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ABSTRACT

Skin disease classification by machine learning
models is an upcoming field of research that shows
great potential to assist dermatologists. These tech-
niques are, however, still vulnerable to corruptions
that can be present in the dermoscopic images. In this
paper, we tested two promising methods to improve
the robustness against corruptions: augmenting the
training datasets with corrupted images and pre-
processing the images with Contrast Limited Adap-
tive Histogram Equalization (CLAHE). We found
that the presence of corrupted images in the training
datasets can greatly improve the corruption robust-
ness while CLAHE harms the classification accuracy
of the models when faced with corrupted images.
Our benchmarks can be used as a starting point to
further develop AI models that can be used as reliable
diagnostic tools.

I. INTRODUCTION

Skin cancer is the most common type of cancer
worldwide, for instance 1 in 5 Americans will develop
skin cancer by the age of 70 [1]. That leads to a huge
number of cases, which is mainly due to the fact that,
although most people know melanoma, there are actually
more types of skin cancer. The good news is that, when
detected early, the 5-year survival rate for melanoma is
99 percent. This implies it is extremely important to
diagnose skin cancer as early as possible, which means
each technique that improves this diagnosis time could
be very valuable.
Machine learning or deep learning is one of these tech-
niques and has entered the field over the last decade or
so. Deep learning uses Convolutional Neural Networks
(CNN’s) to classify certain types of skin cancer from
images without the need for any medical expert to
intervene. A lot of research has already been done in this
field and it has been found that these CNN’s can be as
reliable or even superior to human experts. For example,
in a study done in 2019, a deep learning algorithm
outperformed 136 out of 157 dermatologists in a head-
to-head dermoscopic melanoma image classification task
[2]. This shows the technique has great potential to assist
doctors in their work.
However, where these CNN’s lack reliability is when it
comes to corruptions in the images, like blur or noise. A
human expert could easily ignore these corruptions and
still correctly diagnose the patient, but CNN’s have a lot
more trouble understanding the picture if there are small
or larger differences present compared to the images they
were trained on. This means the robustness of the CNN’s

is rather low, which can be a great issue if they are
actually used to diagnose real patients [3].
That’s where this research comes in. We have looked
into the effects of corruptions in images on the accuracy
of CNN models and tried to find ways to improve this
accuracy. This research will not only focus on skin
cancer but also on other types of (less harmful) skin
diseases to broaden the scope.
We specifically looked at two ways of improving the
corruption robustness of machine learning models clas-
sifying skin diseases. Firstly, adding corrupted data to
the training datasets. This tries to improve accuracy
by already exposing the machine learning models to
different amounts of corrupted images. This has been
proven in earlier research to be able to increase classifier
robustness [4]. The second method is preprocessing
the images with Contrast Limited Adaptive Histogram
Equalization (CLAHE). This is a variant of adaptive
histogram equalization that is meant to increase the
contrast of an image and thus increase the visibility
of details in an image (see Figure 1). It is widely
used for medical imaging applications and therefore also
has the possibility of improving the image classification
robustness of machine learning models [5].

Fig. 1. Effects of CLAHE being applied to images from the
HAM10000 dataset [6] used during this study.

Research Questions

This research focuses on two research questions. What
is the influence of adding corrupted images to the train-
ing datasets of CNN’s classifying skin diseases on the
corruption robustness of these models? And what is the
impact of preprocessing the images with Contrast Lim-
ited Adaptive Histogram Equalization on the corruption
robustness?
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II. SCIENTIFIC BACKGROUND

A. Benchmarking Neural Network Robustness To Com-
mon Corruptions And Perturbations [7]

This paper tests the robustness of multiple CNN
architectures by feeding them with images with corrup-
tions and perturbations. The datasets created by adding
these corruptions and perturbations build on the already
existing ImageNet dataset [8]. This dataset consists of
more than a million images divided over 1000 object
classes and is often used as a standard dataset for training
new CNN architectures and models. The authors of the
paper use the created ImageNet-C (Corruptions) and
ImageNet-P (Perturbations) datasets to test the error rate
of different CNN architectures that have been created
over the years like AlexNet [9] and ResNet [10]. They
found that the robustness for both corruptions and per-
turbations has improved over time, but that this is mainly
due to general accuracy improving too. The actual im-
provement in corruption robustness seems to even have
declined compared to older models. The authors also
come up with multiple ways to increase the robustness
of the models. Examples of these are Contrast Limited
Adaptive Histogram Equalization (CLAHE), multiscale
networks, which operate across multiple feature map
scales, and using larger networks like DenseNet-121
[11]. In the end the authors point out that further testing
and investigating new CNN architectures for robustness
can be important, especially now the clean model accu-
racy reaches its limits. The datasets they built have been
replicated using skin disease pictures for our research
and their findings in using CLAHE to improve robustness
laid the groundwork for testing it during this project.

B. A benchmark for neural network robustness in skin
cancer classification [12]

This paper focuses especially on the model robustness
of models classifying skin cancer, which means it’s
closer to our research questions. The paper was heav-
ily inspired and adapted from the previously discussed
ImageNet paper and also created a corruption dataset,
called SAM-C, and a perturbations dataset, called SAM-
P. The authors trained four different models (AlexNet,
VGG16+BN [13], ResNet50, and DenseNet121) on mul-
tiple skin cancer datasets without any corruptions and
perturbations. Then they tested the error rates when
the models were fed with both clean images, images
with corruptions, and images with perturbations. Just
like in the previous paper, they found that although
the newer networks like ResNet50 performed better on
the clean images, the older AlexNet actually has a
better perturbation robustness. The relative error rate

for images with corruptions (the one that compensates
for the overall better accuracy) was actually best in
DenseNet121. Although our research also focuses on
skin cancer, we broaden the scope by also including
different skin diseases than skin cancer. We also expand
on their research by specifically testing two ways to
improve corruption robustness instead of just comparing
the corruption robustness across different models. We
do, however, use largely the same methods as they used
during their research.

