
Test Case Generation by Game Theory
JARON LENDERING, University of Twente, The Netherlands

Model-based testing is a systematic method to create test cases by using a
specification model of the system. In earlier papers, the idea of using strate-
gies, for formal games, as test cases was explored. By using a multitude
of strategies that have a goal to go to a certain part of the application, the
application gets traversed and bugs can be found. This paper compares test
generation by different game strategy synthesis techniques to determine
which creates better strategies for creating tests. Two synthesizers are com-
pared, Backward Induction (BI) and Simultaneous Move Monte Carlo Tree
Search (SM-MCTS). Those strategies are executed on a game, derived from
the specification of an executable application created especially for this
paper. By using metrics of coverage, speed and test termination factors, I
found out that BI works well for small applications and SM-MCTS does not
with the used specification. I also predict that SM-MCTS will not work well
on any application if it is used as I used it in this paper.

Additional Key Words and Phrases: Model-based testing, 2-Player Concur-
rent Games, Game theory

1 INTRODUCTION
Testing is an integral part of software development. Without testing,
it is impossible to determine the quality of software. However, it
also takes a lot of time. That is a problem that model-based testing
tries to solve. By specifying the system in a formal model, like
an automaton, there are ways to create test cases for the system
automatically. A lot of different approaches are being used[4], like
Finite State Machines or UML Diagrams, but in this paper, I will
create a specification and a game based on that specification. Using
the game, I will use game theoretic strategies as test cases for the
specification.
A tested system, generally called a System Under Test (SUT), is a
system with input and output actions. Input actions are requests to
the system and output actions are observable actions of the system.
With this in mind, a testing setting can be seen as a 2 player game.
The test executes an input action and the SUT executes an output
action. Thus, the test can be seen as player 1, the SUT can be seen
as player 2 and together they can be modeled as a 2-player game.
Multiple authors have already successfully implemented the game
theoretic approaches to generate good test cases[3, 8, 11] Also, a
generalized model-based testing framework using game-theoretic
approaches is outlined in [10]. The writers of [10], show that testing
can be modelled as a 2-player concurrent game. However, there has
yet to be a study done on how certain strategy synthesis techniques
(for 2-player concurrent games) compare to one another. In this
paper, I will compare multiple game strategy synthesis techniques
on 3 metrics; coverage, strategy creation speed and test termination
factors (the reasons why tests finish). In section 9.1, the metrics will
be explained further. By creating an executable application myself,

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

I will aim to make an application that is challenging to test with
the synthesis techniques, such that a clear view can be given of the
strengths and weaknesses of the techniques. The metrics are used
as a systematic way to determine which game strategy synthesis
techniques are better for testing. This research aims to give a clearer
view of what game strategy synthesis techniques would give the
best test cases, as determined by the chosen metrics.

1.1 Related work
As mentioned before, multiple authors have already successfully
implemented the game theoretic approaches to generate good test
cases. In [3], UPPAAL-TIGA [1] is used to test uncontrollable real-
time systems. Three novel algorithms for nondeterministic software
systems are proposed in [8]. The problem of finding strategies that
maximize node coverage, i.e. the number of states visited, is re-
searched in [11].

2 GAMES
As mentioned in the introduction, a generalized model-based testing
framework using game-theoretic approaches is outlined in [10]. In
[10], many definitions of games and strategies are created. The game,
and thus also the play of a game and the winning definition, used
in this paper is derived from the one in [10].
The game used is a two-player concurrent game. That means that 2
players are doing an action simultaneously, every turn. A game is
formally described by Definition 1.

Definition 1. A game is a tuple G where,
• 𝐺 = (𝑄,𝑞0, 𝐴𝑐𝑡1, 𝐴𝑐𝑡2, Γ1, Γ2, 𝑀𝑜𝑣𝑒𝑠)
• Q is a finite set of states
• 𝑞0 ∈ 𝑄 is the initial state
• 𝐴𝑐𝑡𝑖 is a finite, non-empty set of actions player i can take
• Γ𝑖 : 𝑄 → 2𝐴𝑐𝑡𝑖 is an enabling condition, which assigns to each
state q a set Γ𝑖 (𝑞) of actions available to Player i in that state,
and
• Moves:𝑄×𝐴𝑐𝑡1×𝐴𝑐𝑡2 → 2𝑄 is a function that given the actions
of Player 1 and 2 determines the set of next states 𝑄 ′ ⊆ 𝑄

the game can be in. We require that 𝑀𝑜𝑣𝑒𝑠 (𝑞, 𝑎, 𝑥) = ∅ if
𝑎 ∉ Γ1 (𝑞) ∨ 𝑥 ∉ Γ2

The set of terminal states is defined as 𝑡𝑒𝑟𝑚(𝑄) = {𝑞 ∈ 𝑄 | Γ1 (𝑞) =
∅∨ Γ2 (𝑞) = ∅}. A state q is terminal if 𝑞 ∈ 𝑡𝑒𝑟𝑚(𝑄). Every state has
a score 𝜄 ∈ R, the score of a state is denoted as 𝑠𝑐𝑜𝑟𝑒 (𝑞). Scores are
further explained in Section 5

A play is a sequence of states and actions of both players. A play
is winning if it visits a winning state in 𝑅 ⊆ 𝑄 .

Definition 2. A play of a game G is an sequence:
𝜋 = 𝑞0 < 𝑎0, 𝑥0 > 𝑞1 < 𝑎1, 𝑥1 > 𝑞2...
with 𝑎 𝑗 ∈ Γ1 (𝑞 𝑗), 𝑥 𝑗 ∈ Γ2 (𝑞 𝑗), and 𝑞 𝑗+1 ∈ 𝑀𝑜𝑣𝑒𝑠 (𝑞 𝑗 , 𝑎 𝑗 , 𝑥 𝑗) for all
𝑗 ∈ N if 𝑞 𝑗 ∉ 𝑡𝑒𝑟𝑚(𝑄), else 𝑞 (𝑗 + 1) is undefined.
The set of all plays of G is denoted Π(𝐺).
We define 𝜋0:𝑗

𝑑𝑒 𝑓
= 𝑞0 < 𝑎0, 𝑥0 > 𝑞1 < 𝑎1, 𝑥1 > 𝑞2...𝑞 𝑗 as the prefix

TScIT 41, July 5, 2024, Enschede, The Netherlands Jaron Lendering

of play 𝜋 up to the j-th state. The set of all prefixes of a set of plays

𝑃 ⊆ Π(𝐺) of G is denoted by 𝑃𝑟𝑒 𝑓 (𝑃) 𝑑𝑒𝑓= {𝜋0:𝑗 | 𝜋 ∈ 𝑃, 𝑗 ∈ 𝑁 }. We

define Π𝑝𝑟𝑒 𝑓 (𝐺) 𝑑𝑒𝑓= 𝑃𝑟𝑒 𝑓 (Π(𝐺))
Definition 3. A play 𝜋 ∈ Π(𝐺) of a game G is winning with

respect to the goal 𝑅 ⊆ 𝑄 , if 𝜋 reaches some state in R.

