
Generating Automatic Commentary in Video Games using Large
Language and Vision Language Models
GEORGIOS STOURNARAS, University of Twente, The Netherlands

This research explores the effectiveness of utilizing multimodal AI systems
for generating accurate commentary in football video games by integrating
visual information alongside text input. A prototype system, based on previ-
ous research, was developed to collect game data, and generate commentary
using both a Large Language Model (LLM) and a Vision Language Model
(VLM). The study compared the generated outputs of these models in pro-
ducing commentary, analysing errors, and determining the impact of visual
data on accuracy. The results indicated that while the VLM hallucinated
less by fabricating fewer data and events, it exhibited a higher overall error
rate compared to the LLM. Additionally, the image analysis often resulted
in very simple and superficial commentary. Further analysis suggests that
significant improvements are required in both model training and hardware
capabilities to achieve real-time, accurate commentary generation. Future
work will focus on refining model training with specific game data and
enhancing prompt engineering to address identified limitations.

Additional Key Words and Phrases: Automatic commentary, video game,
football, Large Language Model (LLM), Vision Language Model (VLM).

1 INTRODUCTION
Sport video games often have automatic commentary to enhance
the gaming experience. This commentary contains play-by-play
reporting, as well as providing background information, statistics or
entertaining the audience (players in this case) during uneventful
parts of the match. Initially, thousands of lines were written for
voice actors to record, which required a significant amount of time
and effort, and resulted in the commentary not sounding natural
[14]. Newer recording techniques are now used so that snippets can
be reused multiple times and in different order, but the storytelling
is limited [7].

During the past two years, major advancements have been made
in the field of machine learning, specifically in Large Language
Models (LLMs). LLMs are a type of machine learning model based
on the transformer architecture, that specialise in text generation.
At their core, LLMs are text completion machines, i.e. they calculate
what is the most probable following word given an input [9]. A very
popular commercial example of such a system is ChatGPT. Systems
like ChatGPT allow the user to enter a "prompt", like a request, a
question, a task, and the system returns an answer [9]. For example,
for the input prompt “Write me a short bedtime story” the output of
the LLM could be “Once upon a time, in a land where stars painted
the night sky. . . ”. LLMs are also non-deterministic, meaning that
given the same input, the output will be different each time [10].

Given this information, generating commentary for video games
could be a perfect application for LLMs. Because of the non-determi

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

nistic nature of the models and the immense amount of training data
these models are created with, game studios will not have to spend
time creating unique scripts and announcements as the models are
able to describe the same game events (goal, strike, hit, kill, etc.)
in a different manner every time. In addition, when paired with a
Text-to-Speech (TTS) system, game studios will have to spend less
time and effort recording the voice lines as well.
However, a very prevalent issue with LLMs is that they hallu-

cinate, fabricating events and data [25]. To address the issue of
hallucination in LLM-generated commentary for video games, it’s
essential to explore newer, more powerful multimodal models. These
models excel in handling multiple types of input, including both text
and images [11][12]. Given that video games produce various out-
puts, such as internal statistics and visual frames, integrating these
inputs could enhance the accuracy and reliability of the generated
commentary.

The goal of my research is:
• Create a system that uses a pre-trained multimodal model
to analyze game frames and game information from a video
game.

• Use the same data with an existing system that uses a text
unimodal model.

• Compare the accuracy of the commentary between the two
systems.

Which will answer the following research question:

To what extent does the addition of visual information affect the
accuracy of generated football video game commentary from a multi-
modal AI system?

2 RELATED WORK
Automatic generation of commentary in video games is not a novel
task. For instance, [2] trained a deep-learning network on video
footage from cricket games, enabling it to recognize objects in
frames and generate simple commentary. Similarly, [3] used com-
puter vision to detect UI game elements, triggering pre-engineered
inputs to a GPT-3.5 model for generating commentary on a game
of League of Legends. In another approach, [4] also used League of
Legends, accessing the game’s API to extract event data and gener-
ating commentary based on their own trained transformer model,
comparing the results to other available models. Furthermore, [5]
utilized a CNN to analyze frames from Minecraft, attempting to
predict the associated commentary. Additionally, [1] integrated mul-
tiple input representations, such as RGB frames and optical flow, to
model temporal relationships in videos and generate commentary.
The work of Czaplicki [6] is an attempt at using an LLM for

commentary generation in a football video game. It uses an open-
source 3D football game called “Google Research Football”, initially
developed as a platform for experimenting with self-learning AI
players [8]. Czaplicki’s system feeds game statistics into a GPT-3.5

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Georgios Stournaras

model, which generates a script that is read by the system. For
example, if the goalkeeper from Real Madrid saved the ball, the
input would be “Event: Goalkeeper Martinez saves the ball for Real
Madrid” and GPT3.5 would reply “And Martinez springs into action
and saves the ball! The entire crowd goes wild.”

