
Formalising Concurrent Test Interactions in Model-based Testing via
Games
KARSTEN E. ROELOFS, University of Twente, The Netherlands

In preceding research, a strong correlation between model-based testing

and game theory has been established and formalised. In this conversion, an

assumption must be made on which transition in a game arena to take when

tester and system propose conflicting actions. Several such assumptions

exist, but always discard and ignore either of these actions. We investigate a

conjecture from earlier literature concerning a novel concurrent test assump-

tion taking into account both. We formalise the assumption and evaluate its

efficacy. Based on our findings we conclude that the novel test assumption

may allow for the accurate modeling of concurrent software systems, in

addition to possibly providing an increase in overall testing efficiency. We

identify multiple avenues for further research.

Additional Key Words and Phrases: model-based testing, game theory, con-

current software systems

1 INTRODUCTION
In the world of software engineering, a process of vital importance

is the constant and rigorous testing of the system being developed.

To ensure that this system under test (SUT) conforms to its specifi-

cation, and to gain insight into its possible faults, it is subjected to

a large number of test cases. The process of establishing these test

cases for a given system has classically been, both time-wise and

monetarily, an expensive endeavour, often claiming significant parts

of development budgets (estimated at 30-50% [8]). Evidently, much

benefit would be gained from tools which may facilitate cheaper

and less labour intensive testing of systems.

The field of model-based testing contributes to this effort by at-

tempting to automate the creation of test cases. It introduces meth-

ods to create formal specifications of software systems, and gives

algorithms to subsequently generate test cases. Several methods for

model-based test case generation exist [3, 4, 7] which have enabled

testers to automate software testing and save resources.

Other authors [5, 2, 9] have found that results could be achieved

by interpreting a specification model as a game arena, and subse-

quently applying game-theoretical strategy synthesis techniques to

determine test cases. This connection between testing and games

has been formalised into a generic framework by Van den Bos &

Stoelinga [1], where test cases were shown to correspond to game

strategies and test case derivation was shown to correspond to strat-

egy synthesis. A schematic overview of this process is shown in

Figure 1.

When considering model-based testing, one has to decide what

is to happen in the event that the tester wishes to provide an input

at the same time that the SUT produces an output. To solve these

so called input-output conflicts, the literature has introduced several

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Specifications Game Arenas

StrategiesTest Cases

Model-based Testing Game Theory

Strategy
Synthesis

Fig. 1. Model-based testing via game theory overview

distinct test assumptions prescribing how the test interactions be-

tween the SUT and tester (i.e., the series of proposed and executed

or ignored actions over a period of time) should look.

In their framework [1], Van den Bos & Stoelinga identify and

formalise four distinct test assumptions, and note a shared common-

ality in that they always ignore either an input or an output action.

It is conjectured that a test assumption which takes into account

both actions by executing both but in nondeterministic order could

prove to be beneficial for the modeling and testing of concurrent

software systems.

In this work, the conjectured concurrent test assumption is for-

malised and the framework found in [1] is extended with necessary

novel construct to deal with concurrent systems. Its efficacy is dis-

cussed and multiple avenues for future research are identified.

2 PRELIMINARIES
The framework on which the current research expands, was put

forward by Van den Bos & Stoelinga in [1]. In the following section,

a recapitulation of the relevant sections of this work will be given, as

they contain foundational definitions and constructs for our work.

All definitions in Section 2 are taken from [1] (modulo notation).

2.1 Games
In Section 2.3, elements from model-based testing will be likened to

analogous elements from game theory. This section defines required

preliminary game theoretical constructs.

2.1.1 Game arenas. We consider concurrent two-player games,

played on graphs called game arenas.

Definition 2.1. A game arena is a tuple 𝐺 =

(𝑄,𝑞0,Act,Act2, Γ1, Γ2,Moves) where, for 𝑖 = 1, 2:

• 𝑄 is a finite set of states,

• 𝑞0 ∈ 𝑄 is the initial state,

• Act𝑖 is a finite and non-empty set of Player i actions,

1

TScIT 41, July 5, 2024, Enschede, The Netherlands Karsten E. Roelofs

• Γ𝑖 : 𝑄 → 2
Act𝑖 \ ∅ is an enabling condition, which assigns

to each state 𝑞 a non-empty set Γ𝑖 (𝑞) of actions available to
Player i in that state, and

• Moves : 𝑄 × Act1 × Act2 → 2
𝑄
is a function that, given the

actions of Players 1 and 2, determines the set of next states

𝑄 ′ ⊆ 𝑄 the game can be in.We require thatMoves(𝑞, 𝑎, 𝑥) = ∅
iff 𝑎 ∉ Γ1 (𝑞) ∨ 𝑥 ∉ Γ2 (𝑞).