3 MODEL-BASED TESTING
Model-based testing (MBT) is a form of testing that automatically
creates test cases using a specification model. The goal of these
tests is to find cases where the application does not conform to the
specification. If, in the test, the application does an output that does
not conform to the specification, the test fails. The definition of
conformance will be given in section 3.1. Using MBT techniques,
robust tests can be automatically created and manual labour can be
reduced.

I use suspension automata (SAs) as system specifications, as seen
in [10]. The SAs this paper uses are not identical but are derived
from the SA definition in [10]. For a partial function 𝑓 : 𝑋 ⇀ 𝑌 ,
𝑓 (𝑥) ↓ denotes that 𝑓 (𝑥) is defined and 𝑓 (𝑥) ↑ denotes that f(x) is
undefined.

Definition 4. A suspension automaton (SA) is a 5-tuple 𝜗 =

(𝑄, 𝐿𝐼 , 𝐿𝑂 ,𝑇 , 𝑞0) where
• Q is a non-empty finite set of states,
• 𝐿𝐼 is a finite set of input labels, and 𝜇 ∈ 𝐿𝐼 ,
• 𝐿𝑂 is a finite set of output labels, 𝛿 ∈ 𝐿𝑂 , and 𝐿𝐼 ∩ 𝐿0 = ∅
• T: 𝑄 × (𝐿𝐼 ∪ 𝐿𝑂) ⇀ 𝑄 is a partial transition function, and
• 𝑞0 ∈ 𝑄 is an initial state.

∀𝑞′ ∈ 𝑄 , 𝑇 (𝑞′, 𝜇) → 𝑞′. I write 𝐿
𝑑𝑒𝑓
= 𝐿𝐼 ∪ 𝐿𝑂 . For 𝑞 ∈ 𝑄 , the

set of enabled inputs and outputs in q are denoted by 𝑖𝑛(𝑞) = {𝑎 ∈
𝐿𝐼 |𝑇 (𝑞, 𝑎) ↓} and 𝑜𝑢𝑡 (𝑞) = {𝑏 ∈ 𝐿𝑂 |𝑇 (𝑞,𝑏) ↓} respectively.
I assume that any SA has 2 special labels 𝛿 and 𝜇 to indicate

output and input quiescence respectively. I define quiescence as
having no observable action 𝑥 ∈ 𝐿, input quiescence as having
no observable action 𝑦 ∈ 𝐿𝐼 and output quiescence as having no
observable action 𝑧 ∈ 𝐿𝑂 . A SUT can have a non-observable output
action, sometimes the SUT does not respond after an input action
is done by the tester. An input action can also be non-observable.
Many output actions can be done in a row, but no input action
has to be done in between. For example, when downloading an
application, a lot might be happening on screen while the user is
not doing an input. If a user of the application does not do anything,
so they do a quiescent action, they do not express the desire to
change state. Following that assumption, I assume that when the
input is quiescent, it cannot initiate a state change. If a state change
does occur while the input is quiescent, it is always initiated by
the output. Also, the user can at any time choose to just not do an
action, so that is why ∀𝑞′ ∈ 𝑄, 𝑇 (𝑞′, 𝜇) → 𝑞′.

3.1 Conformance relation
Test cases will test if the SUT conforms to the specification. The
conformance relation used in this paper is called IOCO [9]. IOCO is
short for input-output conformance. IOCO allows for more inputs
and fewer outputs than the specification. This practically means

that all input actions are permitted, and if the input action is not in
the specification, every output action in return would be allowed.
However, as long as the input actions are part of the specification,
any output action must also be in the specification. This allows the
specification designer to design a specification that entails only a
part of the SUT, and still create test cases for that part.

3.2 Input-Output conflicts
All states enable Input and Output actions, but only 1 action can be
done. A conflict arises when the tester wants to do an input action
and the SUT an output action. Multiple assumptions can be used to
solve such a conflict. I have chosen to use an output-eager approach,
an approach where the output action will always be executed if the
output action is not quiescent. The reasoning behind the chosen
approach will be described in section 7.2

3.3 Specifications to games
In [10] a translation from specifications to games is proposed. The
writers created a definition for the translation. I create a definition
derived from theirs, working with my definition for a specification.

Definition 5. Let 𝜗 = (𝑄, 𝐿𝐼 , 𝐿𝑂 ,𝑇 , 𝑞0) be an SA. The game un-
derlying 𝜗 is defined by𝐺𝜗 = (𝑄,𝑞0, 𝐴𝑐𝑡1, 𝐴𝑐𝑡2, Γ1, Γ2, 𝑀𝑜𝑣𝑒𝑠) where:
• 𝐴𝑐𝑡1 = 𝐿𝐼 and 𝐴𝑐𝑡2 = 𝐿𝑂
• for all 𝑞 ∈ 𝑄 , we take Γ1 (𝑞) = 𝑖𝑛(𝑞) and Γ2 (𝑞) = 𝑜𝑢𝑡 (𝑔)
• 𝑀𝑜𝑣𝑒𝑠 : 𝑄 × 𝐴𝑐𝑡1 × 𝐴𝑐𝑡2 → 2𝑄 encodes a different test
assumption to handle input-output conflicts.

The specification (Definition 4) only accepts an input or an output
label, but the game used is a concurrent game, so an input and output
action is done at the same time. So using a chosen test assumption,
only 1 action is executed on the specification. I denote the combination
of an input and output action, from which 1 action will be chosen
following the test assumption, a transition.

4 STRATEGIES
Strategies are functions that decide what action a player does at any
turn in the game. A strategy is called winning, if a player always
wins if they use that strategy, no matter what the other player does.
The definition for strategies and the translations between strategies
and test cases are derived from the definition given in [10]

Definition 6. A strategy for player i in gameG is a partial function
𝜎𝑖 : Π𝑝𝑟𝑒 𝑓 (𝐺) → 𝐴𝑐𝑡𝑖 , such that 𝜎𝑖 is either undefined or 𝜎𝑖 (𝜋) ∈
Γ𝑖 (𝑞′) for any 𝜋 ∈ Π𝑝𝑟𝑒 𝑓 (𝐺), where 𝑞′ is the last reached state of 𝜋 .
In Definition 5, specifications are translated to games. Strategies

can also be seen as test cases on those specifications. First I define
what a test case is. A test case is a sequence of actions on which
mutually exclusive failing and passing conditions are applied. This
means that certain sequences of actions will result in a fail and
certain sequences of actions will result in a pass. For example, a
passing condition could be a sequence of actions that reaches the
winning state and a failing condition could be a sequence of actions
that reaches a non-winning terminal state. A test case has at least 1
passing and 1 failing condition and a test always ends in a pass or a
fail.
I will translate a strategy to a test. A strategy returns at every state

Test Case Generation by Game Theory TScIT 41, July 5, 2024, Enschede, The Netherlands

a valid input action 𝑥 ∈ 𝐿𝐼 or undefined. If it returns undefined, the
test fails because the winning state has not been reached and the
strategy does not know what next action to take. If it returns an
action, it can be used in the SUT to see what output action the SUT
does. If the SUT returns an output that does not correspond with
the specification, the test fails. When a winning state is reached, the
test passes. This defines a strategy as a test case whose goal is to
go to a certain state in the application, and which tests if the SUT
corresponds to the specification.