However, the system has a few shortcomings, including the gen-
eration of erroneous commentary; Czaplicki states that about 71% of
the model’s errors were hallucinations. An example from his system:
When there was a free kick in the middle of the field, the model
generated an output: "And there will be a free kick for Real! United
has to be careful because Ronaldo can turn it into a goal!", despite
that it was almost impossible to score from this position [6].
Based on my exploration of the literature, similar work on this

topic usually trains a computer visionmodel on game frames (whether
a real-life game or a video game) to:

• Recognize game events from understanding what is happen-
ing in the frame, and generate feedback.

• Recognize game UI elements and trigger pre-engineered re-
quests to unimodal models similar to GPT-3.5.

The most common issue researchers mentioned is the amount of
training data for their neural networks was insufficient (except [4]).
That is where large models like LLMs have the advantage; commer-
cial “off-the-shelf” models are trained on significantly more data
than the specific models used in the previous research. Even though
these models are built to perform well across a wide range of tasks
rather than excelling in one specific task, most of the transformer
models allow for "zero-shot" or "few-shot" training, which allows
them to adapt to a task with no or very little training (in the form
of extra instructions) [13].
To summarise, the automatic commentary in video games re-

search that did not use an LLM had issues with the lack of sufficient
training data, and the ones that did use an LLM had issues with
hallucinations and maintaining context.

3 BACKGROUND
Before we continue, I will briefly introduce how LLMs work and
some relevant terminology. LLMs are advanced neural networks
trained to generate text. They are trained on extensive datasets
comprising diverse language data, enabling them to understand and
generate human-like text. These models are versatile and ready to
use for various applications involving text input and output, such
as chatbots, text completion, and more [15].

3.1 Prompts
LLMs operate through a series of structured interactions:

(1) Initial/Instruction Prompt: This is the initial prompt that
sets the tone and context for the conversation. For example,
the instruction might be: "SYSTEM: You are a virtual assistant
helping a curious user." This prompt provides the model with
a specific role or scenario to follow.

(2) User Prompt: The user inputs a query or statement. This is
the actual content that the user wants the model to respond
to or interact with.

(3) Model Response: Based on the initial instruction and the
user prompt, the model generates a response. The response

aims to be coherent and relevant to the context set by the
initial prompt.

A complete interaction would look something like this:

SYSTEM: “A chat between a curious human and an artificial
intelligence assistant. The assistant gives helpful, detailed, and
polite answers to the human’s questions."
USER: “Explain LLMs to me”
ASSISTANT: “Sure, I’d be happy to. LLMs are a type of. . . ”

Tomaintain the conversation’s context, all previous exchanges are
included in subsequent prompts. This allows the model to "remem-
ber" past interactions and provide more coherent and contextually
appropriate responses over time.

3.2 Parameters
When talking about specific LLM models, a number is associated
with the name of the model (3B, 7B, 13B, any-numberB). This in-
dicates the number of parameters a model has. These parameters
refer to the numerous adjustable weights within the model that are
fine-tuned during training to capture language patterns and seman-
tics. These parameters play a crucial role in determining the model’s
performance and accuracy. All other things being equal, generally
the more parameters, the more powerful the model [27]. However,
the higher the parameter count the more memory is required to run
these models.

3.3 Quantisation
To address the memory usage issue, the process of quantisation
reduces the precision of the weights used in the model to make it
run on more hardware and faster. Weights are typically stored as
32-bit floating point numbers, but quantisation techniques allow
those weights to be converted to 16, 8 or even 4-bit floating point
numbers. However, this reduction in precision can affect the quality
of the model’s predictions. On the other hand, using lower-precision
floats reduces memory usage, enabling larger models to run on the
same hardware, which can ultimately enhance prediction quality.

4 METHOD
My goal is to test how the addition of visual information affects
the accuracy of the generated commentary. By incorporating visual
cues, the system could better understand the context of the events
it describes, potentially reducing errors and hallucinations in the
generated commentary text. To determine this, I will first extract
data from multiple matches of Google Research Football, then use
the same data on two types ofmodels; an LLM and a Vision Language
Model (VLM), that accepts images and text as input. Finally, we
compare the generated commentary output from the two models
and see if the visual information made any difference.