III. METHODOLOGY

A. The Dataset

The dataset used to test our research questions is
the Human Against Machine with 10000 training im-
ages dataset (HAM10000 in short) [6]. It was part of
a challenge hosted by the International Skin Imaging
Collaboration (ISIC) in 2018 which aimed to assess
the current state of skin cancer classification with the
help of artificial intelligence [14]. The dataset consists
of 10015 dermoscopic images divided into 7 classes of
skin diseases. As can be seen in Table I the dataset is
very unbalanced with the class nv having 6705 images
while df has 115. In Figure 2 an example picture from
each class of the dataset can be found. The original
dimensions of the images are 600 pixels by 450 pixels
but for this research they have been resized to 224 pixels
by 224 pixels because these are the input dimensions of
the machine learning models.

Fig. 2. Example image of each of the classes in the HAM10000
dataset [6].
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TABLE I
AN OVERVIEW OF THE HAM10000 DATASET [6]

Class Name Name Skin Disease Number of Images

akiec Actinic Keratoses 327
bcc Basal Cell Carcinoma 514
bkl Benign Keratosis 1099
df Dermatofibroma 115
mel Melanoma 1113
nv Melanocytic Nevi 6705
vasc Vascular Skin Lesions 142

B. Corruptions

To accurately evaluate the robustness of certain ma-
chine learning models, we had to develop a list of
image corruptions to use on the images. Preferably, these
corruptions resemble ones that could occur during real-
life use cases. The corruptions used in this research
were based on the corruptions used in both the earlier
mentioned ImageNet robustness paper [7] as well as the
skin cancer robustness paper [12]. The ImageNet paper
already provided a library to recreate the corruptions
they used, which made it easier to also implement
those corruptions into our dataset. The other corruptions
were implemented by us and those implementations
can be found on this project’s GitHub page via the
url https://github.com/TijmenWesteneng/BachelorThesis.
The corruptions can be divided into four categories:
noise, blur, dermoscopy, and digital. Each corruption
has a total of 5 severity levels, where 1 indicates a
low corruption level and 5 is the highest corruption
level. In Figure 3 the 14 different corruptions applied
to an example image from the dataset can be found.
Furthermore, in Section VII-B in the appendix a further
overview and descriptions of the 14 different corruptions
can be found.

C. Contrast Limited Adaptive Histogram Equalization

Adaptive histogram equalization works by stretching
the contents of an image histogram across the whole
possible range. It does this by first dividing the im-
age into tiles and then equalizing the histogram per
tile whereafter it merges the tiles together again. This
increases contrast but also increases noise. To solve this
issue Contrast Limited Adaptive Histogram Equalization
(CLAHE) clips the histogram at a predefined value and
redistributes the contents uniformly over the histogram
(see figure 4). This improves contrast without greatly
amplifying the noise [15].
CLAHE was implemented in our research using the
OpenCV library [16]. In most cases, CLAHE is applied

to a grayscale image but because the color contents of
the images are important in our case we first converted
the image to LAB color space and then applied CLAHE
to the lightness channel. We used a clip limit of 2 and a
tile grid size of 8. Figure 1 shows the result of a CLAHE
transformation on a few images from our dataset.

Fig. 4. Representation of the effects of CLAHE on an image
histogram [17].

D. Creating The Training & Testing Datasets

The research done in this thesis revolves around
changing the data used for a machine learning model to
hopefully improve its corruption robustness. To achieve
this, first the images in the dataset were all resized to
224 by 224 pixels to be usable for the machine learning
model. The complete dataset was then split up into a test
set (20%) and a training/validation set (80%). The test
and training sets were then individually treated in the
following ways:

1) Test Set: The test set was corrupted with all 14
different corruptions, each for all 5 different severities.
This created a dataset that could be used to test the
accuracy of the machine learning model for each differ-
ent corruption and severity. To evaluate the influence of
Contrast Limited Adaptive Histogram Equalization both
the corrupted and the non-corrupted test sets were treated
with CLAHE to create two new test sets.

2) Training Set: The training set was first corrupted in
the same way as the test set to create a new corrupted set
including all different corruptions and severities. To then
create the different corrupted datasets, the non-corrupted
dataset was taken and added to this were a number of
random images from each corruption from the corrupted
set. This was done in such a way to end up with a
new dataset that had a certain ratio between the number
of corrupted images in the set and the total number of
images in the set. This ratio is called the corruption ratio.
Section VII-C in the appendix shows a representation of
two example training datasets. Five sets were created
with a corruption ratio of 0.5 and a corruption severity
ranging from 1 to 5 and another five sets were created
with a corruption severity of 3 and a corruption ratio
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ranging from 0.1 to 0.5.
The training sets were then augmented by rotating (in
steps of 90 degrees) and mirroring / flipping the images.
These augmentations created eight different instances of
each image. In our case, this was done for all classes
except the nv class, because this class was already
largely overrepresented in the dataset. However, when
working with a different dataset that is more balanced,
augmenting can be done for all classes.
To test the influence of Contrast Limited Adaptive His-
togram Equalization, all training sets were copied and
then treated with CLAHE to end up with new training
sets with the same characteristics and images as the non-
CLAHE sets but with CLAHE applied.
After this all training sets were split up into a training
set (80%) and a validation set (20%).

