered when dealing with
signal propagation through a medium. Fresnel Zones are
concentric ellipses with their foci points being the transmitter
and the receiver. These Zones and boundaries can be used to
calculate the phase shift of the signal that it experiences when
bouncing off a surface before reaching the receiver.

A signal bouncing off a surface that is located at any odd-
numbered Fresnel boundary before reaching the receiver
experiences a phase shift of 180 degrees as seen in Fig. 4 in blue.
A signal bouncing off an even-numbered Fresnel boundary
experiences a 360-degree phase shift, which is also a 0-degree
shift, as seen in the pink signal. In each Fresnel zone, this 180-
degree phase shift happens gradually from one boundary to
another. The boundaries of the Fresnel zones are most
interesting because the received signal is either 0 degrees out of
phase or 180 degrees out of phase which greatly influences the
received signal’s amplitude.



Monitoring the heartbeat of different parts of the human body using off the shelf wifi devices TScIT

41, July 8, 2022, Enschede, The Netherlands

[Line of sight ["]signal shifted 180-degrees
["|Received signal [ Signal shifted 360-degrees or O-degrees

Fig. 5. Addition of differently offset signals.

If a signal arrives 180 degrees out of phase at the receiver it
completely cancels out the LOS signal, making it look like no
signal arrived at the receiver as shown in the upper image of
Fig. 5. Whereas if the signal is 360 degrees out of phase it is
perfectly aligned with the original signal and so will double the
signal amplitude, making it look like a powerful signal has
arrived at the receiver as shown in the lower diagram of Fig. 5.

Current research has explored how the location of a subject
relative to Fresnel zones affects the accuracy of sensing
applications. The studies [13] explores how placing the subjects
in different positions and orientations relative to Fresnel zones
influences the sensitivity and reliability of CSI data for the
subjects’ breathing predictions. Their findings show that the
positions and orientation of subjects are highly influential to
how sensitive and accurate the CSI measurements are based on
whether the subject is in the Fresnel zone center or boundary.

3 DATA COLLECTION

This section first discusses the devices used for data collection
during the tests. Secondly, it details the tests done to optimize
antenna placement and rotation regarding the subject’s
position. Lastly, it details the testing environment.

3.1 Devices

3.1.1 Nuc Box-1220P minicomputers

For the collection of CSI data, two mini Nuc Box-1220P were
used and throughout this paper are referred as nodes. The nodes
were equipped with a 6-core i3-1220p processor, an AX211 chip,
a 2x1 MIMO network card, with 64 GB memory, and dual Wi-Fi
antennas. The nodes used a frequency of 6 GHz for the tests.

It was chosen to configure the devices to run on 400Hz CSI data
transmission and collection frequency because it was found that
lower frequencies produced less accurate heart rate predictions
and higher frequencies did not yield considerable gains [14].
After initial data analysis, it was determined that the devices
ran at a reduced 336Hz frequency rate. However, due to the
positive results obtained from the pilot test after switching the
pre-processing algorithm to 336Hz frequency, this discrepancy
was not investigated more thoroughly, as it did not have a
substantial effect on the study. The 400Hz input frequency was
kept, but data was analyzed as if it was 336Hz.

3.1.2 Huawei watch fit 2.

For the ground truth HR measurements, the Huawei Fit 2 watch
was used in exercise mode to monitor the HR of the sitting
subjects. According to independent research [5] the Huawei Fit

2 watch is in 0.99 correlation with the Polar H10 Heart-Rate
tracker which is an industry standard.

3.2 Antenna Placement
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Transmitter

Fig. 6 Fresnel zone visualization from the top-down view of
horizontal router placement.

This section discusses the theory followed for the placements of
antennas, the nodes’ limitations in terms of antenna
placements, our defined antenna orientations, and the ways it
was measured where the subjects sit relative to the antennas.

Based on the findings in [13] the best subject placement is inside
Fresnel zones and not on the boundaries of them. It is theorized
that signals bouncing off Fresnel zone boundaries and close to
them have a small phase shift relative to the LOS signal which
makes it have a big effect on the signal amplitude as shown in
Fig. 5. However, it induces a low phase shift effect, making the
CSI data accuracy low for HR tracking. However, movements
and physical changes inside Fresnes zone centers have more
noticeable changes in the received signal, because of the more
differentiable phase shift. Furthermore, it was found that the
Fresnel zones closer to the LOS of the signal have a greater
effect on the received signal, as an example movements in zone
1 are more noticeable than in zone 13. Regarding these findings,
two initial antenna placement testing methods have been tried:
parallel and perpendicular antenna placements in reference to
the subject’s body surface. Parallel placement puts one antenna
closer to the subject, and one further away from them,
perpendicular antenna placement places both antennas at the
same distance from the subject’s body, but at different positions.