4.1 Game System
I will base my work on Czaplicki’s system. It retrieves events from
the Google Research Football engine, creates the prompts, asks a
model to complete and then uses a TTSmodel to speak the generated
commentary. The system uses Google’s Research Football engine,

2



Generating Automatic Commentary in Video Games using Large Language and Vision Language Models TScIT 41, July 5, 2024, Enschede, The Netherlands

which allows for two computer players to compete and grants us
full access to the internal data, such as player information, ball
coordinates, scores, and frames.

In the simulation, time is divided into discrete units called game
ticks. After each tick, the system checks for specific events, like a
Goal, Save, Out, Offside, Corner, etc.

In addition, if the system detects that no event has happened for a
few ticks, it will generate a filler prompt, which provides the current
game data and instructs the model to generate some filler talk.
When an event occurs, the system generates a dynamic prompt

based on the event details, current score, and ball possession per-
centage. For example:

Score: 0-0 Time: 4’ Possession: Real 43% - Manchester 57%
Event: the ball is kicked on corner by Martinez, Manchester
United will have a chance.

The model then generates a commentary response, which is con-
verted to speech using a Text-to-Speech (TTS) model.

Czaplicki’s system was extended to be able to export, in addition
to the dynamic prompt, a screenshot of the game event associated
to it.

4.2 Models
Since I want to test image and text analysis, I need a multimodal
model. For our vision model, I chose the Large Language and Visual
Assistant (LLaVA) (version 1.5) [16][17], as it is open-source, free and
is designed to run on consumer hardware. In addition, it ranks really
well against the state-of-the-art GPT-4 model [18]. For our text-
only LLM baseline, one option could be using Czaplicki’s original
approach, i.e. GPT-3.5. However, LLaVA and GPT-3.5 differ on many
aspects (some of which are discussed below), and it would be difficult
to attribute any difference in the generated output solely to the
presence or absence of the visual modality.

4.3 Newer Version
The LLaVA VLM model I am using in this experiment is based
on the Vicuna LLM [19] and an additional “vision encoder” (CLIP
ViT-L/14 [20]). LLaVa/Vicuna were released almost a year after GPT-
3.5, and while their training data is not public, it is likely different.
Furthermore, the models have a different architecture, making a
direct comparison difficult (i.e., if the two models generate different
texts, it would be difficult to know if this effect should be attributed
to the visual component or to other differences between the two
models).

4.4 Parameters andQuantisation
LLaVA 1.5 has multiple parameter versions and supports original
and 4 and 8-bit quantisation levels. The largest model that fits in
our GPU (NVIDIA RTX 4080) is 13B with 4-bit quantisation.
The GPT-3.5 version of the old system, although available for

consumers, is a 175B model with no quantisation used [21]. While I
could use Vicuna 13B, which is the model LLaVA is based on, with
a 4-bit quantisation, I cannot guarantee that it will be the exact
same quantisation, due to the variety of quantization techniques

available. I could theoretically quantize both manually using the
same technique, but this approach would demand substantial time
and effort.
Based on these fundamental differences, it made sense to use

LLaVA as our baseline. Its two modes, text and image+text are
triggered by whether an image is included in the input. I’ll be using
“text” or “LLM” to refer to LLaVA’s text only mode, and “image+text”
or “VLM” to refer to LLaVA’s image and text input mode.

4.5 Conversation History
A limitation of LLaVA (and most available VLMs), is that each con-
versation can include only one image. This restriction means that
I cannot use the history of previous responses and events to en-
hance our commentary. For the tests, I will input the initial prompt,
the image, and the event prompt for each event, creating a new
conversation for each one.

4.6 Initial Prompts
As mentioned earlier, initial prompts set the quality of the responses
for the prompt to come. LLaVA has default conversation prompts
for both the text and image+text mode. The only difference is that
in the image mode, it has a one-line instruction on how to handle
the image tokens:

The visual content will be provided with the following format:
.

Upon limited testing, removing that instruction does not alter the
behaviour of the model. Further more, the model is already trained
to recognise <image> tokens. So, to ensure a fair experiment, both
modes will have the same instruction and user prompt, i.e. removing
the <image> handling instruction from the image+text mode.

5 EXPERIMENT
With all the model considerations now in mind, our experiment con-
sists of creating a dataset, using the same instructions and prompt
input into the LLM and VLM respectively, and finally, manually
check and annotate their output to measure the accuracy. Our game
and model will be running on an Arch-based Linux distribution
with a NVIDIA RTX 4080 with 16GB of VRAM. The LLaVA version
used is llava-v1.5-13b with 4-bit quantisation. Both modes will be
using the same instruction prompt:

You are a football commentator, who is getting information
about a football match at Santiago Bernabeu between Real
Madrid and Manchester United. I will give you info about
the match and you will write commentary. Be truthful and
concise, max 2 sentences per turn. Only add information about
teams, players, or goals that I have specified. You may use as
much of my input as required in the output, use what you
need to sound natural. Avoid repeating yourself too often. Do
not mention the commentary itself.