E. Implementation details

Nowadays there is an abundance of machine learning
architectures available to use for testing. Based on liter-
ature research we chose to use the ResNet architecture
[10] because of its good balance between accuracy and
size [18] [19] [20]. It also was one of the better-
performing models in the earlier discussed robustness

papers [7] [12]. We chose to use ResNet-18 as the main
model used for testing because it is the smallest out
of all the ResNet architectures and will therefore take
the shortest time to run. Because this research focuses
on the difference between different configurations it is
not necessary to use larger models to achieve a greater
accuracy as long as the same model is used in each
instance. ResNet-50 was used as a baseline benchmark,
which use will be explained in Section III-F.
The ResNet models were implemented in Python using
the PyTorch library [21] and transfer learning was used
to make them able to classify the HAM10000 images.
This means that we took the weights from a ResNet
network that was pre-trained on the ImageNet [8] dataset
and then replaced the last (fully-connected) layer with a
new layer that could identify 7 different classes. We then
froze all weights except the ones from the newly added
layer so that the network only trained these weights.
This transfer-learning approach greatly reduces training
time by making use of the fact that a large part of an
image-classification network can remain identical when
changing its specific classification task [22].
Considering the hyperparameters used in training the
machine learning models, we decided to keep them equal

Fig. 3. Overview of all 14 corruptions used and the original image for reference (class: akiec & severity: 3).
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for all instances. A batch size of 32 and a learning rate of
0.001 was used. The models were trained for 20 epochs
or until the balanced accuracy of the network on the
validation set didn’t improve for 3 epochs. Then the
model weights from the last best balanced accuracy were
saved. The cross-entropy loss function was used as this
is a common loss function used in image classification
[23]. To compensate for the imbalance in the dataset we
assigned weights to each class in the loss function that
prioritizes the smaller classes.

F. Evaluation

To accurately determine the corruption robustness of
a machine learning model we had to define a way to
measure this corruption robustness. This was done by
first calculating a model’s balanced accuracy score on
the uncorrupted test set. The balanced accuracy is similar
to the normal accuracy of a model but compensates for
the possible class unbalance in the test set, which is a
great factor in our case. This balanced accuracy is then
subtracted from 1 to get the clean balanced error rate:
BEf

clean. After this the balanced error rate BEf
s,c for

each corruption type c and severity level s(1 ≤ s ≤
5) is calculated. We then use ResNet-50 trained on an
uncorrupted training dataset as a baseline to calculate an
average of the balanced error rate over the five severities
that compensates for the fact that not each corruption
has the same difficulty. This then gives us the following
formula for the balanced corruption error BCEf

c for a
single corruption type c:

BCEf
c = (

5∑
s=1

BEf
s,c) / (

5∑
s=1

BEResNet−50
s,c ) (1)

This balanced corruption error is then averaged out over
all the different corruption types to calculate the mean
balanced corruption error mBCE.
Although this mean balanced corruption error already is
a good indicator of the corruption robustness of a model,
it can happen that a model performs relatively well on the
uncorrupted dataset and therefore also performs well on
the corrupted datasets. A good statistic that only focuses
on robustness would disregard this edge that a model has
due to its good general accuracy and would instead focus
on the difference between the clean error rates and the
corruption error rates. This is where the relative mean
balanced corruption error relative mBCE comes in. It
is calculated by subtracting the clean balanced error rates

from the balanced corruption errors:

relative BCEf
c = (

5∑
s=1

BEf
s,c −BEf

clean) /

(
5∑

s=1

BEResNet−50
s,c −BEResNet−50

clean )

(2)

These balanced corruption errors are then averaged
across all corruption types, just as with the normal
mBCE, to get the relative mBCE.

IV. RESULTS

After averaging the results over 5 runs of training and
testing we end up with the following results.

Fig. 5. Clean error rate of models trained with different corruption
severities and possibly pre-processed with CLAHE.

Fig. 6. Clean error rate of models trained with different corruption
ratios and possibly pre-processed with CLAHE.
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Figure 5 and figure 6 show the clean error rates for
different corruption severities and corruption ratios re-
spectively. As can be seen, no trend is visible in the lines
and the total range of values is relatively small (between
0.375 and 0.415). For different corruption severities,
non-CLAHE is mostly outperforming CLAHE, but for
different corruption ratios it is the other way around.

Fig. 7. (Relative) mBCE of models trained with different corruption
severities and possibly pre-processed with CLAHE (corruption ratio
(cr) = 0.5).

Figure 7 and Figure 8 show the (relative) mBCE
values for different corruption severities and corruption
ratios respectively. There is a clear downward trend
visible in both plots, which indicates a better corruption
robustness. The difference between CLAHE and non-
CLAHE is relatively small with non-CLAHE mostly
outperforming CLAHE when it comes to mBCE. To
get a better idea of the reason behind CLAHE often
underperforming we looked at the difference between
images that are frequently wrongly classified by CLAHE
models and rightly classified by non-CLAHE models and
vice-versa. An overview of a few of these images can be
found in Section VII-H of the appendix. We also looked
into the classification improvement caused by training
with corrupted data by listing a few example images
that are correctly classified by the models trained on
corrupted data but incorrectly classified by the models

trained without corrupted data. This overview can be
found in Section VII-I of the appendix.

Fig. 8. (Relative) mBCE of models trained with different corruption
ratios and possibly pre-processed with CLAHE (corruption severity
(s) = 3).

To get a better overview of the corruption robustness
to specific corruptions of the different models Table II
shows the error rates averaged over all severities for
each particular corruption. These values have not been
compensated by a baseline, but are just the standard
mean values. What is immediately noticeable is that the
standard model is especially vulnerable to the different
noise corruptions, proven by the fact that the top three
error rates are all of the corruption-type noise. It’s also
noticeable that CLAHE is performing (slightly) worse
on almost every corruption in both the models trained on
the non-corrupted and the corrupted datasets. In Section
VII-F of the appendix a table highlighting the difference
in performance can be found.

Table III shows the top-1 accuracies per corruption
of the best-performing models per severity. As can
be seen, average performance degrades when severity
increases and the best performing models are trained on
severities close to the ones they were tested on. Also,
none of the best-performing models were models whose
images were pre-processed with CLAHE. Section VII-G
of the appendix includes a full table summarizing the

TABLE II
AVERAGE ERROR RATES PER CORRUPTION SORTED BY THE NON-CORRUPTED TRAINING DATASET ERROR RATES

(MODEL: NUMBER = SEVERITY, C = CLAHE, RATIO = 0.5)

Model Clean Shot. Impul. Gauss. Contrast Bl.Cor. Bri.Do. JPEG Defoc. Motion. Zoom. Bri.Up Pixel. Elast. Char.