2.1.2 Plays. Plays are the infinite sequences of states and actions

obtained after tracking all events in a game. They are finitely de-

scribed by their prefixes.

Definition 2.2. A play 𝜋 of a game arena 𝐺 =

(𝑄,𝑞0,Act1,Act2, Γ1, Γ2,Moves) is an infinite sequence:

𝜋 = 𝑞0 ⟨𝑎0, 𝑥0⟩ 𝑞1 ⟨𝑎1, 𝑥1⟩ 𝑞2 . . .
with ∀𝑗 ∈ N : 𝑎 𝑗 ∈ Γ1 (𝑞 𝑗), 𝑥 𝑗 ∈ Γ2 (𝑞 𝑗).

We write:

𝜋
𝑞

𝑗

def
= 𝑞 𝑗 for the j-th state,

𝜋𝑎𝑗
def
= 𝑎 𝑗 for the Player 1 action, and

𝜋𝑥𝑗
def
= 𝑥 𝑗 for the Player 2 action.

Furthermore, we define 𝜋0:𝑗
def
= 𝑞0 ⟨𝑎0, 𝑥0⟩ 𝑞1 ⟨𝑎1, 𝑥1⟩ 𝑞2 . . . 𝑞 𝑗 as

the prefix of play 𝜋 up to the j-th state.

With |𝜋 | we denote the length of a prefix 𝜋 , i.e. the number of

states in 𝜋 .

The set of all prefixes of a set of plays 𝑃 ⊆ Π(𝐺) of 𝐺 is denoted

Pref (𝑃) def
=

{
𝜋0:𝑗 | 𝜋 ∈ 𝑃, 𝑗 ∈ N

}
.

We define Πpref (𝐺) def
= Pref (Π(𝐺)).

A play is winning if it passes through some state in a reachability

goal 𝑅 ⊆ 𝑄 .

Definition 2.3. A play 𝜋 ∈ Π(𝐺) of a game arena 𝐺 is winning

with respect to reachability goal 𝑅 ⊆ 𝑄 , if 𝜋 reaches some state in 𝑅.

We writeWinΠ(𝐺, 𝑅) for the set of winning plays with respect to R.

Formally:

WinΠ(𝐺, 𝑅) =
{
𝜋 ∈ Π(𝐺) | ∃ 𝑗 ∈ N : 𝜋

𝑞

𝑗
∈ 𝑅

}
2.2 Model-based testing
Model-based testing facilitates the efficient testing of software sys-

tems by allowing the tester to automate the generation of test cases.

This is achieved by creating a specification model of the system

under test (SUT), which is subsequently used to generate test cases

through a variety of techniques [3, 4, 7]. Specifications describe

the desired behaviour of the system and are given in the form of

automata with inputs and outputs.

2.2.1 System specifications as suspension automata. We use suspen-

sion automata (SAs) to model system specifications.

We first define some notation for partial functions.

Definition 2.4. Let 𝑓 : 𝑋 ⇀ 𝑌 be a partial function. We adopt the

following notations:

• 𝑓 (𝑥)↓ if 𝑓 (𝑥) is defined, and
• 𝑓 (𝑥)↑ if 𝑓 (𝑥) is undefined.

Definition 2.5. A suspension automaton (SA) is a 5-tuple A =

(𝑄, 𝐿𝐼 , 𝐿𝛿𝑂 ,𝑇 , 𝑞0) where

• 𝑄 is a non-empty finite set of states,

• 𝐿𝐼 is a finite set of input labels,

• 𝐿𝛿
𝑂

= 𝐿𝑂
⋃{𝛿} with 𝐿𝑂 a finite set of output labels, 𝛿 ∉ 𝐿𝑂

and 𝐿𝐼
⋂

𝐿𝑂 = ∅,
• 𝑇 : 𝑄 × (𝐿𝐼

⋃
𝐿𝛿
𝑂
) ⇀ 𝑄 is a partial transition function, and,

• 𝑞0 ∈ 𝑄 is an initial state.