4.1 Strategy creation
To create multiple strategies, strategy synthesizers are used. Strat-
egy synthesizers are algorithms that can create different strategies,
depending on what goal is defined. In this paper, the only defined
goals are the winning states 𝑅 ⊆ 𝑄 . For every winning state, a new
strategy is created by the strategy synthesizer. When creating strate-
gies, we run the strategy synthesizer as many times as preferred.
In every run a different state can be the winning state, to test the
reachability of different states. This way several different test cases
are created to, in the end, try to test enough different input and
output actions such that any potential mistakes in the SUT can be
found. In this paper, I try to compare different synthesizers. I will
run different synthesizers with many different states as winning
states and compare the strategies created by the synthesizers.

5 SCORES
Every state of the game gets a score. Those scores are being used to
indicate how good entering a certain state is. Strategy synthesizers
use those scores to decide what actions are the best to take in specific
states, thus creating good strategies.
The scores are defined by the creator of the game. I have chosen a
very simple scoring system. Every state gets a score of 0, except for
the winning state. The winning state gets a score of 1. This is the
easiest way of giving scores because the only information needed
is which state is the winning state. However, strategy synthesizers
have a harder time creating good strategies, because they have
less information to work with. As long as the winning state is not
evaluated by the synthesizer, all actions will be considered equally
beneficial, because every evaluated state will have a score of 0. No
state will be considered to be better than another one.
Nevertheless, I have chosen this simple scoring system. No hard
calculations have to be done to set these scores and all the computing
time can be given to the strategy synthesizers. Also, because it is
simple, it is not made specifically for a certain synthesis technique.
This gives the chosen techniques a fair chance.

5.1 Future work
In future work other scoring techniques can be tested, to see if they
can be viable to get better strategies, for testing, from certain syn-
thesising techniques. One scoring technique that could be tested,
is giving higher scores depending on the proximity to the winning
state. This might give fast, but less thorough, synthesizers a better
chance of getting a good path to the winning state, because infor-
mation about the positioning of the winning state is also available
in non-winning states.

6 STRATEGY SYNTHESIZERS
For this paper, I have chosen 2 strategy synthesizers. Backward
induction (BI) and Simultaneous Move Monte Carlo Tree Search
(SM-MCTS).

6.1 Backward Induction
6.1.1 Original Algorithm. Backward Induction is one of the first
algorithms for solving 2 player turn-based games. It works by trying
1 specific set of moves until a terminal state is reached. When it
reaches a terminal state, it goes 1 state back and chooses a different
action until it reaches a terminal state again. This will be done
until all states are traversed. This is called dept-first search. When
a terminal state 𝑞𝑡 ∈ 𝑄 is reached, the score is propagated to one
state before, 𝑞𝑡−1 ∈ 𝑄 . Because at least 1 new state can be reached
from any non-terminal state, at least one score will be propagated
to 𝑞𝑡−1. The highest score that is propagated back to 𝑞𝑡−1 becomes
the new score for 𝑞𝑡−1 and that score will be propagated to 𝑞𝑡−2.
This will be done until the scores are propagated to the initial state.
As mentioned earlier, originally BI was used for turn-based games.
Nevertheless, by treating the combined move of both players as 1
move, it can be used for concurrent games[2]. The algorithm used
in this paper is derived from [2] with some minor changes to be
able to incorporate loops in the specification. The new algorithm
can handle loops, because when a state is reached, BI will check if
it has already seen that state. If BI has seen the state before, it takes
the current score of the state and will not iterate further.

Algorithm 1 bi_strategy_synthesize
1: input: q - current state
2: if 𝑞 ∈ 𝑅 then
3: return score(q)
4: end if
5: if 𝑞 ∈ 𝑄𝑠𝑒𝑒𝑛 then
6: return 𝑠𝑐𝑜𝑟𝑒ℎ𝑖𝑔ℎ (𝑞)
7: end if
8: 𝐴

ℎ𝑖𝑔ℎ

𝐼
← 𝑁𝑜𝑛𝑒

9: 𝑠𝑐𝑜𝑟𝑒ℎ𝑖𝑔ℎ (𝑞) ← 0
10: for 𝐴𝐼 ∈ 𝑖𝑛(𝑞) do
11: 𝑠𝑐𝑜𝑟𝑒𝐴𝐼 ← 0
12: for 𝐴𝑂 ∈ 𝑜𝑢𝑡 (𝑞) do
13: 𝑞′ ← 𝑀𝑜𝑣𝑒𝑠 (𝑞,𝐴𝐼 , 𝐴𝑂)
14: 𝑠𝑐𝑜𝑟𝑒𝐴𝐼 ← 𝑠𝑐𝑜𝑟𝑒𝐴𝐼 + 𝑏𝑖_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦_𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒 (𝑞′)
15: end for
16: if length(out(q)) > 0 then
17: 𝑠𝑐𝑜𝑟𝑒𝐴𝐼 ← 𝑠𝑐𝑜𝑟𝑒𝐴𝐼 /𝑙𝑒𝑛𝑔𝑡ℎ(𝑜𝑢𝑡 (𝑞))
18: end if
19: if 𝑠𝑐𝑜𝑟𝑒ℎ𝑖𝑔ℎ (𝑞) < 𝑠𝑐𝑜𝑟𝑒𝐴𝐼 then
20: 𝑠𝑐𝑜𝑟𝑒ℎ𝑖𝑔ℎ (𝑞) ← 𝑠𝑐𝑜𝑟𝑒𝐴𝐼

21: 𝐴
ℎ𝑖𝑔ℎ

𝐼
← 𝐴𝐼

22: end if
23: end for
24: 𝜎 (𝑞) = 𝐴

ℎ𝑖𝑔ℎ

𝐼

25: return 𝑠𝑐𝑜𝑟𝑒ℎ𝑖𝑔ℎ (𝑞)

TScIT 41, July 5, 2024, Enschede, The Netherlands Jaron Lendering

6.1.2 New Algorithm. 𝑅 ⊆ 𝑄 is the set of all winning states. 𝑄𝑠𝑒𝑒𝑛

is the set of traversed states. 𝜎 is the strategy that is being cre-
ated. 𝐴ℎ𝑖𝑔ℎ

𝐼
stores the action that can get the highest possible score.