0 0.41 0.83 0.83 0.81 0.73 0.73 0.68 0.65 0.60 0.58 0.55 0.55 0.48 0.46 0.44
0C 0.40 0.84 0.83 0.84 0.74 0.62 0.66 0.65 0.61 0.60 0.58 0.55 0.51 0.48 0.44
5 0.40 0.62 0.59 0.59 0.60 0.51 0.53 0.54 0.51 0.48 0.50 0.50 0.44 0.43 0.43
5C 0.41 0.65 0.61 0.64 0.64 0.50 0.52 0.55 0.51 0.49 0.52 0.48 0.46 0.44 0.43
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accuracies of all 12 models with a corruption ratio of
0.5.

To further evaluate the performance of certain models
the appendix also discusses a few confusion matrices.
Section VII-D discusses four confusion matrices of non-
corrupted, corrupted, and CLAHE models on a clean test
set and Section VII-E discusses two confusion matrices
of models tested on a corrupted test set.

V. DISCUSSION

A. Corruption Robustness

Our results show that classifier reliability greatly de-
clines when presented with corrupted images. As can be
seen in Table II, models trained on purely non-corrupted
data have a twice as high error rate on the worst cor-
ruption than on a clean test set and the average accuracy
already decreases from 59.5% to 46.6% when confronted
with severity 1 corruptions (see Section VII-G of the
appendix). There is however a large difference visible
in the impact of the different corruptions. For example,
characters, the corruption with the smallest impact, only
decreases performance by about 5%, while shot noise
decreases performance by about 71%. This corresponds
with what was found in earlier research [7] and is also to
be expected. Noise can greatly change an image, while
a few random characters in a photo don’t change the
contents a lot as long as they don’t interfere with the
important details of the image.
What is interesting to see is that the biggest improvement
in classifier performance is the black corner corruption.
Its error rate improved from 0.73 to 0.51 after it was
trained on severity 5 and ratio 0.5 corruptions. This
shows that training on corrupted data has taught the
classifier not to focus on the corners of the image, but
just on the middle of the image where the disease is the
most visible.

B. Training with corrupted data

Let’s take a look at our first research question: What
is the influence of adding corrupted images to the
training datasets of CNN’s classifying skin diseases on
the corruption robustness of these models? Our results
prove that training with corrupted data improves model
robustness, which was also what we expected to see.
When we look at the difference between training without
corrupted data and with corrupted data of severity 5 we
see a decrease in mBCE from 0.98 to 0.82 (16.3%, see
Figure 7). The relative mBCE even decreases from 0.77
to 0.44, a decrease of 42.9%. There doesn’t seem to be
much of an influence on the performance on the clean
test set, although the performance does decrease slightly
in some instances (see Figure 5 and 6).
When it comes to the influence of the corruption severity
of the images in the training dataset on the corruption
robustness of the model we can see that a higher corrup-
tion severity results in both a better mBCE and relative
mBCE. For example, as shown in Figure 7 the average
mBCE of non-CLAHE models for corruption severity 1
is 0.87, while the mBCE for severity 5 is 0.82. This
is a decrease of 5.8%. The relative mBCE decreases
even further from 0.58 to 0.44, a decrease of 24.1%.
However, it is interesting to note that Table III shows that
for lower severities, the best-performing models are not
those trained on the highest severity, but rather models
trained on images with a severity closer to the one they
were tested on. This indicates that models perform best
on corruptions that resemble the ones they were trained
on, which is to be expected since those corruptions
were part of their training data. However, on average
over all severities, the severity 5 models are still the
best-performing models. This is caused by the accuracy
of models trained on lower severity images degrading
greatly when faced with more severe corruptions, while
models trained on higher severities are still quite good
at working with lower severities (see Section VII-F of
the appendix). Overall, models are good at classifying

TABLE III
MODELS WITH THE BEST TOP-1 ACCURACIES PER SEVERITY (MODEL: NUMBER = SEVERITY, RATIO = 0.5)

Severity Model Corruption (top-1 acc. in %) Avg.
Gauss. Shot. Impul. Defoc. Motion. Zoom. Bl.Cor. Char. Bri.Up Bri.Do. Contr. Elast. Pixel. JPEG.

1 2 50.0 51.5 50.5 59.9 60.7 55.5 50.7 60.8 58.7 57.4 52.5 62.9 60.0 56.2 56.2

2 2 52.7 46.5 46.8 55.7 55.8 52.4 50.4 59.4 53.0 48.5 48.0 52.6 62.7 51.1 52.5
3 49.5 47.8 45.5 56.4 54.8 52.5 49.7 58.9 54.0 52.2 48.2 50.8 62.4 51.9 52.5

3 3 44.7 42.4 44.3 51.2 53.1 50.6 49.4 57.1 52.6 41.9 41.0 63.3 58.2 50.7 50.0

4 5 41.2 38.9 38.6 44.9 47.3 49.4 48.4 56.2 48.8 40.4 35.0 59.2 49.9 40.0 45.6

5 5 33.0 31.5 35.6 45.1 47.1 48.2 47.6 54.5 46.7 34.5 34.1 55.9 50.7 34.8 42.8
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equal or lower severities than the ones they were trained
on. Therefore, it is advisable to estimate the expected
severities of the corruptions a model will encounter dur-
ing its use and adjust the training data accordingly. An
alternative approach could be to train with corruptions
with multiple different severities, but the impact of such a
configuration should first be researched in future studies.
As shown in Figure 8, a higher corruption ratio exhibits
the same trend as a higher corruption severity. Between
a corruption ratio of 0.1 and 0.5, the mBCE decreases
from 0.92 to 0.82, a decrease of 10.9%. The relative
mBCE even decreases from 0.60 to 0.50, a decrease of
16.7%. The results even seem to suggest that corruption
ratios beyond 0.5 would result in even better corruption
robustness, but these ratios weren’t tested during this
research so their effects remain uncertain. The results
can be explained by the fact that when the model can
correctly classify more corrupt images, it will also be
able to better classify corrupt images when presented
with them during testing. The relative mBCE does in-
crease from the ratio 0.4 to 0.5 (from 0.48 to 0.50, see
Figure 8), but this is only caused by a steep decline in
the clean error rate (see Figure 6) and since there is no
trend visible in these lines this result does not bear any
significance.