One limitation imposed by the nodes is relative antenna
placement. As both of its antennas are built inside the device
their relative placement could not be changed. The distance was
estimated to be 10 cm and considered in further calculation.

The distance from the antennas is calculated as the perpendicular
distance from the imaginary line that is drawn between the
transmitter and receiver antennas (LOS path) as shown in Fig.
6.

Because of the hardware used this study was working with the
limitation that the antennas had to be 10 cm apart, which made
perpendicular antenna placement more difficult. Nonetheless,
Fresnel zone centers were calculated, and a distance was chosen
that would put the research subject inside both antennas
Fresnel zone centers. The distance from the antenna closer to
the research subject was calculated to be 13cm (the center
between the 15t and 2"d Fresnel boundaries.) That then puts the
further away antenna at a distance of 23cm from the subject,
which is almost perfectly the center of the 4 and 5 Fresnel
zones which is 22.5cm.
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Parallel Antenna placements: antennas were placed parallel to
the body’s surface 13cm away from the subject between the 15
and the 2d Fresnel zone boundaries.

For the comparison of the performance of the two antenna
orientation methods, the difference between the abdomen
distance and the chest distance needs to be discussed. This
distinction was made because it was necessary to accurately
define how the test subject should be positioned in reference to
the antennas. People may have different distances to their
abdomen or chest to the antenna LOS due to different
physiques, which is why the abdomen distance is measured
from their abdomen and the chest distance from the chest's
most protruding part, for HR measurements from the chest
area.
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Fig. 7. Heart rate prediction in the pilot test from the abdomen
distance with Parallel Antennas

The conducted pilot tests on different antenna positions relative
to the chest revealed that the best antenna orientation is parallel
to the focused body part and measuring from the “abdomen”
distance. Fig. 7 shows HR predictions compared to the ground
truth with the optimized settings for the chest area. These
results are further elaborated on in Section 5.

3.3 Experimental Setup
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Fig. 8 Heart rate recording test setups.

After the initial pilot tests for algorithm and antenna placement
analysis resulted in drastically different heart-beat prediction

Petras Baublys

accuracies, rules had to be developed to obtain the best results
from other body areas. Firstly, the antenna placement had to be
parallel to the surface from which heart-rate data was extracted.
Secondly, the surface of the subject’s body should be 13
centimeters away from the LOS of the antennas (between the
15t and 27 Fresnel boundary) as bigger and smaller distances
degrade prediction accuracy. Thirdly to keep the same setup as
the initial testing the distance between the transmitter and
receiver nodes shall be 1 meter apart and the subject will be
sitting on an office chair. The most accurate chest HR predicting
setup is presented in the bottom right picture of Fig. 8.

These rules caused some interesting problems like antenna
orientation for behind-the-knees data collection. As the subjects
will have their knees halfway bent there is no obvious parallel
surface from which to measure. Nonetheless, it was decided to
keep the antennas parallel to the calves because the back of the
thighs is hidden by the chair on which the subject is sitting, and
the calves provided more exposed surface area. Based on
anatomical research of active cardiovascular points in the
human body [8] four body areas were chosen: chest, neck,
hips/things, and behind the knees. All the different testing point
setups are presented in Fig. 8. For each body area, about 1
minute and 30 seconds worth of usable data were collected from
each test subject, meaning the recordings have been done for a
longer time, but parts have been cropped out when there are big
movements in the room the tests are held in.
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Fig. 9 Room test setup.

The tests were conducted on five different test subjects whose
ages ranged between nineteen and twenty-two with average
body builds. The tests were conducted in a small room of 5x3x3
meters, with a bed, table, and wardrobe. During the tests, two
or three people were present in the room: one test subject and
one or two people conducting the test: matching times and
noting down each test’s parameters. Based on Fresnel Zones
theory a safe test conductor position was calculated to create
the least interference in the received CSI data. The room test
setup can be seen in Fig. 9.
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4 METHODOLOGY
4.1 Signal Processing
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Fig. 10 Cardiofi’s [6] Data processing pipeline.

The CSI data preprocessing and HR estimation algorithm
follows the CardioFi’s [6] used method that is demonstrated in
Fig. 10. This method was chosen for several reasons. Firstly, it
was demonstrated that their algorithm has a high accuracy for
HR predictions with only a media error of 1.14 bpm. Secondly,
the CardioFi [6] paper was written with great detail about the
actual algorithm and parameters used to achieve the results,
which made it simple to replicate even the custom parts of their
algorithm as the dynamic window detrending and the spectral
stability subcarrier selection algorithm.