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Georgios Stournaras

5.1 Dataset
I ran multiple games collecting events and the corresponding screen-
shots (Figure 1). The file looks like this after the first run:

"recording_timestamp": "0:00:22.438367",
"prompt": "Score: 0-0 Time: 4’ Possession: Real 43% - Manch-
ester 57% Event: the ball is kicked on corner by Martinez,
Manchester United will have a chance",
"screenshot_id": "9abb271a-e35e-4aec-b609-1231c651bb86"

5.2 Generation
After collecting events from multiple games, for each event I gen-
erate two commentaries. The first is with the LLM (thus without
using the game screenshot), where I input the instruction prompt
and the event prompt, and I record the output. Output from the
text-only mode is saved as “llava_response” in the file. The second
commentary is generated with the VLM, where I provide the in-
struction prompt, the event and the screenshot of the event. Output
is then saved as “llava_image” in the same file. Finally, for all our
events I have a final dataset that looks like this:

"recording_timestamp": "0:00:22.438367",
"prompt": "Score: 0-0 Time: 4’ Possession: Real 43% - Manch-
ester 57% Event: the ball is kicked on corner by Martinez,
Manchester United will have a chance",
"screenshot_id": "9abb271a-e35e-4aec-b609-1231c651bb86",
"llava_response": "Real Madrid is playing aggressive defense,
but Manchester United is creating more scoring opportunities.
The ball is kicked on corner by Martinez, and Manchester
United will have a chance to score. ",
"llava_image": "The soccer game is currently tied at 0-0, with
both teams actively competing for possession. The teams are
spread out across the field, with some players closer to the
center and others near the edges. The players are running and
trying to gain control of the ball, which is currently located
near the center of the field."

Fig. 1. Screenshot with id 9abb271a-e35e-4aec-b609-1231c651bb86 used as
input for LLaVA. The ball is kicked out of the field (far left).

5.3 Evaluation
After generating the responses for all events, I manually annotate the
outputs to check for errors and anomalies. This involves comparing
the generated responses to the ground truth: the system-generated
prompt and the screenshots.

6 RESULTS
I ran 7 football games, for a total of 136 events with 272 generated
commentaries.

6.1 Annotation Scheme
When evaluating responses from an LLM, the evaluation is typically
nuanced, as there is no binary distinction between a generated
answer being "good" or "bad". Therefore, it is important to categorise
the types of errors introduced or limited by the addition of images.
To do this, I came up with 6 labels to annotate errors, aiming to
crate them as mutually exclusive as possible. Nevertheless, there is
some slight overlap between them as discussed below.

1. Breaking Character: When the model “breaks the 4th wall”
revealing in their response the nature of the video game, the
input, the model itself, or by not adhering the persona it was
instructed to mimic. For example, the model was instructed
to be a football sportscaster/commentator and it begins the
generated response with: “In the virtual soccer game. . . ", “In
the input data provided. . . ”.

2. Error: Misinterpreting the input data. For example, the data
in the input states that the score for teams A-B is 2-0. The
response generated: “B is on the lead with the score being
2-0”

3. General Fact: Stating something that is generally true given
our football context, but cannot be derived from the input
data. Statements like "The players are tired in the second half,"
without specific data to support it.

4. Hallucination: Fabricating events and/or data. If the model
responds to an offside event with "and the referee is assessing
the offside” when there is no referee in the game and the
match has already continued.

5. Not mentioned: Forgetting to mention the event that was
supposed to be commented on. The input being “Score: 1-0,
time: 27’, Event: Ronaldo just scored a goal for Real Madrid.”
and the response “The match is currently at the 27th minute,
with Real Madrid being in the lead.”.

6. Obvious: Making an obvious statement, like comments on
the nature or the setup of the match or sport. Such as “the
players are playing on a field” or “the players are wearing
their teams’ respective uniforms”.

The labels with some overlap are 2 (Error), 3 (General Fact), and
4 (Hallucination). Given that this application is aimed at a real-
time football video game, some statements are more tolerable than
others. For instance, if the model states that the crowd is getting
restless because there have been no goals by the 50th minute, it can
be considered an acceptable statement even without crowd data.
However, making up non-existent data and actions is not.
Each response can have multiple labels, as a response can have

errors and be breaking character.