C. Contrast Limited Adaptive Histogram Equalization

With our results, we can also answer the second
research question: What is the impact of preprocessing
the images with Contrast Limited Adaptive Histogram
Equalization (CLAHE) on the corruption robustness? If
we look at Figures 7 and 8 we see that the CLAHE
models are often underperforming the non-CLAHE mod-
els. The mBCE of the CLAHE models in the corruption
severity graph (Figure 7) is never better than that of the
non-CLAHE models and also the relative mBCE is often
worse. At the best performing, severity 5, models the
non-CLAHE models achieve an mBCE of 0.82, and the
CLAHE models an mBCE of 0.83, which is an increase
(and thus decrease in performance) of 1.2%. When we
look at the corruption ratio (Figure 8) the results are
less definitive, with the mBCE lines crossing each other
multiple times. However, because we concluded earlier
that a corruption ratio of 0.5 is performing the best, the
results of the other ratios don’t have a lot of significance
in our conclusion. CLAHE not improving the corruption
robustness is not what we expected to find. The earlier
mentioned ImageNet paper [7] found an improvement
of the mBCE of almost 3% when using CLAHE. This
difference could be explained by the fact that ImageNet
is a vastly different dataset than HAM10000. Although

it has many more classes (1000 against 7), the classes
are much more distinctive than the HAM10000 classes.
Distinguishing a bird from a dog relies on much less
detail in the image than differentiating between skin
diseases. We see in some cases that the CLAHE is
amplifying details in an image that are not part of the
disease itself and thus could hinder the recognition of
the disease (see Section VII-H in the appendix).

D. Future research

Our findings leave quite some room for future re-
search. One of the most interesting things that could be
looked at is the effect that training with corruptions has
on the focus regions of the neural network. We already
saw that the model showed a large improvement in the
black corner corruption and we hypothesized this could
be because it learned to focus on the center regions of the
image. This could be further investigated by looking at
the class activation maps of the specific convolutional
neural networks. This has been done in other image
classification fields, but not yet for skin diseases [24]
[25].
Next to this, further research into different methods of
histogram equalization could lead to different insights
than those found during this study. There exist other
types of histogram equalization that try to only increase
the contrast in the regions of interest of the image.
This could be a solution for the amplification of non-
important details that we found during our research.
Examples of these approaches are Selective Energy-
Based Histogram Equalization (SEBHE), which has been
proven to improve contrast in breast mammograms [26],
and Selective Apex Adaptive Histogram Equalization
(SLAAHE), which has been used to improve contrast
in ultrasound and MRI images [27]. Applying methods
like these to dermoscopic images could lead to an
improvement in corruption robustness that we didn’t find
in this study.

VI. CONCLUSION

In this paper, we examined the impact of train-
ing with corrupted images and pre-processing images
with Contrast Limited Adaptive Histogram Equalization
(CLAHE) on the corruption robustness of machine learn-
ing models classifying skin diseases. This was done
to improve the diagnostic reliability of these models,
so they are less impacted by imperfections in images
and can therefore operate in a variety of circumstances.
We found that the performance of models that are
not trained with corrupted images or whose images
are not pre-processed with CLAHE declines greatly
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when presented with corrupted images. Even severity 1
corruptions already decrease the accuracy from 59.5%
to 46.6%. These models can therefore not be trusted
to classify skin diseases correctly when a corruption,
in any severity, is present. Our findings indicate that
augmenting the training datasets with corrupted images
can greatly improve the corruption robustness. We found
a decrease in mBCE and relative mBCE of 16.3%
and 42.9% respectively when models are trained with
severity 5 corruptions and a corruption ratio of 0.5.
Adding more corrupted images and images with a greater
corruption severity during training has a positive effect
on the classification of corrupted images during testing.
However, it is important to note that models perform
best on severities that resemble the ones in their training
set, so it is important to choose severities based on the
expected use cases of the model. The improvement in the
classification of corrupted images doesn’t compromise
the classification reliability of non-corrupted images.
Pre-processing the images with Contrast Limited Adap-
tive Histogram Equalization has a minor negative effect
on the recognition of corrupted images. We found a
decrease in performance of 1.2% on the most robust,
severity 5 and ratio 0.5, models. CLAHE should there-
fore, according to our research, not be used as a method
to improve corruption robustness.
Our work can be used as a starting point to further
investigate methods to improve the corruption robust-
ness of machine learning models classifying skin dis-
eases. Where our research focused on alternating the
training data, there are also other promising methods,
like multiscale networks, that focus on alternating the
model structure. Using our research and these methods,
machine learning models can hopefully once be reliably
used as a dermatological diagnostic tool.
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VII. APPENDIX

A. Artificial Intelligence statement

During the preparation of this work, the author used Grammarly and Overleaf to improve the spelling and
grammar of sections of this paper. The author also used ChatGPT to help with debugging the Python code written
by the author himself. No code used for the final product or sections of the paper submitted was fully written by
ChatGPT or any other AI tool. After using the AI tools/services, the author reviewed and edited the content as
needed and takes full responsibility for the content of the work.

B. Further overview of corruptions

TABLE IV
OVERVIEW AND SHORT DESCRIPTION OF THE USED CORRUPTIONS

Category Corruption Description

Noise Gaussian Appears in low-lighting conditions
Shot Electronic noise that is caused by the discrete nature of light
Impulse Salt-and-pepper noise caused by bit errors

Blur Defocus The image is out of focus
Motion The camera moves quickly in some direction
Zoom The camera moves quickly towards the object

Dermoscopy Black corner Black image corners caused by the dermatoscope
Characters Letters, numbers and punctuation marks which might be overlaid by the camera

Digital Brightness up/down Varies with daylight intensity or the camera
Contrast Depends on lighting conditions and object colour
Elastic Transform Transformations stretching or contracting small image regions
Pixelate Artefacts occurring when upsampling low-resolution images
Jpeg compression Artefacts occurring due to lossy image compression format

Table IV shows an overview of all the fourteen different corruptions used during this study. As can be seen, they
are divided into four categories: noise, blur, dermoscopy, and digital. The corruptions were chosen because they
can occur during the real-life photographing and processing of dermoscopic images.
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C. Representation of training dataset creation

Fig. 9. Representation of a training dataset with severity 3 and corruption ratio 0.5.