𝑠𝑐𝑜𝑟𝑒ℎ𝑖𝑔ℎ (𝑞) stores the highest score gotten. If the current state is
already seen earlier, 𝑠𝑐𝑜𝑟𝑒ℎ𝑖𝑔ℎ (𝑞) is set in an earlier iteration of the
algorithm. All these definitions are also used by any other algorithm
in this paper.
Algorithm 1 describes a BI algorithm where an input action is first
considered, and every output action possible with the chosen input
action is considered. An input and output action together initiate a
state change. For any input action, on any state, the total score is
divided by the number of output actions because I assume nothing
about the strategy of the SUT. Thus the chance that the SUT chooses
a certain output action is equal to any other output action. For every
state, the best input action will be saved. Scores are only saved for
input actions because input actions are the only actions done by the
tester. When a terminal state is reached, 𝑜𝑢𝑡 (𝑞) = ∅, so the algo-
rithm will go in the second for loop and 𝑏𝑖_𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦_𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑧𝑒 (𝑞′)
is not called again.
The algorithm tries more actions until a terminal or winning state
is reached, instead of only when a terminal state is reached. This
also means that not all states have to be traversed. For example, if
the initial state is the winning state, it will immediately stop and no
other states must be traversed. For the remainder of the paper, any
reference to BI will indicate algorithm 1.

6.2 Simultaneous Move Monte Carlo Tree Search
6.2.1 Original Algorithm. Monte Carlo tree search (MCTS) is an
often used algorithm for big state spaces, a copious amount of differ-
ent states reachable within the game, because it does not need to go
through the whole state space to return a result. A version of MCTS
has been successfully used to create very strong Machine-learning
algorithms for the game Go[5]. Like BI, MCTS was also developed
for turn-based games. However, a version created for concurrent
games is used in [7], called Simultaneous Move Monte Carlo Tree
Search (SM-MCTS).
SM-MCTS works by first choosing an initial state from the current
game. Starting with the initial state, it will know if all the transitions
from that state are explored at least once. That means that with
every transition, a path until a terminal node is explored. If not all
transitions are explored, the algorithm will choose a random path
until a terminal state, using a ROLLOUT function, and return the
score acquired in that path. If all transitions are explored, it will
choose one of the transitions to transition the game to the next state,
using a SELECT function. Using that new state, the algorithm will
again see if a transition from that state has been unexplored. This
will continue until a state is reached which is either terminal or has
unexplored transitions. The scores that are retrieved by choosing
certain actions are saved. The SELECT function will then use those
scores to choose a transition to further explore. By doing this algo-
rithm over and over again, more and more states are explored. The
strength of this algorithm is that the Tester can choose the amount
of iterations the algorithm needs to run. More iterations mean more
exploring, but it also uses more resources. The goal of SM-MCTS
is to find a list of actions that gives the highest score possible, and

thus the best strategy. The algorithm used in this paper is derived
from the basic one, from [7], but with added features.

Algorithm 2 SM_MCTS_strategy_synthesize
1: input: q - current state
2: if 𝑞 ∈ 𝑡𝑒𝑟𝑚(𝑄) or 𝑞 ∈ 𝑅 then
3: return 𝑠𝑐𝑜𝑟𝑒 (𝑞)
4: end if
5: if 𝐴𝑢𝑛𝑠𝑒𝑒𝑛

𝐼
≠ ∅ then

6: 𝐴𝐼 , 𝐴𝑂 ∈ 𝐴𝑢𝑛𝑠𝑒𝑒𝑛
𝐼

7: 𝑞′ ← 𝑀𝑜𝑣𝑒𝑠 (𝑞,𝐴𝐼 , 𝐴𝑂)
8: 𝑟𝑜𝑙𝑙𝑜𝑢𝑡_𝑠𝑐𝑜𝑟𝑒 ← ROLLOUT(𝑞′)
9: UPDATE(q,𝐴𝐼 ,𝐴𝑂 ,𝑟𝑜𝑙𝑙𝑜𝑢𝑡_𝑠𝑐𝑜𝑟𝑒)
10: return 𝑟𝑜𝑙𝑙𝑜𝑢𝑡_𝑠𝑐𝑜𝑟𝑒
11: end if
12: 𝐴𝐼 , 𝐴𝑂 ← 𝑆𝐸𝐿𝐸𝐶𝑇 (𝑞)
13: 𝑞′ ← 𝑀𝑜𝑣𝑒𝑠 (𝑞,𝐴𝐼 , 𝐴𝑂)
14: if 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑜𝑛_𝑙𝑒 𝑓 𝑡 > 0 then
15: 𝑠𝑒𝑙𝑒𝑐𝑡_𝑠𝑐𝑜𝑟𝑒 ← SM_MCTS_strategy_synthesize(q’, recur-

sion_left - 1)
16: else
17: 𝑠𝑒𝑙𝑒𝑐𝑡_𝑠𝑐𝑜𝑟𝑒 ← score(q’)
18: end if
19: UPDATE(q,𝐴𝐼 ,𝐴𝑂 ,𝑠𝑒𝑙𝑒𝑐𝑡/𝑠𝑐𝑜𝑟𝑒)
20: return score

6.2.2 New Algorithm. 𝐴𝑢𝑛𝑠𝑒𝑒𝑛
𝑖

is the set of all actions of player i
that are not yet explored.
Algorithm 2 works the same as the original algorithm from [2], but
with a few differences. The original ROLLOUT function chooses
a random path, but some state spaces are vast so it will not reach
a terminal state. So, in my algorithm, it can also converge when
the maximum number of iterations has been reached. This way
it will not go on until it eventually crashes because of too much
memory usage, and it will not get stuck in loops. Also, it will create
a faster algorithm, if the max iteration count is set low. The second
difference is that the algorithm also converges at winning states
because SM-MCTS doesn’t have to search further if the winning
state has been found, even if the winning state is not terminal. I also
set the maximum recursion dept for the algorithm, which practically
means how many states the algorithm may explore from the initial
state (maintained by recursion_left), for the same reason. The last
difference is how new states are added to the tree. In my version
of SM-MCTS, states are only added if they have not been reached
earlier. This makes the algorithm more efficient because identical
parts will not be traversed multiple times and it makes sure that the
algorithm will not be stuck in a loop.
The SELECT algorithm used is a decoupled upper-confidence bound
applied to trees (DUCT). DUCT is the most common selection func-
tion for SM-MCTS [2]. For each player, per action, the number of
times that transition is done is saved. Also, every time an action is
done, the obtained score will be added to the total score for that
action. This is done by the UPDATE function. When a new action
has to be selected by the SELECT function, both actions (for the

Test Case Generation by Game Theory TScIT 41, July 5, 2024, Enschede, The Netherlands

Tester and the SUT) will be evaluated separately. The actions with
the best average score (score divided by the number of times the
action is done) will be selected. If multiple actions have the highest
score, a random action will be selected.
The aforementioned algorithm is exactly how my SM-MCTS al-
gorithm is supposed to work. However, while testing I found one
problem. The quiescent input action of the initial state seems to
sometimes get a score above 0, while no action at any other state
gets a score above 0. I could not find out why, so I chose to give the
quiescent action of the initial state always a score of 0. Executing
the quiescent action of the initial state brings the specification to
the initial state, so executing that quiescent action is never needed.
For the remainder of the paper, any reference to SM-MCTS will
indicate algorithm 2.

