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The accurate interpretation of emotions is crucial in enhancing various
fields, such as assistive technologies and healthcare. People may mask their
true emotions, as facial expressions are not always reliable indicators. This
study explores the efficacy of using skeletal movements for emotion recog-
nition. The research focuses on two primary questions. First, it evaluates
the provided labels in the EiLA dataset by clustering skeletal movements
into the seven basic emotions. Second, it examines the accuracy of different
models in predicting emotions based on these movements. The methodology
involves (1) extracting frames from video data, (2) using the PoseLandmarker
algorithm to obtain normalized 3D coordinates of key skeletal points, (3)
normalizing and truncating skeletal movements for consistency, and (4)
converting them into feature vectors. These vectors are then clustered and
used to train various models to determine their performance in emotion
recognition. The average linkage method proved most effective for cluster-
ing skeletal movements into the seven basic emotions. However, qualitative
analysis revealed challenges related to overlap and ambiguity in emotion
labeling. Among the models evaluated, the Support Vector Machine (SVM)
achieved the highest accuracy but exhibited moderate precision and recall,
indicating difficulty in handling class imbalances. In contrast, the Random
Forest model demonstrated more robust performance with the highest F1-
Score, effectively identifying true positive emotions.

Additional Key Words and Phrases: emotion recognition, computer vision,
skeletal movements, human-computer interaction, poselandmarker algo-
rithm, hierarchical clustering, svm, random forest, neural network

1 INTRODUCTION
The capability to accurately interpret emotions can significantly
impact various fields. For example, in the realm of assistive technolo-
gies, emotion-aware systems can be enhanced to bemore empathetic
and adaptive for individuals with disabilities. In the healthcare field,
it can aid in the early diagnosis and monitoring of mental health
conditions, providing a deeper understanding of patient well-being.
Therefore, interpreting emotions is a pivotal task in the field of
human-computer interaction.

Traditional methods of emotion recognition, which often rely on
facial expressions, vocal intonations, or self-reported data, can be
limiting or intrusive. There is a possibility that peoplemay not reveal
their emotions through facial expressions, as studied by Ekman et
al. [9]. Additionally, individuals may feign emotions to mislead the
observer. In such cases, cues from the experienced emotions can be
extracted from other sources like body language [10].

The aim of this research is to determine the accuracy of defining
emotions based on skeletal movements. To achieve this, the research
focuses on answering the following questions:
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• RQ1: How effectively do the skeletal movements extracted from
the EiLA dataset form clusters corresponding to the seven basic
emotions?

• RQ2: How accurately can different models predict emotions
using skeletal movements extracted from the EiLA dataset?

The rest of the paper is organized as follows: Section 2 discusses
the current state-of-the-art and describes technical background.
Section 3 presents the methodology. Section 4 describes the experi-
mental setup. Section 5 presents and describes the results. Section 6
analyzes and discusses the results, answers the research questions,
and suggests future work. Finally, Section 7 presents the conclusions.

2 SCIENTIFIC BACKGROUND

2.1 Related works
Emotion recognition based on skeletal movements is relatively unex-
plored compared to methods based on facial expressions. However,
the popularity of these approaches has increased in recent years.
Costa et al. [4] summarized examples of correlations between body
movements and emotions that were originally proposed by Darwin
[6]. Additionally, Wallbott et al. [25] conducted a study on body
language, specifically identifying behavioral cues related to body
movements and language from six professional actors.