4



Generating Automatic Commentary in Video Games using Large Language and Vision Language Models TScIT 41, July 5, 2024, Enschede, The Netherlands

6.2 Results and Analysis

Error Type
Errors per mode Text Image+Text

1. Breaking Character 4 23
2. Error 18 35
3. General Fact 11 8
4. Hallucination 17 5
5. Not Mentioned 0 29
6. Obvious 0 36

Table 1. Annotated Data

Fig. 2. Type vs Number of Errors for Text and Image+Text modes

From the results (Table 1 and Figure 2), the image+text mode made
almost double the amount of errors and broke character almost 6x
as much. Common errors were that both models misinterpreted
the possession metrics, by saying that a team had more possession
and then displaying a percentage lower than 50%. The image model
would quite frequently say that both teams had equal possession
of <50%, which does not add up to 100. Both models would also flip
the scores, saying it was 2-0 instead of 0-2 for example.
The image+text model broke character frequently. It did so by

using phrases like “in the image”, “in the virtual soccer match”,
or by making comments on the match as if it was not a football
commentator:

Input: "prompt": "Score: 0-0 Time: 44’ Possession: Real 56% -
Manchester 44% Give some brief filler talk about the situation
in the match"

Output of VLM: The players are spread across the field, with
some closer to the goal and others further away. The virtual
soccer game is being played on a green field with a white
boundary line."

The text model provided more general facts about the match, such
as "fans are restless" or "Player X feels Y" after an offside. This might
be because the text mode has more tokens available for responses
compared to the image mode, which also needs to analyze and

comment on visuals. Each model, including ours, has a limit on the
number of tokens it can generate in its output. A token can be a
letter, a syllable, or a word, depending on the model [28].

I was not as harsh with labelling general facts as long as they did
not classify as hallucinations.
Interestingly, the text model hallucinated a lot more than the

image one, almost 3x as much. It is not clear if this is because the
image helped ground the image+text mode, or because again, there
was more room for tokens and the probability of fabricating events
was higher. In this example, the model added that the referee missed
the call when there is no referee in our video game and the offside
was caught:

Input: "prompt": "Score: 0-0 Time: 10’ Possession: Real 19% -
Manchester 81% Event: Eriksen from Manchester United is on
offside"

Output of LLM: "Eriksen is offside, but the play continues as
the referee missed the call. Real Madrid is struggling to keep
possession of the ball."

For our last two labels (Not Mentioned, Obvious), they were exclu-
sive to the image one. The image model kept not mentioning the
events while providing a summary of the match:

Input: "prompt": "Score: 0-0 Time: 21’ Possession: Real 32% -
Manchester 68% Event: the ball was kicked out from the field
by Rashford (Manchester United)"

Output of VLM: The soccer match between Real Madrid and
Manchester United is currently at a 0-0 score, with both teams
actively competing for the ball.

When it came to image analysis, its comments were very obvious.
What classifies as obvious depends on the context, but comments
like “the players are on a green field” or “white lines mark the
areas on the field” or “some players are closer to the ball and others
further away” are not appropriate for a professional sportscaster’s
commentary. While they are valid image analysis statements, they
do not provide any additional insight.
An interesting finding is that almost all obvious responses also

did not mention the event at hand, which might be due to (again) a
token limit issue. The models are instructed to use a few sentences,
and we have a few sentences about the score and time, the image
and the event, so maybe the image mode event prioritised image
analysis to event commentary.
Most of games had many filler events (at least 5 per game). The

prompts for the filler events were originally designed with the con-
versation history turned on in mind, so that using previous events
the model would generate a summary of the match so far.

"prompt": "Score: 0-0 Time: 16’ Possession: Real 21% - Manch-
ester 79% Give some brief filler talk about the situation in the
match"

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Georgios Stournaras

However, since I turned it off due to the LLaVA limitations, the
models have very limited data to use for filler talk. The text model
usedmostly general facts, and inmost of the cases the same facts. For
example, saying "it’s important for (losing team) to stay focused and
look for opportunities to counterattack and create scoring chances.",
or, "but neither has been able to break through the opposing team’s
defense yet". The image one used a lot less general facts, but did not
generate any meaningful insight, mainly stating the current game
status. Therefore, I did not count most of the general facts in the
filler talk responses. However, errors in the scoring, possession and
hallucinations were still counted.