Fig. 10. Representation of a training dataset with severity 5 and corruption ratio 0.3.

Figure 9 and Figure 10 show representations of two datasets with different corruption severities and corruption
ratios. All corrupted datasets consist of the full uncorrupted training dataset combined with an equal number of
images from each corruption type depending on the corruption ratio. The class distribution is kept the same, so
each class’s corruption ratio is equal.
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D. Confusion matrices clean test set

Fig. 11. Confusion matrices of model trained on a non-corrupted dataset with or without CLAHE.

Fig. 12. Confusion matrices of model trained on a corrupted dataset (s = 5, cr = 0.5) with or without CLAHE.

Figure 11 shows the confusion matrices of models trained on non-corrupted data. The left matrix is of a model
whose images have been pre-processed with CLAHE and the right one is without. Figure 12 shows the same but
for models trained on corrupted data with a corruption severity of 5 and a corruption ratio of 0.5. It can be seen
that all models perform very similarly with the non-corrupted CLAHE model having the smallest outliers when it
comes to underperforming classes. There are no classes that are recognized much worse than the rest although the
models are often underperforming on the class bkl. This once again proves that both CLAHE as well as training
with corruptions don’t have a big effect on the clean test set accuracy or the recognition of certain classes.
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E. Confusion matrices corrupted test set

Fig. 13. Normalized (by rows) confusion matrices of a model trained on a non-corrupted dataset and a model trained on a corrupted dataset
(s = 5, cr = 0.5) tested on all corruptions (s: 1-5).

To get a better idea on where the difference in corruption robustness is coming from, we tested a non-corrupted
and a corrupted model on all corruption types and severities (total of 70) and then averaged out their confusion
matrices to get one average confusion matrix per model. These matrices can be found in Figure 13. It can be seen
that the model trained on non-corrupted data has a lot of false positives of the nv class and also is performing
especially bad on the akiec, bcc and bkl classes. The model trained on corrupted data has an improved performance
on almost all the classes and has a fewer false positives of the nv class. It is interesting to see that there are so
many false positives of the nv class in the first place because this seems to suggest that the model has learned
to guess the class with the most images if it isn’t sure. This should have been prevented by implementing class
weights in the loss function and augmenting all classes except the nv class. We also don’t see the same amount of
false positives in the confusion matrix of the clean test set (see Section VII-D), proving that these measures did
have an effect.

F. Corruption error rates differences

TABLE V
PERCENTAGE DIFFERENCE BETWEEN NON-CORRUPTED AND OTHER ERROR RATES FOR DIFFERENT CORRUPTIONS

(MODEL: NUMBER = SEVERITY, C = CLAHE, RATIO = 0.5).

Model Clean Bl.Cor. Impul. Gauss. Shot. Bri.Do. Contr. Motion. JPEG. Defoc. Bri.Up Zoom. Pixel. Elast. Char.

0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0C -2.44 -15.07 0.0 3.7 1.2 -2.94 1.37 3.45 0.0 1.67 0.0 5.45 6.25 4.35 0.0
5 -2.44 -30.14 -28.92 -27.16 -25.3 -22.06 -17.81 -17.24 -16.92 -15.0 -9.09 -9.09 -8.33 -6.52 -2.27
5C 0.0 -31.51 -26.51 -20.99 -21.69 -23.53 -12.33 -15.52 -15.38 -15.0 -12.73 -5.45 -4.17 -4.35 -2.27

Table V highlights the impact of training with corrupted data by showing the difference in error rates per
corruption between the non-corrupted, non-CLAHE models and other models. You can immediately notice that
the biggest error rate improvement is found in the black corner corruption. This is an outlier because the biggest
improvements are generally found in the corruptions which started with the highest error rates: the noise corruptions.
As discussed in the paper, this indicates that, by training on corrupted data, the model has learned to focus on the
regions of the image that are not blacked out.
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G. Accuracies of different models

Table VI shows a complete overview of top-1 accuracy percentages for all corruption types and severities for
models trained on different severities with a corruption ratio of 0.5. It can be seen that, as expected, the accuracies
get worse for increasing severities. It is also interesting to note that there is only a 4% difference between the
average accuracy of the non-corrupted model on the severity 1 corruptions and the average accuracy of the severity
5 corrupted model on the severity 5 corruptions. This proves how much training with corruptions can make up for
the difficulty of recognizing more corrupted images.

If we take a look at the best-performing models per severity (shaded in gray) we find that the models trained
on severity 5 corruptions are not always the ones with the best performance. For severity 1, the model trained on
severity 2 corruptions is performing best. For severity 2, it is a tie for the models trained on severities 2 and 3. For
severity 3, it is the model trained on severity 3 corruptions and for both severities 4 and 5, it is the model trained
on severity 5 corruptions that is beating the other models in accuracy. This indicates that the models perform best
on corruptions that resemble the ones they’ve been trained on. However, we do see that the models trained on
corruptions less severe than the ones they’re tested on degrade quickly in performance, while the models trained
on more severe corruptions are still quite able to work with corruptions less severe than the ones they were trained
on. For example, the severity 1 model is getting an average accuracy of 32.6% on severity 5 corruptions compared
to the 42.8% accuracy of the severity 5 model. This is a big difference that indicates that a model trained on
severity 1 corruptions cannot be trusted when confronted with severity 5 corruptions. On the other side, we see the
severity 5 model getting an average accuracy of 52.7% on the severity 1 corruptions while the severity 1 model
is getting an accuracy of 56.2%. This is still a performance gap, but less significant than the difference we found
for severity 5 corruptions. This means that when it’s uncertain what severity corruptions a model will encounter
it’s best to train the model with images of the highest level of corruption. However, when the model should
be robust against only a certain range of corruption severities, it’s best to train the model with severities in that range.