We additionally require that an SA is non-blocking, i.e.:

∀𝑞 ∈ 𝑄 : out (𝑞) ≠ ∅

Lastly, we define:

• 𝐿
def
= 𝐿𝐼

⋃
𝐿𝛿
𝑂
,

• The enabled inputs and outputs in a state 𝑞 ∈ 𝑄 are respec-

tively

in(𝑞) = {𝑎 ∈ 𝐿𝐼 | 𝑇 (𝑞, 𝑎) ↓}, and

out (𝑞) = {𝑥 ∈ 𝐿𝛿
𝑂

| 𝑇 (𝑞, 𝑥) ↓}.

The label 𝛿 is used to indicate quiescence, i.e., the absence of an

observable output.

2.2.2 Test assumptions. It is possible for a single state to have both

input transitions and output transitions defined from it. Such states

are called mixed states. If, in such a state, the tester provides an

input at the same time that the SUT provides an output, an input-
output conflict arises. This conflict is solved with the use of a test
assumption, which prescribes to which state(s) the system could

transition. Note the possible plural here; a test assumption may

define multiple successive states after an input-output conflict and

may therefore introduce a degree of non-determinism, which is

resolved upon test case execution.

In [1], Van den Bos & Stoelinga identify four test assumptions.

For the sake of future comparison, they are reiterated here:

• input-eager (IE): The tester is always able to provide an input.

In the case of a conflict, the output will be discarded.

• output-eager (OE): The converse of IE; the SUT is always able

to produce an output. In the case of a conflict, the input will

be discarded.

• non-deterministic (ND): It is determined non-deterministically

whether the SUT will be able to produce an output, or the

tester will be able to produce in input in the case of a conflict.

• input-fair (IF): The tester is guaranteed to be able to provide

an input after a finite number of attempts.

2.2.3 Test cases. Test cases are finite acyclic SAs that prescribe

which actions the tester is to take to test one or more elements

of the SUT and whose transitions eventually lead to Pass or Fail
verdicts.

We first define some auxiliary notation.

2

Formalising Concurrent Test Interactions in Model-based Testing via Games TScIT 41, July 5, 2024, Enschede, The Netherlands

Definition 2.6. Let A = (𝑄, 𝐿𝐼 , 𝐿𝛿𝑂 ,𝑇 , 𝑞0) be an SA, 𝑞 ∈ 𝑄,𝑄 ′ ⊆
𝑄, 𝜇 ∈ 𝐿, 𝜌 ∈ 𝐿∗ and 𝜖 the empty sequence. Then we define:

𝑞 after 𝜖 = {𝑞}

𝑞 after 𝜇𝜌 =

{
𝑇 (𝑞, 𝜇) after 𝜌 if 𝑇 (𝑞, 𝜇) ↓
∅ otherwise

A after 𝜌 = 𝑞0 after 𝜌

out (𝑄 ′) =
⋃

𝑞′∈𝑄 ′
out (𝑞′)

traces(A) = {𝜌′ ∈ 𝐿∗ | A after 𝜌′ ≠ ∅}

From a specification A , we construct a test case T by repeatedly

taking one of the following steps:

(1) Choose an input 𝑎? ∈ in(𝑞) (where 𝑞 ∈ 𝑄 is the current state

in A) and execute it, moving to the next state in T . Enable

all outputs from 𝐿𝑂 .

(2) Observe an output from the SUT. If the observed output is not

permitted by the specification, emit a Fail verdict, otherwise
move to the next state in T .

(3) Stop testing and emit a Pass verdict.

Definition 2.7. A test case for an SA A is an SA

T = (𝑄𝑡 , 𝐿𝐼 , 𝐿
𝛿
𝑂
,𝑇 𝑡 , 𝑞𝑡

0
) such that:

• There are two special states 𝑃𝑎𝑠𝑠, 𝐹𝑎𝑖𝑙 ∈ 𝑄𝑡
such that

∀𝑥 ∈ 𝐿𝛿
𝑂
: 𝑇 𝑡 (𝑃𝑎𝑠𝑠, 𝑥) = 𝑃𝑎𝑠𝑠 ∧𝑇 𝑡 (𝐹𝑎𝑖𝑙, 𝑥) = 𝐹𝑎𝑖𝑙 , and

∀𝑎 ∈ 𝐿𝐼 : 𝑇
𝑡 (𝑃𝑎𝑠𝑠, 𝑎) ↑.