7 DISCUSSION
RQ: To what extent does the addition of visual information affect
the accuracy of generated football video game commentary from a
multimodal AI system?
The addition of visual information in my experimental setup

appears to negatively affect the quality of the generated commentary.
It introduces more errors in interpreting the input data (events), and
the additional commentary generated from the image is superficial
at best.

7.1 Limitations
While the setup limitations were mentioned throughout the method
section, they will be summarised here for clarity.

7.1.1 Model. The reason for the image analysis producing obvious
statements like “the players are on a field” could be a model limita-
tion. Although LLaVA showcases impressive image understanding
results in its paper, it might not have been trained to understand
more detailed or context-specific information beyond identifying
the scene as a football game.

7.1.2 Quantisation. Both modes were not running in their original
setup; they were quantised to 4 bits to fit in our VRAM. Although
I am using a large model (13B), this quantisation could impact the
quality of the responses.

7.1.3 Event timing and frame capture. Some screenshots for some
events are a bit early or late. The issue arises because we have
both a physics engine and a graphical engine running, each with
its own internal ticks. With the current setup, each game engine
tick equals ten physics ticks. To capture the screenshots as close
to the actual event as possible, I save the previous frame’s pixel
array with every tick and using that instead of the frame when the
event is recognised in the next tick. In this setup, there is roughly
a one-frame delay between the event being rendered and it being
recognised and announced. To achieve more precision in our frames,
I would need to change the sampling rate from the physics engine,
which would require recalculating which frame should be saved.
Adjusting the sampling would require recalculating and saving all
previous frames to access them when needed.

7.1.4 Initial Prompts. One major limitation might be using equal
initial prompts. The image mode could have benefited from more
instructions on how to handle the image, for example using "one/few
shot" prompting. However, informal testing showed that additional

instructions did not significantly improve responses, suggesting that
the model might not be capable of understanding more complex
details from the image.

In addition, the text mode could also benefit from better instruc-
tions in the initial prompt. While the one used in the experiment
generally follows published guidelines [22][23], it is likely not an
optimal prompt, and would benefit from further prompt engineer-
ing.

7.1.5 Conversation History. Not having chat history is another
significant limitation. The textmode could producemoremeaningful
summaries, comment on previous events, and avoid repeating itself.
The image model could use the processed images to augment its
output effectively.

7.1.6 Error Classification. One weak point of this research was the
sort-of “emergent coding” used to classify errors. This method was
not strictly proper emergent coding, as it was not mutually exclusive
and maintaining consistency in labeling was challenging in specific
contexts. As mentioned earlier, in the commentary generated for
the filler prompts, I tended to be less stringent with error labeling.
This is due to the models operating without memory (conversation
history) of previous events, thereby having limited context to work
with, and having a higher probability of stating generic football
match facts.

7.2 Future Work
7.2.1 Models. Newer, more powerful models are continuously be-
ing released. For example, the authors of LLaVA have released LLaVA
NeXT Video [26], a model that can understand video. OpenAI has
released GPT-4o [24], which can understand video input and gener-
ate speech in (almost) real-time. Such a model could run alongside
the video game to produce commentary. Existing models like GPT-4
allow for the input of multiple images in a conversation, although
the API calls require paid tokens.

7.2.2 Input. An extension to this system could involve providing
multiple consecutive frames for analysis instead of a single image,
allowing for the extraction of temporal data and leading to more
meaningful commentary. Another potential improvement is using
video or a few seconds of footage before an event as input. Addition-
ally, annotating raw screenshots to highlight the ball and players
could facilitate easier and more accurate analysis. Lastly, implement-
ing few-shot training and/or better prompt engineering could help
adjust the model to respond more appropriately to specific scenarios,
thereby enhancing its overall performance.

8 CONCLUSION
This research aimed to test whether using image and text input
with a Vision Language Model (VLM) could provide more accurate
commentary on a football video game context compared to using
just a Large Language Model (LLM). A prototype was extended and
adjusted from previous research to collect game data and generate
responses from the models. The results showed that while both
models made errors, the vision model made more errors, and its

6



Generating Automatic Commentary in Video Games using Large Language and Vision Language Models TScIT 41, July 5, 2024, Enschede, The Netherlands

image analysis provided very basic commentary. Numerous limita-
tions were identified, imposed by the experimental setup or due to
hardware constraints.
To create a system with greater accuracy, a good start would be

training models specifically on video game data (both visual and
textual), using the same engine data and type of graphical user
interface (GUI). Alternatively, existing large pre-trained models can
be used with adapters.
Even if I had a more powerful model capable of understanding

what is happening in a football video frame, it is almost impossible
to run it in real-time on consumer hardware at present.