4.2 Signal Pre-processing

The signal preprocessing follows the algorithm and parameters
disclosed in [6]. Firstly, the signal incoming into the two
receiver antennas gets subtracted from one another to remove
the random phase shift offset caused by the mismatched
transmitter and receiver clock cycles. Secondly, from the
subtracted signal as seen in Fig. 10 the preprocessing algorithm
uses the first Hampel filter for outlier detection and removal.
Then detrends the data using the dynamic window size
algorithm introduced in [6] after which a second Hampel filter
is used for noise removal. Once the data is cleaned and
detrended low and high bandpass filters get applied to narrow
down the frequencies present in the output to the expected
heart-rate frequencies. This research deviates from [6] in the
low and high band filter parameters and sets the cut-off
frequencies from 0.7Hz to 2Hz corresponding to 42 and 120
beats per minute (bpm).

5.3 Subcarrier selection

For the subcarrier selection algorithm, this research replicated
Cardiofi’s [6] custom Spectral Stability based algorithm. It
builds on the assumption that HR does not change quickly, so
the subcarriers with the most stable HR predictions are
considered the most accurate. The pilot test data revealed that
the algorithm parameters were too strict and sometimes only
selected one or two subcarriers as “stable enough”. This made
the heart-rate predictions very noisy and inaccurate as single
subcarriers are unstable and need to be fused with other
subcarriers to make the HR predictions more stable and
accurate. The algorithm was modified to include at least 4 of the

lowest noise subcarriers. Further modifications were done to
include all subcarriers that are as stable as 1.6x times the
stability of the most stable subcarrier compared to CardioFi’s
[6] 1.2x limit. These changes have significantly improved the
accuracy of the test setup.

4.4 Heart-rate Prediction
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Fig. 11 Heart rate prediction from the mean PSD of selected
subcarriers.

For heart-beat prediction, a mean PSD spectrum is calculated
using a fast Fourier transform across all chosen subcarriers as
in [6]. The final HR is estimated as the largest magnitude
component in the mean PSD for a 20s window size as shown in
Fig. 11.

5. RESULTS

5.1 Antenna Placement
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Fig. 12 Pilot test different antenna placement Mean Squared
Error (MSE) of heart rate predictions.

The results of the initial antenna orientation and placement
tests are represented in Fig. 12 The parallel antenna rotation is
superior for chest area HR predictions at all distances from the
human subject (chest, LOS, abdomen) as it produces the lowest
MSE. It also shows better performance in both of the algorithms,
the non-updated [6] and the updated algorithms show great
improvements from using parallelly rotated antennas.
Furthermore, the abdomen distance is the best for prediction
accuracies as it produces the lowest MSE, meaning that the LOS
of the antennas being placed 13cm away from the subject is the
optimal distance.

With both antenna rotation and positioning optimized (vertical
antennas and abdomen distance), the updated HR prediction
algorithm yielded an MSE of 10,0 for HR predictions from the
chest during the pilot test as shown in Fig. 12.
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5.2 Different Body Area Prediction Accuracy
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Fig. 14 MSE of heart rate predictions for different body parts.

The analysis of the results confirmed the initial assumption that
the subject’s chest is the best area for HR predictions. It had a
considerably lower MSE of 77.54 compared to all the rest of the
body areas. Furthermore, the chest had the lowest error
variance as seen in Fig. 13 making it the most stable predictor.

The second-best area for heart rate prediction seems to be the
thighs/hips. While it has a very high MSE of 295.73 it is still
considerably lower than the neck with 384.33 and the back of
the knees with 406.77. Furthermore, its variation in Fig. 13 is
also lower than the neck and the back of the knees. While these
results do not make it a good predictor, its performance is of
interest for future research as it seems to be a possible predictor
for a subject’s HR.

Lastly, the neck and the back of the knees performed similarly,
they both have the highest MSE for HR predictions and the
widest variation spread, making them the worst areas for HR
predictions. Further analysis of these results is in section 6.2.
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6 DISCUSSIONS
6.1 Bias in The Algorithm
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Fig. 15 All heart rate and heart rate plotted predictions.

From initial observations, it was noticed that the model's HR
predictions were consistently lower than the corresponding
ground truth as observed in Fig. 15. This underprediction was
unexpected as the pilot tests did not exhibit such behavior. After
further data review, it was found that the prediction algorithm
is accurate if the subject's HR is around the 60-80 bpm limits. If
the subject's HR is above 80 the algorithm can track HR trends,
as when the subject's HR would increase or decrease the
predicted values would rise and fall accordingly. This
observation explains the high accuracy predictions during the
pilot test as the pilot subject’s HR was in a range of 60 to 70 bmp
(Fig. 7) where the algorithm not only recognizes HR trends but
also accurately predicts the subject’s HR. The algorithm’s lower
prediction reasons are not understood and need further
investigation.