• T has no cycles except those in Pass and Fail.
• Every state enables all outputs 𝐿𝑂 , and either one input or 𝛿 :

∀𝑞 ∈ 𝑄 : (|in(𝑞) | = 0 ∧ out (𝑞) = 𝐿𝛿
𝑂
) ∨ (out (𝑞) = 𝐿𝑂 ∧ |in(𝑞) | = 1)

Exception: in case of an input-eager test interaction, we only

require:

∀𝑞 ∈ 𝑄 : (|in(𝑞) | = 0 ∧ out (𝑞) = 𝐿𝛿
𝑂
) ∨ |in(𝑞) | = 1

• Traces of T leading to Pass, are traces of A , while traces to

Fail are not:

∀𝜌 ∈ traces(T) : (T after 𝜌 = 𝑃𝑎𝑠𝑠 =⇒ 𝜌 ∈ traces(A))
∧ (T after 𝜌 = 𝐹𝑎𝑖𝑙 =⇒ 𝜌 ∉ traces(A))

2.3 Specifications are game arenas
As discussed in [1], the model-based testing of software systems

closely resembles the structure of concurrent two-player games.

Each turn the two players (the tester and the SUT) propose actions

(inputs and outputs); based on whose predefined interactions (the

test assumptions) the system moves to a new state.

Since testers analyse their interactions with the SUT via the traces

of test cases, it is important to track for each state which player it

was that executed the action to end up in this state. To achieve this,

the state space is extended with a number 𝑖 ∈ {1, 2}, indicating the

state was reached by Player 𝑖 . The Player 1 actions are extended

with 𝜃 and 𝑠𝑡𝑜𝑝?, meaning respectively that the tester does not want

to provide an input and that the tester wants to stop testing. The

state space is additionally extended with a sink state ⊥, which is

reached after the 𝑠𝑡𝑜𝑝? action.

Definition 2.8. Let A = (𝑄, 𝐿𝐼 , 𝐿𝛿𝑂 ,𝑇 , 𝑞0) be an SA. The game
arena underlying A is defined by

𝐺A = (𝑄⊥, (𝑞0, 1),Act1,Act2, Γ1, Γ2,Moves) where:
• 𝑄⊥ = (𝑄 × {1, 2}) ∪ {(⊥, 1)},
• Act1 = 𝐿1 ∪ {𝜃, 𝑠𝑡𝑜𝑝?} and Act2 = 𝐿𝛿

0
,

• for all 𝑞 ∈ 𝑄 and 𝑖 ∈ {1, 2}, we take
Γ1 ((𝑞, 𝑖)) = in(𝑞) ∪ {𝜃, 𝑠𝑡𝑜𝑝?} and
Γ2 ((𝑞, 𝑖)) = out (𝑞),

• we take

Γ1 ((⊥, 1)) = {𝑠𝑡𝑜𝑝?} and
Γ2 ((⊥, 1)) = 𝐿𝛿

𝑂
, and

• the function Moves : 𝑄⊥ × Act1 × Act2 → 2
𝑄⊥

encodes one

of the different test assumptions.

Besides the requirement from Definition 2.1 for moves with unde-

fined action, we require

Moves(𝑞, 𝑠𝑡𝑜𝑝?, 𝑥) = {(⊥, 1)}, and
Moves((⊥, 1), 𝑠𝑡𝑜𝑝?, 𝑥) = {(⊥, 1)}.

In the subsequent, we fix a specification A and its underlying

game 𝐺A .

2.3.1 Encoding test assumptions. Different test interactions are for-
malised by implementing aMoves function for each test assumption.

The Moves function takes a game state 𝑞 ∈ 𝑄 , an input action

𝑎 ∈ Act1 and an output action 𝑥 ∈ Act2 and gives a set of states to

which the system could move next.

For the sake of future comparison we give the definitions of

the Moves functions for the input-eager and non-deterministic test

assumptions. Moves𝐼𝐸 always executes the input action, unless the

input is 𝜃 , indicating the user waits for the system to produce an

output, whereas Moves𝑁𝐷 leaves it undetermined which action is

executed except if the tester decides to nothing, in which case the

output is guaranteed to be executed, and vice versa.

Definition 2.9.