9 APPENDIX
During the preparation of this work, the author(s) utilized ChatGPT,
Copilot, and Word (Office 365) for tasks such as generating syn-
onyms, refining sentences, and summarizing content. After using
these tools/services, the author(s) reviewed and edited the content
as needed and take(s) full responsibility for the content of the work.

10 REFERENCES
(1) Li, Chengxi, et al. “End-to-end let’s play commentary genera-

tion using multi-modal video representations.” Proceedings
of the 14th International Conference on the Foundations of
Digital Games, 26 Aug. 2019, https://doi.org/10.1145/3337722.
3341870

(2) Ghosh, Debabrata, et al. “Automated cricket commentary
generation using Deep Learning.” INTERNATIONAL CON-
FERENCE ON INTELLIGENT AND SMART COMPUTATION
(ICIASC-2023), 19Mar. 2024, https://doi.org/10.1063/5.0198759

(3) Ranella, Noah and Markus Eger. “Towards Automated Video
Game Commentary Using Generative AI.” EXAG@AIIDE
(2023).

(4) Wang, Zihan, and Naoki Yoshinaga. “Esports Data-to-
Commentary Generation on Large-Scale Data-to-Text
Dataset.” arXiv.org, 21 Dec. 2022, https://arxiv.org/abs/2212.
10935

(5) Shah, Shukan, et al. “Automated Let’s Play Commentary.”
arXiv.org, 6 Sept. 2019, https://arxiv.org/abs/1909.02195

(6) Czaplicki, Michał. “Live Commentary in a Football Video
Game Generated by an AI.” TScIT 39, 7 July 2023, https://
essay.utwente.nl/96001/1/Czaplicki_BA_EEMCS.pdf

(7) Lee, Greg, et al. “Sports Commentary Recommendation Sys-
tem (SCoReS): Machine Learning for Automated Narrative.”
AAAI, 2012,
https://ojs.aaai.org/index.php/AIIDE/article/download/12505/
12358/16027

(8) “Introducing Google Research Football: A Novel Reinforce-
ment Learning Environment.” Google Research, 7 June 2019,
research.google/blog/introducing-google-research-football-a-
novel-reinforcement-learning-environment

(9) Noyan, Merve. “Open-Source Text Generation & Llm Ecosys-
tem at Hugging Face.” Hugging Face – The AI Community
Building the Future., July 2023, https://huggingface.co/blog/
os-llms

(10) Ouyang, Shuyin, et al. “The Non-Determinism of Chatgpt
in Code Generation.” Arxiv, Aug. 2023, https://arxiv.org/pdf/
2308.02828

(11) OpenAI. “GPT-4.” OpenAI Blog, Mar. 2023, https://openai.
com/index/gpt-4-research

(12) Liu, Haotian, et al. “Visual Instruction Tuning.” arXiv.Org, 11
Dec. 2023, https://arxiv.org/abs/2304.08485

(13) Bergmann, Dave. “What Is Zero-Shot Learning?” IBM, 24 Jan.
2024, https://www.ibm.com/topics/zero-shot-learning

(14) Treadway, Dan. “How Are Commentators Programmed Into
Sports Video Games?” Sports Illustrated, 21 Aug. 2014, https://
www.si.com/extra-mustard/2014/08/21/how-are-commentators-
programmed-sports-video-games

(15) Cloudflare. “What Is a Large Language Model (LLM)?” Cloud-
flare, https://www.cloudflare.com/en-gb/learning/ai/what-is-
large-language-model. Accessed 9 June 2024.

(16) Haotian Liu. “Liuhaotian/llava-v1.5-13b ·Hugging Face.” Hug-
ging Face, https://huggingface.co/liuhaotian/llava-v1.5-13b

(17) Liu, Haotian, et al. “Improved Baselines With Visual Instruc-
tion Tuning.” arXiv.org, 5 Oct. 2023, https://arxiv.org/abs/2310.
03744

(18) LLaVA. https://llava-vl.github.io
(19) Chiang, Wei-Lin, et al. "Vicuna: An Open-Source Chatbot Im-

pressing GPT-4 with 90%* ChatGPT Quality." LMSYS, March
2023, https://lmsys.org/blog/2023-03-30-vicuna

(20) Radford, Alec, et al. “CLIP: Connecting Text and Images.”
OpenAI, 5 Jan. 2021, https://openai.com/index/clip

(21) “Comparing GPT-3.5 and GPT-4: A Thought Framework on
When to Use Each Model.” Microsoft Community, 18 Mar.
2024, https://techcommunity.microsoft.com/t5/ai
-azure-ai-services-blog/comparing-gpt-3-5-amp-gpt-4-a-thought
-framework-on-when-to-use/ba-p/4088645