There are also works focused on emotion recognition from skele-
tal movements. For instance, Sapiński et al. [20] analyzed motion
data captured under seven basic emotions using a Microsoft Kinect
v2 sensor. Their performance measurements on CNN, RNN, and
RNN-LSTM models resulted in an accuracy of 63%. Shichkina et al.
[24] studied the correlation between emotions and body posture
in a sitting position using a hardware-software system based on
a posturometric armchair, achieving an overall accuracy of over
90% with various methods. Shi et al. [23] proposed an attention-
based convolutional neural network and an attention-based fusion
method to analyze emotions from videos, utilizing audio signals,
skeletal data, and text information. Montepare et al. [19] identified
emotions such as sadness, anger, happiness, and pride from gait
information and found that specific cues could differentiate these
emotions. For instance, angry movements were more heavyfooted,
while sad movements had less arm swing comparing to the other
gaits. In another study he concluded that negative emotions, par-
ticularly sadness, were more accurately recognized [18]. A similar
study by Lima et al. [17] proposed the ST-Gait++ architecture to
recognize four emotions (Anger, Happiness, Neutral, and Sadness),
achieving an overall accuracy of 87.5%, which is an improvement
of approximately 5% over the state-of-the-art. Kumar et al. [16]
conducted a promising study using skeleton data obtained from a
Microsoft Kinect v2 and a motion trajectory computation scheme
using Fourier temporal features from the interpolation of skeleton
joints, resulting in an overall accuracy of 95.32%.
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However, some of these studies require additional hardware (e.g.,
Microsoft Kinect v2 or a posturometric armchair) to obtain raw point
cloud data, which can only be gathered under limited experimental
conditions. Additionally, they may require supplementary inputs
like voice or textual context to increase prediction accuracy [20, 23,
24]. In the current research, an analysis of raw skeletal movement
data and its relation to primary emotions was proposed without
the need for additional hardware or input data. The dataset used
consists of video footage without audio signals from the TV show
MasterChef+ Brasil (EiLA dataset).

2.2 Technical background
2.2.1 Pose Detection and Estimation. For pose estimation from
videos, the PoseLandmarker was used. PoseLandmarker, developed
by Google, detects and estimates poses from images or videos, re-
turning normalized coordinates for each joint with estimated depth.
This tool extracts 3D skeletal data from video frames. The model
used is PoseLandmarker (Full) with an input size of 256 × 256 × 3,
returning 33 normalized points with (𝑥,𝑦, 𝑧) coordinates [1].

2.2.2 Clustering Analysis. Hierarchical clustering is a method of
cluster analysis that builds a hierarchy of clusters, either agglom-
erative (bottom-up) or divisive (top-down). In this research, the
bottom-up approach is used based on the dataset size. Agglomera-
tive clustering helps analyze how well skeletal movements can be
grouped, providing insights into the natural clustering of different
emotions [13].

2.2.3 Classification Algorithms. Selecting appropriate classification
algorithms is critical for accurately and reliably predicting emo-
tions from 3D skeletal movements. Given the complexity of human
emotions and the nature of skeletal movement data, a thorough
comparison of different machine learning approaches is necessary.
This research compares the performance of Support Vector Ma-
chines (SVM), Random Forest (RF), and Neural Networks (NN) in a
multi-class classification setting.

Support Vector Machines. Support Vector Machines (SVM) is a
powerful supervised learning algorithm used for classification and
regression tasks. It works by finding the hyperplane that best sepa-
rates different classes in the feature space. For non-linear classifica-
tion, SVM uses kernel functions (e.g., RBF, polynomial) to project
data into higher dimensions where linear separation is possible.
SVM is suitable for this task due to its robustness with smaller
datasets and its ability to handle multi-class classification [5, 22].

Random Forest. Random Forest is an ensemble learning method
that constructs multiple decision trees during training and merges
their results (either by averaging for regression or majority voting
for classification). It is known for its simplicity and effectiveness in
handling various types of data. Random Forest has high accuracy
and robustness to over-fitting due to the averaging of multiple
trees and can generalize well on smaller datasets, providing robust
predictions [11, 21].

Neural Network. Neural Networks, especially deep learning mod-
els, are powerful tools for capturing complex patterns in data. They
consist of multiple layers of neurons where each layer extracts

Fig. 1. Methodology Overview

higher-level features from the input data. Despite the small dataset,
Neural Networks can be effective with proper data augmentation
and regularization [2].

3 METHODOLOGY
The overall methodology is depicted in Figure 1. A detailed descrip-
tion of each step follows below.

3.1 Skeleton Tracking
Prior to skeleton extraction, each frame underwent pre-processing
steps including determining the boundary box for a person with
Person Id, cropping the frame using this boundary box, resizing
the image, and applying the PoseLandmarker algorithm for pose
estimation, as illustrated in Figure 2.