6.2.3 Future work. DUCT is an often used selection algorithm but
is probably not the best one for creating strategies as test cases with
reachability as the goal. Because only 1 state is the winning state,
most states get a score of 0. That means that there is a big chance
that all actions will get a score of 0 in the first rollout. If that is the
case, with DUCT a random action is chosen. This might result in
some actions getting chosen far more often than others. If unlucky,
this could lead to a strategy where the best action is never explored.
To counteract this, the select function could be changed. I propose
to implement a variant to regret-matching (RM)[6].
RM can be used to have more control over the chosen actions, by
changing the probability an action is chosen. The algorithm I pro-
pose was successfully created and explained thoroughly in[2]. The
idea is that for every possible combination of input and output ac-
tions, the number of visitations and the cumulative score are saved.
Also, for every action, a regret value is saved. It gets increased when
an action is not chosen. This increases the probability of actions that
are chosen less than others, so there is a lower chance that an action
is not explored at all. Nevertheless, the probability of actions that
got a high score on earlier iterations will still be high. The chance
that the best strategy uses an action that already got a high score is
higher than the chance that it uses an action that got a low score
after all.

7 APPLICATION AND SPECIFICATION

7.1 Specification
To test the strategies, I made a specification with an executable
application that adheres to it. It consists of 3 parts. Firstly, a loop
that loops between 3 states, is further called loop path. Secondly,
a path that has a lot of different choices. Every choice the tester
makes brings the system to a different state, and from that different
state, new choices can be made, until a terminal state is reached.
This part of the specification is further called choice path. Lastly,
there are multiple paths that all go to the same end-state, further
called line path. By adding these 3 parts to my application, I evaluate
important parts that could be hard for strategy synthesizers, but
important in real-world applications. The total number of states in
the specification is 846. The specification is shown in Figure 1.

Loop path highlights having an infinite loop in the specification.
Stratgies that only converge on a terminal state will never converge,
because it will loop. It also has 2 states, middle_loop and side_loop,

that both have actions to loop1 and loop2. However, in middle_-
loop, the SUT is in full control and decides if or when the game
goes to loop2. In side_loop the tester is in full control. Also, side_-
loop has a quiescent output action that goes to middle_loop. So
if the tester and the SUT do a quiescent action in side_loop, the
next state will be middle_loop. Choice path highlights having a big
application. Big, complicated applications have a lot of states with a
lot of choices that can be made. This could be complicated for some
strategy synthesizers because the winning state could be very hard
to find. Line path highlights the multitude of ways that an identical
result could be reached using different paths. This makes it easy for
a strategy synthesizer to find a path to a winning state, but pretty
hard to evaluate all the paths.

Fig. 1. The left image is the specification of the choice part. Every colour
represents a new dept of the choice tree. The middle image shows the
specification of the line path and the right image shows the specification of
the loop path. The real specification consists of all three parts, all connected
to one initial state.

7.2 Application
To make the test environment as realistic as possible, I made an
executable application to execute the test cases on. That application
runs in parallel with the strategies executed on the game, defined by
a specification. I denote this as a realistic test environment because
only a few requirements are defined for an application to run with
my test environment. An application has to,
• have a specification, as described in Definition 4,
• have 1 explicit input and 1 explicit output action function,
such that the input and output can be read by the testing
framework,
• have any action that the application does be an explicit output,
so also when the application does nothing (a quiescent action).
This is important because the test framework has to know
exactly what is happening in the application.

To use strategies, the testing framework executes those strategies
on a game representation of the specification of the application. The
game used is a 2-player game, however, my application does only
1 action at a time. Because I use single explicit input and output
functions, I assume that only 1 input and 1 output can be done at a
time. So if a parallel application is evaluated, internally all actions
will be done sequentially. Because only 1 action can be done at a
time, the input or the output action has to be chosen. I have opted
for the output-eager approach. This means that if the output is not
a quiescent action, the output action will always be chosen. Before
I explain my reasoning, I first need to explain how the application
works. When the application starts, it expects an input action and

TScIT 41, July 5, 2024, Enschede, The Netherlands Jaron Lendering

it will execute an output action. If an input action is done that is
not in the specification, the program will exit. I do that, such that
non-specified actions could never go to a state in the specification. It
wouldn’t change anything while testing, but I did it for clarity. Every
time input is expected, output has to be expected too, and vice-versa.
However, sometimes multiple input or output actions might have to
be done in a row. If there is no non-quiescent output action, the text
None will be returned by the application. I do this because without
a resulting output that is readable, I can never certainly know if no
output action will ever be done. The chance that the application
is just slow is always a possibility. If an input action is quiescent,
it will also relay None. This makes keeping track of in what state
the application is easier because the actions are always explicit, so
state changes are also explicit. It also gives me full control over the
execution of the application, since the application can’t proceed
until an input action is done. This brings me to why I chose an
output-eager approach. Inputs are chosen by the strategy after an
output action is already done. Had I chosen a variant that prefers
an input action over an output action, the output action had to be
reverted after it had been done. That makes creating an application
harder and less realistic because a reverting function had to be
added at every point. In addition to that, the output shown by the
application would not be consistent with the output evaluated. In
the current version of the application, the output is first displayed,
and afterwards, it is evaluated. So if an output action would be
reverted after it is displayed, an output is displayed but, from the
perspective of the application, it is not done.

8 TESTING FRAMEWORK
The testing framework uses the created strategies and the specifica-
tion to test the application. It will first check if the current state is
winning or terminal. Subsequently, it will read the last output action
returned by the application and an input action from the currently
running strategy is obtained. The specification is advanced by the
input or the output action, chosen in an output-eager manner. If
the action is not possible in the specification, it will raise an error.
After checking if the action is in the specification, the input action
is executed on the application. This sequence of actions will be done
until an output is done that does not conform with the specification,
a winning or terminal state is reached, the strategy can’t generate
an input action for the current state or the same state is traversed
too often (In this paper, more than 5 times is used). The sequence
of actions mentioned above is executed for every strategy a chosen
strategy synthesizer creates. After all the strategies are executed,
metrics about coverage and strategy creation speed are returned.

9 METHODOLOGY

9.1 Metrics
Using the aforementioned test framework, application, specification
and strategy synthesizers, I did a multitude of tests to determine the
qualities of both strategy synthesizers. To measure the qualities, I
have defined 2 metrics. Strategy creation speed and coverage and
termination factors.

9.1.1 Strategy Creation Speed. The time efficiency of testing is
extremely important because the longer the test time is, the longer

programmers will be unsure if their application works how it is
supposed to. There are two main parts of time efficiency while
testing using game strategies. The strategy creation time and the
testing time. Strategy creation time is the time it takes to create all
the strategies, i.e. test cases, that the synthesizer had to create. In
this paper, I only look at strategy creation time, because testing time
was too sporadic.