Moves𝐼𝐸 ((𝑞, 𝑖), 𝑎, 𝑥) =
{{(𝑇 (𝑞, 𝑎), 1)} if 𝑎 ≠ 𝜃

{(𝑇 (𝑞, 𝑥), 2)} 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Moves𝑁𝐷 ((𝑞, 𝑖), 𝑎, 𝑥) =

{(𝑇 (𝑞, 𝑥), 2)} if 𝑎 = 𝜃

{(𝑇 (𝑞, 𝑎), 1)} if 𝑥 = 𝛿

{(𝑇 (𝑞, 𝑎), 1), (𝑇 (𝑞, 𝑥), 2)} otherwise

3 CONCURRENT INTERACTIONS
A test interaction is seen as a system’s behaviour following the

simultaneous occurrence of an input and an output. Some systems

are designed in such a way that the user will always be able to

provide an input; think of a music player, which always responds to

a user’s input to stop playing, in stead of ignoring the input in favour

of outputting music forever. For such a system, an input-eager test

assumption may correctly model the desired system behaviour. For

other systems, such as a vending machine, it is crucial that the

output be always fully executed before a new input is processed;

therefore an output-eager test assumption may be better suited.

After all, a customer would be quite disappointed if the candy bar

they just bought never got dispensed, because they accidentally

pushed a button.

3

TScIT 41, July 5, 2024, Enschede, The Netherlands Karsten E. Roelofs

In reality however, many systems are more complex, and their

behaviour after an input-output conflict cannot be accurately mod-

elled by simply discarding one or the other; often, it is influenced by

both. We display one possible such system in Figure 2 and discuss

its behaviour in Example 3.1.

q0 q1

q2 q3

δ δ

δ δ

click?

pop-up!exit?

click?

Fig. 2. SA of a website with pop-up

Example 3.1. In Figure 2, we show a minimal SA of an imaginary

website, with a single button for the user to click, leading to some

different page (transitioning from 𝑞0 to 𝑞1). The website has the

frustrating property however, that while in 𝑞0, at any moment a

pop-up advertisement may appear, covering the button (represented

by state 𝑞2), which when clicked leads to a different page (𝑞3). The

pop-up can be exited by clicking an exit button (leading the user

back to 𝑞0).

In state 𝑞0, if the user clicks the button (gives the input click?) at
the same time that the system displays the pop-up (gives the output

pop-up!), one of two things can happen:

(1) The button get clicked, and the system transitions to 𝑞1.

(2) The advertisement gets clicked, and the system transitions

directly to 𝑞3.

This behaviour cannot be correctly modelled with one of the test

assumptions from Section 2.2.2, since in the case of a conflict in 𝑞0
they will all transition to either 𝑞1 or 𝑞2; the latter being disallowed

in our (verbal) description of the system. Based on this observation,

we gather that a new (concurrent) test assumption is required to

model this system.

3.1 Concurrency in SAs
We evaluate the ability of Suspension Automata, as defined in Defi-

nition 2.5, to handle concurrent interactions. The transition function

𝑇 of an SA takes a state and a single action, and returns the next

state to which the system will transition. To model concurrent in-

teractions, we need to be able to transition between states based on

both an input and an output. Therefore, we must slightly alter our

definition of an SA.

3.1.1 Double-step transitions. We first extend an SA’s transition

function 𝑇 with the notion of a double-step transition:

Definition 3.2. Let A = (𝑄, 𝐿𝐼 , 𝐿𝛿𝑂 ,𝑇 , 𝑞0) be an SA, 𝑞 ∈ 𝑄 and

𝜇, 𝜈 ∈ 𝐿, such that: 𝜇 ∈ 𝐿𝐼 ⇔ 𝜈 ∈ 𝐿𝑂 (i.e., one is an input, the

other an output). Then we define a double-step transition function

𝑇 2
: 𝑄 × (𝐿𝐼

⋃
𝐿𝛿
𝑂
)∗ ⇀ 𝑄 as follows:

For sequences of length 1, 𝑇 2
behaves identically to 𝑇 :

𝑇 2 (𝑞, 𝜇) = 𝑇 (𝑞, 𝜇)
For sequences of length 2, the following holds:

if 𝑇 (𝑞, 𝜇)↓ ∧ 𝑇 (𝑇 (𝑞, 𝜇), 𝜈)↓ : 𝑇 2 (𝑞, 𝜇𝜈) = 𝑇 (𝑇 (𝑞, 𝜇), 𝜈)
otherwise : 𝑇 2 (𝑞, 𝜇𝜈)

x
In any other case the transition is undefined.