For all videos provided in the EiLA Dataset, a total of 8087 frames
were extracted, with the PoseLandmarker algorithm applied to each
frame. The PoseLandmarker algorithm returns normalized detected
points in the format (𝑥,𝑦, 𝑧), where 𝑥 and 𝑦 denote the coordinates
of the joint on the frame, and 𝑧 represents the estimated depth
(Figure 3). Normalized points mitigate the influence of varying pose
sizes. The PoseLandmarker returns 33 points for each frame, which
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Fig. 2. Dataset Preparation Overview

Fig. 3. Result of joints detection using PoseLandmarker

were reduced to 25 key points: nose (1), eyes (6), mouth (2), ears
(2), shoulders (2), elbows (2), wrists (2), hips (2), and fingers (6) [12].
This combination of points, representing the human posture for
each frame, is termed as the skeleton [7]. The resulting skeleton
for each frame was integrated with original annotations, adding 75
additional columns for the 𝑋 , 𝑌 and 𝑍 coordinates of each joint to
the annotations file. An example of how these points are presented
can be seen in Table 1.

Table 1. An example table of extracted skeleton points

nose_X nose_Y nose_Z ...
1.1883129256 0.18981633247 -0.04783265416 ...
1.2084573548 0.19331540014 0.012150476112 ...
1.356732110 0.18915118244 -0.22049692826 ...

... ... ... ...

3.2 Skeleton Preprocess
Skeleton Rotation. Human actions are composed as a series of

skeletons. To ensure consistency regardless of absolute body po-
sition and initial body orientation, all skeletons are transformed
by rotating the coordinate system. Inspired by Jian et al.’s work
[14], the skeleton is rotated using a rotation matrix 𝑅 computed via
Rodrigues’ rotation formula. The rotation matrix was computed as
following:

𝑅 = 𝐼 + 𝑠𝑖𝑛𝜃 · 𝐾 + (1 − 𝑐𝑜𝑠𝜃 ) · 𝐾2 (1)
where:

Fig. 4. Original skeleton (left) and rotated skeleton (right)

• 𝑅 is the rotation matrix.
• 𝐼 is the 3 × 3 identity matrix.
• 𝜃 is the angle of a counterclockwise rotation in radians.
• sin𝜃 and cos𝜃 are the sine and cosine of the angle 𝜃 , respec-
tively.

• 𝐾 is a unit vector, associated with Lie algebra 𝔰𝔬(3).
The rotation angle 𝜃 is calculated such that the vector ®𝐻𝑅𝐻𝐿 (from
right hip 𝐻𝑅 to left hip 𝐻𝐿) becomes parallel to the 𝑥-axis (Figure
4). Now the skeleton is independent from different viewpoints [14].

Spline Interpolation. Some joints may have missing values. To
deal with that, the spline interpolation will be applied [16]. In the
context of 3D skeleton joints, where the motion is continuous and
smooth, spline interpolation can effectively fill in missing joint
positions without introducing abrupt changes or discontinuities. In
our research the interpolation used a cubic spline 𝑆 (𝑥) with (𝑘 = 3)
that consists of𝑚 − 1 polynomial segments, one for each interval
[𝑥𝑖 , 𝑥𝑖+1]. Then all cubic polynomials were constructed for each
interval with the form

𝑆𝑖 (𝑥) = 𝑎𝑖 + 𝑏𝑖 (𝑥 − 𝑥𝑖 ) + 𝑐𝑖 (𝑥 − 𝑥𝑖 )2 + 𝑑𝑖 (𝑥 − 𝑥𝑖 )3 (2)

where 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1], 𝑎𝑖 is a constant, 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 are linear, quadratic
and cubic coefficients consecutively. The system of equations was
solved to determine the missing values.