(22) “Prompt Engineering.” OpenAI Platform, https://platform.openai.
com/docs/guides/prompt-engineering

(23) “How-to Guides: Prompting.” Meta, https://llama.meta.com/
docs/how-to-guides/prompting

(24) “Hello GPT-4o.” OpenAI, 13 May 2024, https://openai.com/
index/hello-gpt-4o

(25) Beutel, Gernot, et al. “Artificial Hallucination: GPT on LSD?”
Critical Care, vol. 27, no. 1, Apr. 2023, doi:10.1186/s13054-023-
04425-6

(26) Di Fu Jiashi Feng Ziwei Liu Chunyuan Li, Yuanhan Zhang Bo
Li, Haotian Liu, Yong Jae Lee, Liangke Gui,. “LLaVA-NeXT:
Improved Reasoning, OCR, and World Knowledge.” LLaVA,
30 Jan. 2024, llava-vl.github.io/blog/2024-04-30-llava-next-
video

(27) Touvron, Hugo et al. “Llama 2: Open Foundation and Fine-
Tuned Chat Models.” ArXiv abs/2307.09288 (2023).

(28) “Tokens and Tokenization.” IBM, 23 May 2024, www.ibm.com/
docs/en/watsonx/saas?topic=solutions-tokens

7

https://doi.org/10.1145/3337722.3341870
https://doi.org/10.1145/3337722.3341870
https://doi.org/10.1063/5.0198759
https://arxiv.org/abs/2212.10935
https://arxiv.org/abs/2212.10935
https://arxiv.org/abs/1909.02195
https://essay.utwente.nl/96001/1/Czaplicki_BA_EEMCS.pdf
https://essay.utwente.nl/96001/1/Czaplicki_BA_EEMCS.pdf
https://ojs.aaai.org/index.php/AIIDE/article/download/12505/12358/16027
https://ojs.aaai.org/index.php/AIIDE/article/download/12505/12358/16027
research.google/blog/introducing-google-research-football-a-novel-reinforcement-learning-environment
research.google/blog/introducing-google-research-football-a-novel-reinforcement-learning-environment
https://huggingface.co/blog/os-llms
https://huggingface.co/blog/os-llms
https://arxiv.org/pdf/2308.02828
https://arxiv.org/pdf/2308.02828
https://openai.com/index/gpt-4-research
https://openai.com/index/gpt-4-research
https://arxiv.org/abs/2304.08485
https://www.ibm.com/topics/zero-shot-learning
https://www.si.com/extra-mustard/2014/08/21/how-are-commentators-programmed-sports-video-games
https://www.si.com/extra-mustard/2014/08/21/how-are-commentators-programmed-sports-video-games
https://www.si.com/extra-mustard/2014/08/21/how-are-commentators-programmed-sports-video-games
https://www.cloudflare.com/en-gb/learning/ai/what-is-large-language-model
https://www.cloudflare.com/en-gb/learning/ai/what-is-large-language-model
https://huggingface.co/liuhaotian/llava-v1.5-13b
https://arxiv.org/abs/2310.03744
https://arxiv.org/abs/2310.03744
https://llava-vl.github.io
https://lmsys.org/blog/2023-03-30-vicuna
https://openai.com/index/clip
https://platform.openai.com/docs/guides/prompt-engineering
https://platform.openai.com/docs/guides/prompt-engineering
https://llama.meta.com/docs/how-to-guides/prompting
https://llama.meta.com/docs/how-to-guides/prompting
https://openai.com/index/hello-gpt-4o
https://openai.com/index/hello-gpt-4o
llava-vl.github.io/blog/2024-04-30-llava-next-video
llava-vl.github.io/blog/2024-04-30-llava-next-video
www.ibm.com/docs/en/watsonx/saas?topic=solutions-tokens
www.ibm.com/docs/en/watsonx/saas?topic=solutions-tokens

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Prompts
	3.2 Parameters
	3.3 Quantisation

	4 Method
	4.1 Game System
	4.2 Models
	4.3 Newer Version
	4.4 Parameters and Quantisation
	4.5 Conversation History
	4.6 Initial Prompts

	5 Experiment
	5.1 Dataset
	5.2 Generation
	5.3 Evaluation

	6 Results
	6.1 Annotation Scheme
	6.2 Results and Analysis

	7 Discussion
	7.1 Limitations
	7.2 Future Work

	8 Conclusion
	9 Appendix
	10 References