9.1.2 Coverage. In this paper, coverage is defined as the number
of states that are traversed while creating a strategy. Coverage is
a metric in the same realm as strategy creation speed because it is
also about efficiency. All strategies have the same goal, going to
the winning state. Every traversed state that fails to advance the
tester to the winning state, is a waste of resources. So by keeping
the coverage low, but still reaching the winning state, the strategy
becomes more efficient.

9.1.3 Termination Factors. The last metric I will cover is the factors
why a strategy won or lost, i.e. terminated. Some factors are outside
the control of the strategy. For example, one part of the loop can only
be accessed if the SUT does a specific output action. As long as that
doesn’t happen, the tester can never reach that state. However, the
majority of the time the strategy is in control. The most important
termination factors are Terminal State (TS), Duplicate States (DS)
and winning. TS happens when the game reaches a terminal state
which is not the winning state, which can happen if the strategy
does the wrong input action. DS happens when the strategy is stuck
in a loop, so the game reaches the same state more than 5 times.
Winning is the most important factor because it means that the
winning state has been reached.

9.2 Process
To test the quality of the strategy synthesizers, every strategy cre-
ated by a strategy synthesizer is run once using the specified appli-
cation, described in Section 7. Because of the large amounts of states
the specification has, a lot of states are similar. Thus, a lot of created
strategies are also similar. So even though the created strategies are
only ran once, because of the similarities in the created strategies,
the results are still significant.
While testing, I ran a lot of different synthesizers, or synthesizers
with different constants (see Section 10) for more information), in
parallel. Because of that, the CPU usage was 100%. This made the
total execution time of all strategies really sporadic, but because
creating the strategies did not take up too many resources, it was
less sporadic the results were still significant.

10 RESULTS

10.1 Backward Induction
The first strategy examined is Backward Induction (BI). Backward
induction searches thoroughly, never stopping until it reaches the
winning state or it has traversed every state in the game. That makes
the algorithm extremely reliable.
In testing, it turned out that backward induction always wins, if
it can win. When testing only parts of the specification (line part,
choice part and loop part), or when testing the whole specification,
it always won. Even when there are 2 winning paths, as in the loop

Test Case Generation by Game Theory TScIT 41, July 5, 2024, Enschede, The Netherlands

section, it still chooses the path that gave the tester a 100% chance
of winning.
All the created strategies combined took 12 seconds to generate, with
BI. It traversed between 800 and 846 states for every strategy where
the goal state was further than 1 action away from the initial state.
This also shows that the biggest strength of BI, the thoroughness, is
also its biggest weakness. BI traversed, for most strategies, almost
all of the 846 states. The fluctuation in the number of traversed
states comes from the exact position of the winning states. If the
winning state is in a position that gets traversed earlier, fewer states
are traversed in total.

10.2 Simultaneous Move Monte Carlo Tree Search
SM-MCTS is more complicated than BI because it gives the possibil-
ity to set the max rollout iterations (𝑅𝑜𝑙𝑙𝑖𝑡), the most recursion dept
(RD) and the max iteration count of the algorithm (𝑎𝑙𝑔𝑖𝑡). I tested
SM-MCTS with a multitude of combinations. For the remainder of
the paper, whenever the maxima are given, it will be in the format
(𝑅𝑜𝑙𝑙𝑖𝑡 , RD, 𝑎𝑙𝑔𝑖𝑡) unless specified differently.
The full specification will be evaluated. The number of strategies
created is 846 because there are 846 states in the specification.

10.2.1 Termination factors And Creation Time. As shown in Table 2,
the SM-MCTS algorithm does not work extremely well. The worst
version is when all of the maxima were low (12,50,30). The choice
part did the worst. This most likely happened because there are
fewer choices to be made in loops and lines than in choices, so the
chance that the winning state is quickly found is smaller in choices.
When only the 𝑎𝑙𝑔𝑖𝑡 was increased, the algorithm became better,
however, the other strategies still terminated because of continu-
ously reaching the same state. It also took almost 104 seconds to
create the strategies. No synthesizer created strategies of which
more than 25% won, but there is a trend in the amount of winning
strategies. The higher 𝑎𝑙𝑔𝑖𝑡 , the more winning strategies. That most
likely happens because more explored transitions mean a bigger
chance that a winning path is found.

In Table 2, it is shown that strategies with winning states in the
choice part of the specification mostly lose. That is expected because
there are a lot of different choices being made in that part, so it is
hard for SM-MCTS to find the winning state. And when it doesn’t
even find the state, it will certainly lose. However, strategies can
also lose in the lines and loop part. That is peculiar because the
winning state is pretty easy to find in those parts, not many choices
have to be made.
Looking at the created strategies, it can be seen that the quiescent
input action gets the same score as a non-quiescent input action.
That means that it will be totally random if a strategy does a quies-
cent or non-quiescent input action. The scores are the same because
ROLLOUT returns the same score no matter if a quiescent input
action is done or not. For example, ROLLOUT returns the score 1
for path 𝜋 that starts with input action 𝛼 . If a quiescent input action
𝜇 is done, the current state does not change. So after 𝜇, 𝜋 can still be
executed. So if 𝜇 is done before 𝜋 , 𝜇 receives a score of 1. Without 𝜇,
𝛼 gets a score of 1. So the strategy considers both actions as of equal
quality. However, if 𝜇 is done 6 times, the same state is traversed 6

times, and the strategy will lose. To counteract that I made a second
SM-MCTS strategy, called 𝑆𝑀 −𝑀𝐶𝑇𝑆 ̸𝜇 . This algorithm is identical
to SM-MCTS, however, it will always prefer a non-quiescent action
above a quiescent action. 𝑆𝑀 −𝑀𝐶𝑇𝑆 ̸𝜇 will be further explored in
Section 10.3.

10.2.2 Coverage. Table 1 shows a clear pattern in average coverage
(the average coverage of all strategies created using certain values
for the constants). When 𝑎𝑙𝑔𝑖𝑡 increased, the average coverage also
does. After inspecting the SM-MCTS algorithm, it is clear why. One
iteration of the SM-MCTS algorithm is done after a winning state is
found, a terminal state is found or a state with an unexplored transi-
tion is found. When a terminal or winning state is found, at most 1
new state is explored in that iteration, the winning or terminal state
(if the winning or terminal state is found in an earlier iteration, no
new states are explored). When a state with an unexplored transi-
tion is found, 1 new state will be explored. The transitions explored
in the rollout are not saved, so they are not counted in the coverage
of the final strategy. This means that at most 1 state is added every
iteration, so the coverage scales with 𝑎𝑙𝑔𝑖𝑡 .