3.3 Data Preprocess
Segment Extraction and Normalization. In the EiLA dataset, the

combination of Video Tag, Clip Id, and Person Id uniquely identifies a
person. A set of frames representing a specific person is referred to
as a segment. Each segment contains a sequence of frames capturing
a particular motion, i.e., a series of skeletons related to the provided
label. Before extracting features from a segment, its length is nor-
malized to ensure all segments have an equal number of frames.
During the normalization process, a target number of frames is
defined. If the target is lower than the current number of frames,
redundant frames are equally removed from the center. Conversely,
if the target is higher, frames are duplicated in the same manner.
As a result of this length normalization, all segments have an equal
length matching the target length. The total number of normalized
segments in this study is 326.

Feature Extraction. To represent a configuration of an entire skele-
ton, inspired by Ding et al [8] and Costa et al [4], a distance vectors
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were obtained from the most important skeleton points O [12]. 𝑂
contains coordinates of a nose (1), shoulders (2), elbows (2), wrists
(2), hips (2). 𝑂 ′ is a set of all other coordinates in such a way that
all distances from all elements 𝑜 ∈ 𝑂 were obtained to all 𝑝𝑛 ∈ 𝑂 ′

where 𝑛 ∈ [0, 23] and 𝑜 ≠ 𝑝𝑛 . 𝑂 ′ contains nose (1), eyes (6), mouth
(2), ears (2), shoulders (2), elbows (2), wrists (2), hips (2) and fingers
(6).

Let’s take an arbitrary segment 𝑆𝑙 , 𝑜 ∈ 𝑂 as an original point
where 𝑖 ∈ [0, 9] is a sequential number of a frame in 𝑆𝑙 :

𝑜 =
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𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
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.
.

.

.

.
.
.
.
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ª®®®®¬
(3)

where {(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 )}𝑘𝑖=1 are the coordinates of the original point 𝑜 .
Then we identify all other points and their coordinates, creating

the matrix of coordinates for every other points:

𝑝𝑛 =
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where {(𝑥 ′
𝑖
, 𝑦′

𝑖
, 𝑧′
𝑖
)}𝑘

𝑖=1 are the coordinates of the other estimated
point 𝑝𝑛 .

For each frame 𝑖 we compute the euclidean distance between the
original point 𝑜 and the every other point 𝑝𝑛 :

𝑑𝑜,𝑝𝑛,𝑖 =

√︃
(𝑥𝑖 − 𝑥 ′𝑖 )2 + (𝑦𝑖 − 𝑦′𝑖 )2 + (𝑧𝑖 − 𝑧′𝑖 )2 (5)

At last, a 1680-dimensional vector of distances for each segment
𝑆𝑙 was created (Equation 6). The distances ensure that during the
classification the skeletons will be independent from their absolute
joint positions.

𝑑𝑆𝑙 = [𝑑𝑜0,𝑝0,0, 𝑑𝑜0,𝑝0,1, . . . , 𝑑𝑜10,𝑝23,9] (6)

3.4 Feature Clustering
Before attempting to classify poses and their associated emotions,
hierarchical clustering was applied to the set of feature vectors
𝑑𝑆 (Equation 6). Specifically, Agglomerative Clustering was used
to assess the distinctiveness of these poses independently. After
each clustering iteration, Silhouette and Davies Bouldin scores were
computed.

3.5 Classification
Data Preparation. Prior to training the models for classifying

skeletons according to their emotional labels, it is crucial to ensure
balanced data where all classes have sufficient samples for accurate
classification. Therefore, underrepresented classes were removed
from consideration. In the current study, the models were trained
to classify only three emotions: Neutral, Happy, and Anger. After
removing underrepresented classes and performing a stratified data
split, the training data was further processed using SMOTE [3] to
balance the class distribution, providing additional information to
the models and mitigating bias in the classification process.

Classification Methods. The classification task utilized Support
Vector Machines (SVM), Random Forest, and Neural Network algo-
rithms from the Scikit-learn library [15]. Each method was applied
to the set of feature vectors 𝑑𝑆 (Equation 6). Finally, the performance
of these models was evaluated with different training and testing
splits.