What is also interesting to see is that, if we look at the best-performing models per severity, the average accuracy
of the CLAHE models is always worse than that of the non-CLAHE models. This shows that, according to our
research, CLAHE doesn’t improve the corruption robustness of models classifying skin diseases.
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TABLE VI
TOP-1 ACCURACY OF A VARIETY OF MODELS FOR DIFFERENT CORRUPTIONS AND SEVERITIES

(MODEL: NUMBER = SEVERITY, C = CLAHE, RATIO = 0.5)

Severity Model Corruption (top-1 acc. in %) Avg.
Gauss. Shot. Impul. Defoc. Motion. Zoom. Bl.Cor. Char. Bri.Up Bri.Do. Contr. Elast. Pixel. JPEG.

0 33.8 26.1 24.7 50.3 55.0 49.9 32.0 59.3 57.7 54.1 43.9 56.0 61.0 49.3 46.6
0C 24.2 22.6 26.9 50.4 50.7 49.8 39.1 58.4 57.7 55.4 41.7 55.7 56.8 48.2 45.5
1 52.1 47.9 47.7 58.7 60.0 55.9 52.1 60.2 59.7 56.2 52.4 59.7 62.1 54.8 55.7
1C 52.6 47.9 51.4 55.7 57.2 54.5 51.8 57.8 56.5 56.1 48.5 59.1 60.4 53.1 54.5
2 50.0 51.5 50.5 59.9 60.7 55.5 50.7 60.8 58.7 57.4 52.5 62.9 60.0 56.2 56.2

1 2C 48.1 47.5 52.8 57.7 55.9 54.2 50.1 60.4 58.3 59.0 50.1 60.7 60.5 52.9 54.9
3 49.2 49.5 49.2 59.1 58.6 54.7 50.1 58.9 58.5 58.1 52.6 61.0 61.9 55.4 55.5
3C 42.9 42.5 51.0 56.9 54.2 51.7 51.6 58.4 57.0 57.9 47.2 58.5 59.6 51.3 52.9
4 44.1 43.9 45.5 56.6 57.6 53.3 49.2 55.9 54.8 55.6 49.0 59.2 59.0 53.8 52.7
4C 41.7 40.7 47.9 55.9 52.3 51.5 46.6 57.6 55.8 58.2 45.3 58.7 59.8 51.4 51.7
5 43.4 42.6 45.6 56.5 56.5 51.0 48.5 57.6 56.3 59.1 47.9 57.7 59.9 55.5 52.7
5C 37.3 36.0 46.7 56.0 54.9 50.0 50.4 58.2 58.0 58.7 43.8 57.5 60.3 50.7 51.3

0 19.5 15.3 17.5 45.0 48.0 48.4 28.5 56.9 48.0 40.1 36.4 47.7 61.8 43.4 39.8
0C 15.6 14.0 17.1 41.8 45.8 44.8 40.3 56.0 48.5 43.3 33.8 44.7 60.3 41.6 39.1
1 45.7 37.9 34.1 54.4 57.7 51.0 48.3 58.9 52.1 44.2 43.9 50.4 63.0 49.9 49.4
1C 44.4 38.3 43.0 48.0 55.6 48.9 52.7 58.4 52.7 47.8 42.3 50.5 60.6 51.5 49.6
2 52.7 46.5 46.8 55.7 55.8 52.4 50.4 59.4 53.0 48.5 48.0 52.6 62.7 51.1 52.5

2 2C 49.8 44.6 48.2 52.5 56.9 49.1 52.6 58.2 55.6 51.5 43.4 53.4 61.1 49.0 51.8
3 49.5 47.8 45.5 56.4 54.8 52.5 49.7 58.9 54.0 52.2 48.2 50.8 62.4 51.9 52.5
3C 43.9 42.7 45.8 53.9 53.1 49.8 52.1 57.0 52.5 52.8 42.4 49.5 58.5 50.0 50.3
4 45.0 42.3 43.3 54.1 55.5 52.0 48.5 58.1 48.0 50.1 46.1 49.9 60.4 50.9 50.3
4C 40.9 43.6 42.3 51.1 51.0 48.0 47.1 57.0 50.7 53.7 40.6 47.5 57.0 47.5 48.4
5 43.3 40.0 44.2 52.5 54.7 48.8 49.7 57.4 48.3 54.5 44.5 47.0 62.1 50.6 49.8
5C 37.0 37.5 40.0 51.2 53.0 47.6 51.0 56.5 52.5 53.4 39.2 47.2 60.2 49.0 48.2

0 14.9 14.9 15.0 39.7 41.5 43.6 26.7 56.8 41.2 29.0 23.1 59.8 51.9 37.7 35.4
0C 14.1 13.6 14.1 37.9 38.0 40.4 40.2 54.8 42.7 31.2 24.3 57.3 51.8 36.9 35.5
1 32.3 25.0 31.0 47.5 49.4 46.1 47.5 58.4 49.3 31.9 35.5 63.2 56.5 45.1 44.2
1C 33.5 26.2 37.8 40.1 48.5 45.6 51.2 56.2 51.6 35.1 35.2 62.5 50.5 46.4 44.3
2 41.9 38.1 41.5 48.6 49.8 47.2 50.1 57.8 49.6 38.2 39.4 63.8 53.8 46.3 47.6

3 2C 40.3 37.6 46.6 45.7 49.8 47.4 51.8 58.5 51.4 41.9 37.0 60.9 53.4 45.8 47.7
3 44.7 42.4 44.3 51.2 53.1 50.6 49.4 57.1 52.6 41.9 41.0 63.3 58.2 50.7 50.0
3C 41.7 39.1 42.5 48.5 49.7 48.5 51.3 56.1 52.1 43.4 38.0 59.8 54.6 48.1 48.1
4 42.4 40.5 42.1 49.1 51.1 51.0 48.0 55.8 49.1 42.0 40.6 61.9 55.6 46.6 48.3
4C 42.4 41.8 41.6 45.7 49.1 48.6 48.5 55.5 49.7 47.3 38.0 59.0 51.6 45.3 47.4
5 42.2 38.3 40.9 45.9 52.3 51.1 50.1 58.8 50.7 45.1 37.7 63.0 55.1 48.0 48.5
5C 38.1 37.7 37.7 46.1 51.4 47.9 51.3 58.0 51.9 49.3 33.8 62.5 52.3 46.3 47.4