𝑅𝑜𝑙𝑙𝑖𝑡 RD 𝑎𝑙𝑔𝑖𝑡
Results

Win Strategies Time (s) Av. Coverage
12 50 30 38 5 20
300 150 30 45 20 20
300 150 100 107 82 45
300 150 200 156 170 75
12 50 300 203 104 110

Table 1. Table of the amount of winning strategies, strategy creation times
and the average coverage for all created strategies for different combinations
of 𝑅𝑜𝑙𝑙𝑖𝑡 , RD, and 𝑎𝑙𝑔𝑖𝑡

𝑅𝑜𝑙𝑙𝑖𝑡 RD 𝑎𝑙𝑔𝑖𝑡
Results

Line part Loop part Choice part
12 50 30 32% 75% 2%
300 150 30 45% 75% 2%
300 150 100 74% 100% 7%
300 150 200 67% 50% 14%
12 50 300 67% 100% 19%

Table 2. Table of the win percentage per specification part for SM-MCTS,
for different combinations of 𝑅𝑜𝑙𝑙𝑖𝑡 , RD, and 𝑎𝑙𝑔𝑖𝑡

10.3 𝑆𝑀 −𝑀𝐶𝑇𝑆 ̸𝜇
𝑆𝑀 −𝑀𝐶𝑇𝑆 ̸𝜇 is SM-MCTS but with a preference for non-quiescent
actions. The strategy generation of 𝑆𝑀 −𝑀𝐶𝑇𝑆 ̸𝜇 does not change
relative to SM-MCTS, since the preference is implemented after the
strategy creation.
When the testing framework expects an input action from the

strategy, the strategy will choose one of the actions with the highest
score that are non-quiescent, if there are non-quiescent actions.
If the only input action available is quiescent, it will choose the
quiescent action. However, the number of winning strategies has
increased. As seen in Table 3, win rates in the loop and line part

TScIT 41, July 5, 2024, Enschede, The Netherlands Jaron Lendering

have increased significantly. The loop part increased because the
tester kept control by doing non-quiescent actions. The SUT can’t
bring the game to a state where it gets all the control.
The win rate in the line part increased because the multiple duplicate
states termination is only reached when the synthesizer doesn’t get
enough resources to create a strategy that goes to the winning state.
So even though strategies created with a synthesizer with only high
𝑅𝑜𝑙𝑙𝑖𝑡 and RD or 𝑎𝑙𝑔𝑖𝑡 still lose often, the strategies created when
the synthesizer gets a high 𝑅𝑜𝑙𝑙𝑖𝑡 , RD and 𝑎𝑙𝑔𝑖𝑡 are really good for
winning states in the line part.
The win rate in the choice part has not increased because, often, no
winning path is found. If 𝑎𝑙𝑔𝑖𝑡 would be higher, more states would
be explored, so the win rate would increase.

𝑅𝑜𝑙𝑙𝑖𝑡 RD 𝑎𝑙𝑔𝑖𝑡
Results

Line part Loop part Choice part
12 50 30 32% 75% 2%
300 150 30 50% 100% 1%
300 150 100 98% 100% 8%
300 150 200 100% 100% 14%
12 50 300 72% 100% 19%

Table 3. Table of the win percentage per specification part for 𝑆𝑀 −𝑀𝐶𝑇𝑆 ̸𝜇 ,
for different combinations of 𝑅𝑜𝑙𝑙𝑖𝑡 , RD, and 𝑎𝑙𝑔𝑖𝑡

10.4 Comparison
My experiments clearly showed the power of BI, and it easily trumped
SM-MCTS. BI was faster than SM-MCTS and created strategies that
always won. Nevertheless, SM-MCTS also had some qualities. The
most prominent one was that the coverage was less. This shows that,
if optimized, SM-MCTS could be faster, because it visits fewer states.
In my application, it still visits a lot of states double, but with opti-
mizations that doesn’t have to be the case. Also, SM-MCTS focuses
most of their resources in one direction. If the path to the winning
state starts with action 𝛼 , it thoroughly checks if any other paths
starting with 𝛼 also win. This makes the chance that SM-MCTS
checks states that can never reach the winning state small. Still,
the strategies created by MCTS lose often, mostly when a lot of
choices are involved. MCTS has been proven to work well in games
where every state can get a positive score, like in Go. Every position
can be given a score, so MCTS is not blind until it finds a winning
state. In my tests, SM-MCTS is blind until it reaches the winning
state. Because of that, I think that MCTS will never be a very good
algorithm for creating strategies as test cases, as long as the scoring
is defined how I defined it in this paper. An improvement could be,
to give scores depending on how many actions a state is removed
from the winning state.
In conclusion, the way I gave scores and created test cases gives
far better results for BI. If the SUT is small, I would recommend BI.
SM-MCTS might get better results if it is more optimized, but my
basic implementation performs too poorly for real-world use. To
use strategy synthesize techniques in big applications, with large
specifications, other strategies have to be implemented. However, I
don’t think that there is a synthesizer that is fast and creates win-
ning strategies for a specification with only a positive score on the
winning state. Other score systems, or other ways of using the strate-
gies, have to be created to be able to scale the specification up. One

way the test performance might be increased without changing the
scoring system is to start 2 strategies. One at the initial state, going
to the winning state, and one going in reverse from the winning
state and let them meet in the middle.

11 CONCLUSION
In this paper, I explored which strategy synthesizing techniques are
the best for testing software applications by doing a case study on
an executable application. This was done following the [10] about
translating strategies into test cases. I started by doing a literary
review on different strategy synthesising techniques and eventually
found 2 promising techniques; Backward Induction (BI) [2] and
Simultaneous Move Monte Carlo Tree Search (SM-MCTS) [7].
After the literary review, I created a testing framework that could
use strategies to test an executable application. The application was
simple, with 3 main parts. One for making choices, one for having a
loop and one for having a lot of states in a row. Lastly, I also created
2 strategy synthesizers, BI and SM-MCTS, that are derived from the
BI and SM-MCTS algorithms explained in [2] and [7] respectively. I
changed the algorithms a little bit to create a bit better algorithms
for my score system in the case of BI. In the case of SM-MCTS, I
changed the algorithm from [7] to prevent crashes and give myself
more control. The goal of the created strategies was to try and reach
a certain state deemed winning. The synthesizers, applications and
specifications are created in a way that allows for new synthesizers,
applications and specifications to be created. That way it could be
used, with maybe some changes, for further case studies.
After the testing framework was fully built, the synthesizers could
be evaluated. My experiments showed that BI was the superior
synthesizer for a simple, small application. The application was
relatively small, with around 846 states and for most states, only 1
sequence of actions could reach the state. BI was fast, creating all
strategies in 12 seconds, and it always reached the winning state.
SM-MCTS did not work well, it was slower and it failed more often.
I improved the algorithm by making it prefer non-quiescent actions
over quiescent actions, but it did not make it much better. In the end,
I think that BI and SM-MCTS would never work in big real-world
applications, the way I have implemented them. To use the game
strategies as tests in real-world applications, more optimized ways
of giving scores or different ways to implement the strategies as
tests should be explored.