4 EXPERIMENTAL SETUP

4.1 EiLA Dataset
EiLA (Emotions in LatAM) is a dataset provided by the University
of Twente, designed for emotion recognition among individuals
from Latin American backgrounds. The dataset consists of 9 videos
from the MasterChef+ Brasil show. This dataset was chosen because
individuals in these videos experience a wide range of emotions
during the cooking process. The dataset annotations (see Table
3) cover 8087 frames from these videos and include the following
annotations for each frame:

• Video Tag: Video identification present on YouTube.
• Clip Id: Identification for each clip from a source video,
unique within the source video.

• Labels: Arrays containing labels assigned by each annotator
of the dataset.

• Frame Number: Frame used for the annotation.
• X: Starting position of the bounding box on the x-axis.
• Y: Starting position of the bounding box on the y-axis.
• Width: Percentage of the video’s width used as an offset for
"X".

• Height: Percentage of the video’s width used as an offset for
"Y".

• Pid: Integer identifying a specific person for clips with the
same "Video Tag" and "Clip Id".

The resulting sample counts per class (after segmentation) are pre-
sented in Table 2. Some classes are heavily underrepresented, specif-
ically Sad, Surprise, Disgust, and Fear.

Table 2. Count of samples per class after segmentation

Neutral Happy Anger Sad Surprise Disgust Fear
161 87 42 11 10 8 7

4.2 Validation metrics
To assess the performance of the classifiers in predicting emotions
from skeletal movements, a variety of validation metrics will be
employed. These metrics will provide insights into the accuracy of
our models, their effectiveness in handling multi-class classification
tasks, and their robustness in various scenarios.

4.2.1 Accuracy. Accuracy represents the ratio of correctly predicted
instances to the total instances in the dataset, providing an overview
of the model’s overall performance.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

(7)
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Table 3. An annotations for each frame for EiLA dataset

Video Tag Cid Labels Frame Number X Y Width Height Pid
aJKL0ahn1Dk 1 [[’Happy’], [’Happy’], [’Happy’]] 19532 41.965200 4.873195 44.216991 94.802684 0
aJKL0ahn1Dk 1 [[’Happy’], [’Happy’], [’Happy’]] 19538 41.564836 4.874640 44.216991 94.802684 0
aJKL0ahn1Dk 1 [[’Happy’], [’Happy’], [’Happy’]] 19544 41.164472 4.876086 44.216991 94.802684 0
aJKL0ahn1Dk 1 [[’Happy’], [’Happy’], [’Happy’]] 19550 40.764108 4.877532 44.216991 94.802684 0
aJKL0ahn1Dk 1 [[’Happy’], [’Happy’], [’Happy’]] 19556 39.646728 5.014136 44.216991 94.802684 0

... ... ... ... ... ... ... ... ...

4.2.2 Precision, Recall and F1-Score. Precision indicates the pro-
portion of true positive predictions among all positive predictions,
showing the accuracy of the positive ones.

Precision =
True Positives

True Positives + False Positives
(8)

Recall measures the proportion of true positive predictions among
all actual positive instances, indicating how well the model captures
positive instances.

Recall =
True Positives

True Positives + False Negatives
(9)

F1-Score is the harmonic mean of precision and recall, providing
a single metric that balances both precision and recall.

F1-Score = 2 × Precision × Recall
Precision + Recall

(10)

4.2.3 Confusion Matrix. The confusion matrix is a detailed table
that presents the performance of the classification model by com-
paring actual vs. predicted classifications. It provides a visual repre-
sentation of the model’s performance across all classes, highlighting
where the model misclassifies instances. The confusion matrix is
crucial for understanding error distribution and identifying which
classes are frequently confused with each other.

4.3 Implementation details
In the following section the implementation details will be discussed.
The overall project was implemented using Python 3.12.3 version.
The source code can be accessed in the GitHub repository.

4.3.1 Data Split. The stratified data split was performed and the
three distinct subsets were formed: training, validation and test.