0 14.7 14.3 14.7 33.7 34.1 42.7 25.3 55.3 40.4 19.9 14.9 57.4 43.2 28.6 31.4
0C 14.3 14.1 14.2 32.9 34.1 39.8 37.2 55.0 39.9 23.1 14.3 55.1 38.4 28.0 31.5
1 19.6 17.7 21.3 42.3 41.1 45.3 44.6 56.6 45.4 22.8 19.0 61.5 47.3 32.6 36.9
1C 20.8 18.2 25.1 42.2 40.6 44.9 48.3 56.1 47.2 25.2 18.0 57.7 40.0 36.8 37.2
2 27.7 22.1 27.7 42.6 40.8 47.0 47.9 57.7 45.1 26.9 27.5 59.5 47.6 35.3 39.7

4 2C 28.1 21.7 32.7 43.3 43.7 45.3 51.7 57.7 46.1 30.9 20.3 57.4 43.1 36.6 39.9
3 38.2 24.0 35.6 48.0 45.3 51.0 47.2 54.0 48.5 32.1 30.8 61.7 49.8 39.2 43.2
3C 33.0 25.9 37.8 46.4 46.1 49.5 49.7 54.7 47.3 35.1 24.5 57.2 46.0 39.4 42.3
4 40.5 34.5 38.6 49.2 47.2 50.1 48.3 53.5 48.2 38.4 36.8 57.0 49.2 39.7 45.1
4C 39.2 34.6 39.4 47.0 46.4 49.3 48.0 53.9 48.3 39.8 29.9 56.7 49.4 39.2 44.4
5 41.2 38.9 38.6 44.9 47.3 49.4 48.4 56.2 48.8 40.4 35.0 59.2 49.9 40.0 45.6
5C 37.8 36.4 37.1 46.5 47.9 48.5 49.1 56.1 50.1 40.7 32.7 58.3 49.6 40.7 45.1

0 13.8 13.4 13.0 29.6 30.8 39.1 24.8 53.2 37.1 17.3 14.6 50.6 40.5 18.1 28.3
0C 14.3 14.3 14.1 31.5 30.6 36.6 34.2 53.7 38.2 16.9 14.0 48.3 36.6 19.1 28.7
1 15.7 15.7 17.3 37.5 39.7 40.5 41.1 55.6 43.8 17.2 15.2 51.7 45.4 19.5 32.6
1C 16.4 17.4 17.9 36.4 39.1 40.1 46.9 53.3 44.5 19.2 14.8 50.0 38.3 26.5 32.9
2 20.7 17.3 20.7 34.2 40.6 41.8 44.6 53.8 42.2 19.6 19.2 53.9 47.4 23.0 34.2

5 2C 17.2 18.3 20.4 38.4 42.2 40.6 48.7 57.6 44.3 21.1 15.6 51.5 42.3 28.9 34.8
3 21.0 17.8 23.4 42.3 44.4 47.8 43.3 53.8 47.1 21.5 19.9 54.8 46.6 28.7 36.6
3C 20.7 20.9 26.4 41.2 42.2 47.0 48.2 55.3 46.0 24.8 15.6 52.1 42.9 32.7 36.9
4 29.5 28.3 32.0 48.3 47.0 47.9 46.7 53.2 46.4 30.5 30.1 51.1 49.0 32.6 40.9
4C 26.6 27.8 31.6 46.6 44.8 47.3 48.8 53.7 45.4 33.9 23.0 51.6 46.0 34.0 40.1
5 33.0 31.5 35.6 45.1 47.1 48.2 47.6 54.5 46.7 34.5 34.1 55.9 50.7 34.8 42.8
5C 30.2 29.0 33.6 47.1 46.2 48.4 50.6 56.9 48.3 36.8 30.0 56.4 46.7 36.3 42.6
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H. Influence of Contrast Limited Adaptive Histogram Equalization

Fig. 14. 10 examples of images wrongly classified by CLAHE models and rightly classified by non-CLAHE models.

Fig. 15. 10 examples of images rightly classified by CLAHE models and wrongly classified by non-CLAHE models.

To better understand why Contrast Limited Adaptive Histogram Equalization is sometimes decreasing the
performance of our models, we created an overview of images that were misclassified by multiple models trained
on CLAHE pre-processed images but rightly classified by models that were not. Figure 14 shows an overview of
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10 of these images where the right class is in green and the class predicted by the CLAHE models, the wrong class,
is in red. Figure 15 shows 10 images where the exact opposite happened. They were misclassified by non-CLAHE
models and rightly classified by the CLAHE ones.
Although the differences between these figures are not directly apparent, it can be seen that in multiple cases the
wrongly classified images by CLAHE have higher contrast backgrounds after being processed with CLAHE. The
background is often the normal skin and is therefore less important than the disease. When CLAHE amplifies
especially these background regions it could achieve the exact opposite of what it’s designed to do, which is
amplifying the disease regions. This could worsen the performance of the CLAHE models on these images.

I. Examples of classification improvement through training with corruptions

Fig. 16. Overview of images that have been rightly classified by all ”s = 5, cr = 0.5”-models and wrongly classified by all models trained
without corrupted data.

To better visualize the improved classifier robustness through training with corrupted data we provide the images
in Figure 16. These images were correctly classified by all 5 models trained on corrupted data (severity = 5 and
ratio = 0.5), but incorrectly classified by all 5 models trained on only non-corrupted data. This indicates that the
models have learned to see through the corruptions in these images by training on different images with the same
corruptions (the corrupted training dataset). Even some of the more corrupted images are still recognized correctly
and by multiple models, which lowers the chances of them being recognized correctly by coincidence.