6.2 Different body part predictor results.

As mentioned in section 5 the results did not correlate with
initial expectations of what body parts would be good HR
predictors. Original assumptions assumed that more strongly
active cardiovascular areas covered with low amounts of tissues
would perform better. However, the neck which contains large
Carotid Arteries [15] only covered with small amounts of
tissues yielded a high MSE of 384.33 and the biggest prediction
error variance out of all other body parts as seen in Fig. 13
.Whereas the thighs/hips which in the sitting position cover
their Femoral Arteries with large amounts of bodily tissues
resulted in the second lowest MSE and second lowest variation
of prediction errors.

These initially strange results however seem to correlate with
wave propagation theory. As stated in “3.2 Wi-Fi’s CSI data”
physical changes in the environment create a phase shift in the
signal at the receiver. Stronger cardiovascular activity moves
the surrounding tissues more, which resolves in a bigger phase
shift at the receiver. However, a bigger phase shift is not enough
to create ample change in the CSI data to make it an accurate
predictor. If the phase-shifted signal has a low amplitude (is
weak) it might be lost in the environment noise at the receiver.
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Fig. 16 lllustration of Wi-Fi waves bouncing off small and big
obstacles in the environment.

The receiver combines all the received multipath signals and
adds them together for CSI calculations, meaning larger
surfaces that redirect more signals to the receiver will have a
bigger effect on CSI calculations. As shown in Fig. 16 small
objects might not redirect enough signal for them to be
differentiated from the noise, while larger objects redirect more
of the transmitted signal and will have a bigger effect on the CSI
data.

Considering that more signal bounces of bigger surfaces it
becomes quite apparent why the chest area and the thighs/hips
are better HR predictors than the neck or the back of the knees.
While the back of the knees and especially the neck have high
cardiovascular activity, they do not have enough surface area
to create a noticeable periodic phase shift in the received CSI
data.

6.3 Algorithm’s Slow Convergence

The tested algorithm demonstrated good performance
following slow-changing trends in the heart rhythm of most
test subjects.

However, the algorithm becomes unstable at HR predictions if
a subject’s HR is unstable and quickly changing. This is because
it uses a large 20s window on the mean subcarrier PSD to
estimate the subject’s HR for accuracy reasons [6]. Fig. 13 is
ordered in a way that for each body part, the test subjects are
always in the same order from left to right. So, subject one is
the first box on the left for the chest, neck, hips/thighs, and
knees, subject 2 is the second box from the left, and so on.
Subject 4 (27 box from the right) had the most sporadically
changing and high HR, which caused the algorithm to
underestimate the subject’s HR and created the biggest
prediction error variance on almost all test scenarios. This
slowness of the algorithm to converge to a changed HR makes
it not suitable for applications dealing with subjects whose
heart rates while sitting are not stable.

6.4 Future research

For future work toward the robustness and reliability of Wi-Fi-
based heart rate tracking technology, the shortcomings of this
research should be addressed. Firstly, the bias in the algorithm
to underpredict the heart rate skewed all results of our testing,
to reveal the true potential of each body area, the tests should
be redone with a non-underprediction algorithm. Furthermore,
not only different heart rate predicting algorithms should be

tried, but it would also be interesting to attempt to tune the
heart algorithms for each body part.

7  CONCLUSIONS

This paper presented conducted research on CSI data heart rate
measurement accuracy focusing on the Wi-Fi signal on
different areas of the body: chest, neck, thighs/hips, and back of
the knees. Firstly, it provides the theories leveraged to extract
heart rate predictions from CSI data and to create the test
setups. It describes devices and methods used to collect Wi-Fi
CSI data, then details the algorithms used for signal pre-
processing, subcarrier selection, and heart rate prediction. The
experimental results showed that the chest is the best body part
for heart rate prediction followed by the thighs/hips, while the
neck, and back of the knees have the biggest MSEs and the
widest variations in the prediction errors. Lastly, it has been
found that the surface area of the body part has a strong
influence on how accurate the heart rate predictions are and the
underlying theory behind the finding.
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During the preparation of this work, the author used Word to
write and format the work, Grammarly as a spell checker, and
Zotero as a reference tracker. After using this tool/service, the
author reviewed and edited the content as needed and takes full
responsibility for the content of the work.