• Training set (80%).
• Validation set (10%): used for tuning hyper-parameters and
preventing over-fitting. Used only for NN validation.

• Test set (20%): used to evaluate the models on unseen data.

4.3.2 Hyper-parameters. To determine the optimal hyper-parameters,
hyper-parameter tuning was conducted using the grid search tech-
nique. The selected hyper-parameters for each model are detailed
in Table 4. The Neural Network architecture comprises 4 layers:
(1) Input dense layer with 64 units, ReLU activation function, L2
regularization, and input shape corresponding to the number of
features per sample; (2) Dropout layer, (3) Hidden layer with 35
units, ReLU activation function, and L2 regularization; (4) Output
dense layer with 3 units and Softmax activation function.

Table 4. Best hyper-parameters for each model

Model Hyper-parameter Best Value

SVM
C 10

Kernel RBF
Gamma 0.1

Random Forest
Number of Estimators 200

Max Depth None
Min Samples Split 5
Min Samples Leaf 1

Neural Network

Batch Size 64
Epochs 50

Dropout Rate 0.3
L2 Regularization 0.01

Optimizer Adam

5 RESULTS

5.1 Clustering
Table 5 presents the cluster results for different numbers of target
classes using various linkage methods and metrics. The table com-
pares the clustering performance using the Silhouette coefficient
and the Davies-Bouldin index. The clustering performed for the
original dataset with 7 classes. The Silhouette score measures how

Table 5. Cluster results for different number of target classes

Clusters Metric Linkage Silhouette Davies-Bouldin
7 euclidean ward 0.1507 1.5080
5 euclidean ward 0.1663 1.4382
3 euclidean ward 0.1603 1.5024
7 euclidean average 0.5648 0.5397
5 euclidean average 0.6225 0.6528
3 euclidean average 0.7240 0.1723
7 euclidean complete 0.5137 0.9460
5 euclidean complete 0.5270 0.9960
3 euclidean complete 0.7309 0.8466

similar an object is to its own cluster compared to other clusters. Ac-
cording to Table 5, the highest Silhouette score (0.7309) is achieved
with 3 clusters using the Euclidean distance and Complete linkage
method. The Silhouette score is also relatively high (0.7240) with
the Average linkage method. The lowest Silhouette score (0.1507)
was obtained with the Euclidean distance and Ward linkage method.
The Davies-Bouldin index measures cluster separation, with lower
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Fig. 5. PCA clustered features

values indicating better-defined clusters. The lowest Davies-Bouldin
index (0.1723) was obtained for 3 clusters with Euclidean metric and
Average linkage. For 7 clusters with the same metric and linkage,
the index was also relatively low. The highest value was obtained
with 7 clusters, Euclidean metric, and Ward linkage.

The PCA plots visualize the clustering results in 2D space using
the first two principal components for dimensionality reduction.
Figure 5 (a) shows the PCA of features using the Ward linkage
method, and (b) shows the PCA of features using the Complete link-
age method. Each plot depicts the clustering of different emotions,
with each color and shape representing a distinct emotion.

5.2 Classification
Classification results for different models are provided in Table 6.
The classification was performed on the truncated dataset with 3
classes after SMOTE [3] resampling. Example confusion matrices
are shown in Figure 7. According to the results in Table 6, SVM
achieved an average accuracy of 0.5816 ± 0.0310 and an F1-Score
of 0.4672 ± 0.0448. Random Forest attained an accuracy of 0.5539
± 0.0563 and an F1-Score of 0.5114 ± 0.0608. Finally, the Neural

Table 6. Classification results for different models

Model Accuracy (Mean) F1-Score (Mean)
SVM 0.5816 ± 0.0310 0.4672 ± 0.0448

Random Forest 0.5539 ± 0.0563 0.5114 ± 0.0608
Neural Network 0.4916 ± 0.0758 0.4174 ± 0.0300

Network showed an accuracy of 0.4916 ± 0.0758 and an F1-Score of
0.4174 ± 0.0300.
In the example in Figure 7, (a) SVM demonstrates exceptional

performance in identifying Anger, achieving a 100% accuracy rate.
However, it shows significant confusion in classifying Happy and
Neutral emotions, correctly identifying only half of the Happy in-
stances andmisclassifying the rest as Neutral. Similarly, a substantial
portion of Neutral instances is misclassified as Happy or Anger. In
(b), Random Forest shows improved performance for Neutral emo-
tions (67.74%), but decreased for Happy (33.33%) and Anger (14.29%).
In (c), Neural Network exhibits balanced but lower performance
across all emotions: Anger (14.29%), Happy (28.57%) and Neutral
(56.67%).