11.1 Future Work
I have already touched on future work multiple times in this paper
because I think that there is a lot more research needed to determine
the functionality of certain game strategy synthesis techniques. SM-
MCTS can be further improved to work better as a test case, and
different ways of distributing scores can be researched. Also, differ-
ent synthesis techniques can be tested or whole different ways of
implementing the strategies. In this paper, I focused on reachability
goals and started every test from an initial starting state. However,
different goals or different starting states could be used. Running
multiple strategies in unison and combining the strategies in 1 test
case is also a possibility that could not be explored in this paper.

Test Case Generation by Game Theory TScIT 41, July 5, 2024, Enschede, The Netherlands

12 AI DISCLOSURE
During the preparation of this work the author used Grammarly in
order to check and fix the grammar and to change some sentences
to make them more clear. After using this tool/service the author
reviewed and edited the content as needed and takes full responsi-
bility for the content of the work.
During the preparation of this work the author used chat-gpt in
order to find synonyms for words. After using this tool/service the
author reviewed and edited the content as needed and takes full
responsibility for the content of the work.
During the preparation of this work the author used chat-gpt in
order to learn about certain structures in python (like Threads)
and to find the cause and sometimes fix for bugs. After using this
tool/service the author reviewed and edited the content as needed
and takes full responsibility for the content of the work.
During the preparation of this work the author used chat-gpt in
order to create tables and figure layouts in latex to use in the paper.
After using this tool/service the author reviewed and edited the
content as needed and takes full responsibility for the content of
the work.
During the preparation of this work the author used chat-gpt in
order to learn about certain packages and keywords for latex. After
using this tool/service the author reviewed and edited the content
as needed and takes full responsibility for the content of the work.

REFERENCES
[1] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G.

Larsen, and Didier Lime. 2007. UPPAAL-Tiga: Time for Playing Games!: (Tool
Paper). In Computer Aided Verification, David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor,
Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri
Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Werner Damm, and
Holger Hermanns (Eds.). Vol. 4590. Springer Berlin Heidelberg, Berlin, Heidelberg,
121–125. https://doi.org/10.1007/978-3-540-73368-3_14 Series Title: Lecture
Notes in Computer Science.

[2] Branislav Bošanský, Viliam Lisý, Marc Lanctot, Jiří Čermák, and Mark H. M.
Winands. 2016. Algorithms for computing strategies in two-player simultaneous
move games. Artificial Intelligence 237 (Aug. 2016), 1–40. https://doi.org/10.1016/
j.artint.2016.03.005

[3] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. 2008. A game-
theoretic approach to real-time system testing. In Proceedings of the Conference on
Design, Automation and Test in Europe (DATE ’08). Association for Computing Ma-
chinery, New York, NY, USA, 486–491. https://doi.org/10.1145/1403375.1403491
event-place: Munich, Germany.

[4] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H. Travas-
sos. 2007. A survey on model-based testing approaches: a systematic review. In
Proceedings of the 1st ACM international workshop on Empirical assessment of
software engineering languages and technologies: held in conjunction with the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE) 2007.
ACM, Atlanta Georgia, 31–36. https://doi.org/10.1145/1353673.1353681

[5] Sylvain Gelly, Levente Kocsis, Marc Schoenauer, Michèle Sebag, David Silver,
Csaba Szepesvári, and Olivier Teytaud. 2012. The Grand Challenge of Computer
Go: Monte Carlo Tree Search and Extensions. Commun. ACM 55 (March 2012),
106–113. https://doi.org/10.1145/2093548.2093574

[6] Sergiu Hart and Andreu Mas-Colell. 2000. A Simple Adaptive Procedure Leading
to Correlated Equilibrium. Econometrica 68, 5 (Sept. 2000), 1127–1150. http:
//www.jstor.org/stable/2999445 Publisher: [Wiley, Econometric Society].

[7] Marc Lanctot, Viliam Lisý, and Mark H. M. Winands. 2014. Monte Carlo Tree
Search in Simultaneous Move Games with Applications to Goofspiel. In Computer
Games, Tristan Cazenave, Mark H.M. Winands, and Hiroyuki Iida (Eds.). Springer
International Publishing, Cham, 28–43. https://doi.org/10.1007/978-3-319-05428-
5_3

[8] Lev Nachmanson, Margus Veanes, Wolfram Schulte, Nikolai Tillmann, and
Wolfgang Grieskamp. 2004. Optimal strategies for testing nondeterministic
systems. ACM SIGSOFT Software Engineering Notes 29, 4 (July 2004), 55–64.
https://doi.org/10.1145/1013886.1007520 Publisher: Association for Computing

Machinery (ACM).
[9] Jan Tretmans. 2008. Model Based Testing with Labelled Transition Systems. In

Formal Methods and Testing: An Outcome of the FORTEST Network, Revised Selected
Papers, Robert M. Hierons, Jonathan P. Bowen, and Mark Harman (Eds.). Springer,
Berlin, Heidelberg, 1–38. https://doi.org/10.1007/978-3-540-78917-8_1

[10] Petra van den Bos and Marielle Stoelinga. 2018. Tester versus Bug: A Generic
Framework for Model-Based Testing via Games. Electronic Proceedings in Theoreti-
cal Computer Science 277 (Sept. 2018), 118–132. https://doi.org/10.4204/eptcs.277.9
Publisher: Open Publishing Association.

[11] FarnWang, Sven Schewe, and Jung-HsuanWu. 2015. Complexity of node coverage
games. Theoretical Computer Science 576 (April 2015), 45–60. https://doi.org/10.
1016/j.tcs.2015.02.002 Publisher: Elsevier BV.

https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1016/j.artint.2016.03.005
https://doi.org/10.1016/j.artint.2016.03.005
https://doi.org/10.1145/1403375.1403491
https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1145/2093548.2093574
http://www.jstor.org/stable/2999445
http://www.jstor.org/stable/2999445
https://doi.org/10.1007/978-3-319-05428-5_3
https://doi.org/10.1007/978-3-319-05428-5_3
https://doi.org/10.1145/1013886.1007520
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.4204/eptcs.277.9
https://doi.org/10.1016/j.tcs.2015.02.002
https://doi.org/10.1016/j.tcs.2015.02.002

	Abstract
	1 Introduction
	1.1 Related work

	2 Games
	3 Model-based testing
	3.1 Conformance relation
	3.2 Input-Output conflicts
	3.3 Specifications to games

	4 Strategies
	4.1 Strategy creation

	5 Scores
	5.1 Future work

	6 Strategy Synthesizers
	6.1 Backward Induction
	6.2 Simultaneous Move Monte Carlo Tree Search

	7 Application and Specification
	7.1 Specification
	7.2 Application

	8 Testing Framework
	9 Methodology
	9.1 Metrics
	9.2 Process

	10 Results
	10.1 Backward Induction
	10.2 Simultaneous Move Monte Carlo Tree Search
	10.3 SM-MCTS
	10.4 Comparison

	11 Conclusion
	11.1 Future Work

	12 AI Disclosure
	References