6 DISCUSSION

6.1 Answer to RQs
6.1.1 RQ1: How effectively do the skeletal movements extracted from
the EiLA dataset form clusters corresponding to the seven basic emo-
tions?

Quantitative analysis. Low Silhouette scores and high Davies-
Bouldin scores for the Ward linkage method suggest that clusters
are not well-separated and less distinct, indicating ineffectiveness
in forming clear clusters corresponding to the seven basic emo-
tions. Conversely, the Average linkage method demonstrates im-
proved clustering effectiveness. The Silhouette scores are signifi-
cantly higher, particularly for fewer clusters. The Davies-Bouldin
index also shows marked improvement, suggesting more compact
and distinct clusters. These results indicate that the Average linkage
method forms clearer and more distinct clusters, making it more
effective for clustering skeletal movements corresponding to emo-
tions. Very similar results can be achieved with Complete linkage
method.

Qualitative analysis. The PCA visualizations in Figure 5 cast doubt
on the quality of classification using the Average method. In (a), the
Ward linkage method shows more overlap and less distinct clusters.
In contrast, (b) shows better-separated clusters with the Complete
linkage method, although some overlap persists. However, upon
closer inspection of the labels, it is evident that with both Complete
and Average methods, most labels cluster into one group, with only
a few assigned to different clusters. This occurs due to the similarity
of skeletal movements in the EiLA dataset. Furthermore, as shown
in Table 3, emotions labeled by different annotators can vary, adding
ambiguity even for human identification of emotions. Ward linkage
provides more consistent clustering resembling the original label
distribution, but with many labels assigned to multiple clusters due
to high feature density in the feature space, which aligns with lower
Silhouette scores and higher Davies-Bouldin indices.
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Fig. 6. Predictions of 3 basic emotions (first 3 frames, SVM)

Fig. 7. Example confusion matrices for SVM (a), Random Forest (b) and Neural Network (c)

6.1.2 RQ2: How accurately can different models predict emotions
using skeletal movements extracted from the EiLA dataset?

Quantitative analysis. SVM achieved the highest accuracy among
all three models, but its relatively low F1-Score suggests moderate
precision and recall in classifying emotions. This indicates that SVM
performs reasonably well in distinguishing between classes but may
struggle with imbalanced classes or capturing nuanced data patterns.

On the other hand, the Random Forest model resulted in the highest
F1-Score, implying a better balance between precision and recall.
This suggests that the Random Forest model is more effective in
identifying true positive emotions and may handle class imbalances
better (Equation 10). Finally, the Neural Network showed the lowest
accuracy and F1-Score, likely due to its complex nature requiring
more data to fully capture the nuances of skeletal movements. At
last, all models showed low standard deviation for both accuracy and
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F1-Score suggesting that the different data split didn’t significantly
affect the results.
Comparing to previous studies such as Sapiński et al. [20], who

achieved 63% accuracy using CNN, RNN, and RNN-LSTM models
on Kinect data, SVM and Random Forest models in the current
study applied on the EiLA dataset show competitive performance
given the different datasets and absence of additional hardware or
contextual data. Other studies by Shichkina et al. [24] and Shi et
al. [23] reported higher accuracies (over 90%), but they relied on
additional hardware (e.g., Kinect v2, posturometric armchair) and
multi-modal data (audio, text). Current approach using only video-
derived skeletal data inherently faces more challenges, explaining
the lower accuracies but also highlighting the potential of using
skeletal data alone.

Qualitative analysis. In Figure 6, examples of correct and incor-
rect predictions made by SVM are illustrated. By looking at the
skeleton’s it is very hard to distinguish the emotions that people
are experiencing. For instance, anger can be described as an experi-
enced emotion, which should be followed by tremble, purposeless
gestures, shaking fists and expanded chests, as observed in (a). In
(b), wide arm movements might suggest Happiness. In (c), minimal
changes in posture indicate a Neutral state [4].
Conversely, in (f), a pose similar to (b) results in an incorrect

prediction of Happiness. In (e), despite purposeless gestures indicat-
ing Happiness, a depth estimation error by PoseLandmarker caused
a distorted skeleton, leading to a Neutral prediction. In (d), sub-
tle signs of Anger are hard to detect, and wide elbow positions
might incorrectly predict Happiness, similar to (b). Overall, these
examples underscore the uncertainty in the data, contributing to
understandable prediction errors.

6.2 Limitations
Dataset Imbalance. One significant limitation encountered was

the imbalance in the EiLA dataset, as indicated in Table 2. Classes
such as Sad, Surprise, Disgust, and Fear were heavily underrepre-
sented compared to more common classes like Neutral, Happy, and
Anger. This imbalance necessitated the removal of these classes to
train a model that would not be biased towards the most frequently
occurring classes.

Size of Dataset. Another important limitation was the overall size
of the dataset. When grouping 8087 frames into segments 𝑆𝑖 rep-
resenting motions, the number of samples decreased significantly
(from 8087 samples to 645). This reduction in sample size posed chal-
lenges in training a model capable of generalizing well and robustly
capturing nuanced motion patterns related to human emotions. In
addition, EiLA dataset was originally designed to analyze human
emotions based on facial expressions, leading to some frames con-
taining only the facial parts of humans without their body parts.
These frames, and consequently the segments they formed, had
to be removed, further reducing the dataset size (from 645 initial
segments to 326).

PoseLandmarker Depth Estimation. PoseLandmarker, used in this
research, estimates the depth of joints. However, the accuracy of this
estimation can vary, as illustrated in Figure 3. For instance, when a

person holds their hands close to the body, the estimated 3D points
may show the wrists as relatively far from the body. Additionally,
the current method does not account for scenarios where a person
may be holding objects, which can influence skeletal motion.

6.3 Future work
The future work should start by addressing the limitations of the
current research. The larger dataset should be used with frames,
containing the mostly upper body of humans, not only faces. In
addition, dataset can be expanded (or another dataset should be
chosen) that contains balanced classes for each of the basic emotions.
Also, the methodology can be expanded by using Fourier temporal
features from the interpolation of skeleton joints to identify actions
of each human body part first [16], and then converted vector of
features that represents these identified actions, can be used to train
emotions classification model. In that case two models need to be
trained: one will predict the actions of the human body parts, and
the other one classify the emotions based on these actions. Finally,
it would be advantageous to consider scenarios where individuals
may be holding objects during skeletal movement analysis.

7 CONCLUSIONS
This study aimed to evaluate the effectiveness of clustering skeletal
movements for emotion recognition and assess the accuracy of
various models using the EiLA dataset. The findings provide detailed
insights into both clustering techniques and model performances.
The Average linkage method emerged as the most effective for

clustering skeletal movements into the seven basic emotions, show-
ing higher Silhouette scores and lower Davies-Bouldin indices com-
pared to Ward linkage and Complete linkage methods. However,
qualitative analysis highlighted significant overlap and ambiguity
despite improved clustering performance. This is partly due to in-
herent similarities in skeletal movements and subjective variations
in emotion labeling.

Among the models evaluated, the Support Vector Machine (SVM)
achieved the highest accuracy but exhibited moderate precision and
recall, indicating challenges in handling class imbalances. The Ran-
dom Forest model demonstrated a better balance with the highest
F1-Score, showcasing robustness in identifying true positive emo-
tions. In contrast, the Neural Network model performed the poorest,
possibly due to its complexity and the dataset’s limited size.
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