3.1.2 Concurrent SAs. We then add support for double-step transi-

tions to SAs by defining a concurrent SA as such:

Definition 3.3. A concurrent suspension automaton (SA𝐶) is an

SA A𝐶 = (𝑄, 𝐿𝐼 , 𝐿𝛿𝑂 ,𝑇
2, 𝑞0) as defined in Definition 2.5, with the

following alteration:

• 𝑇 2
: 𝑄 × (𝐿𝐼

⋃
𝐿𝛿
𝑂
)∗ ⇀ 𝑄 is the partial double-step transition

function (as defined in Definition 3.2).

3.2 Concurrency in games
We evaluate the ability of game arenas, as defined in Definition 2.1,

to handle concurrent interactions. AMoves function of a game arena

takes a state, an input action and an output action and returns the

next state to which the game will transition. So it is possible to

define a transition based on both the input and the output, and there

is therefore no need to make any alterations to its definition.

3.3 From concurrent SAs to game arenas
A concurrent SA may be translated to a game arena in much the

same way as defined in Definition 2.8, with some slight alterations.

In Definition 2.8, the game’s state space 𝑄⊥ was extended with

the annotations 1 and 2 to record which action was executed, such

that the tester may see from the trace what occurred during test case

execution. To preserve this propertywith double-step transitions, we

additionally extend the state space with the annotations 12 and 21,

indicating a Player 1 transition followed by a Player 2 transition and

vice versa respectively. We then define the game arena underlying

a concurrent SA as:

Definition 3.4. Let A𝐶 = (𝑄, 𝐿𝐼 , 𝐿𝛿𝑂 ,𝑇
2, 𝑞0) be a concurrent SA.

The game arena underlying A𝐶 is defined identically to Definition 2.8

as 𝐺A𝐶
= (𝑄⊥, (𝑞0, 1),Act1,Act2, Γ1, Γ2,Moves), with the following

exceptions:

• 𝑄⊥ = (𝑄 × {1, 2, 12, 21}) ∪ {(⊥, 1)}
• for all 𝑞 ∈ 𝑄 and 𝑖 ∈ {1, 2, 12, 21}, we take

Γ1 ((𝑞, 𝑖)) = in(𝑞) ∪ {𝜃, 𝑠𝑡𝑜𝑝?} and
Γ2 ((𝑞, 𝑖)) = out (𝑞).

3.4 The concurrent test assumption
Given some current state 𝑞0, an input action 𝑎? and an output action

𝑥 ! and the possibility of actions occurring concurrently (in the form

of double-step transitions); we discern the six possible different

situations of 𝑞0 and its surrounding states found in Figure 3:

(1) 𝑞0 only has an output 𝑥 ! enabled.

in(𝑞0) = ∅ ∧ 𝑥 ! ∈ out (𝑞0)

4

Formalising Concurrent Test Interactions in Model-based Testing via Games TScIT 41, July 5, 2024, Enschede, The Netherlands

(2) 𝑞0 has a quiescent output 𝛿 and an input 𝑎? enabled.

𝑎? ∈ in(𝑞0) ∧ out (𝑞0) = 𝛿

(3) 𝑞0 has an input 𝑎? and an output 𝑥 ! enabled. Additionally, the

state reached by 𝑎? has 𝑥 ! enabled and the state reached by

𝑥 ! has 𝑎? enabled.

𝑎? ∈ in(𝑞0) ∧𝑥 ! ∈ out (𝑞0) ∧𝑥 ! ∈ out (𝑇 (𝑞0, 𝑎?)) ∧𝑎? ∈ in(𝑇 (𝑞0, 𝑥 !))

(4) 𝑞0 has an input 𝑎? and an output 𝑥 ! enabled. Additionally, the

state reached by 𝑎? has 𝑥 ! enabled but the state reached by 𝑥 !

does not have 𝑎? enabled.

𝑎? ∈ in(𝑞0) ∧𝑥 ! ∈ out (𝑞0) ∧𝑥 ! ∈ out (𝑇 (𝑞0, 𝑎?)) ∧𝑎? ∉ in(𝑇 (𝑞0, 𝑥 !))

(5) 𝑞0 has an input 𝑎? and an output 𝑥 ! enabled. Additionally, the

state reached by 𝑎? does not have 𝑥 ! enabled but the state

reached by 𝑥 ! does have 𝑎? enabled.

𝑎? ∈ in(𝑞0) ∧𝑥 ! ∈ out (𝑞0) ∧𝑥 ! ∉ out (𝑇 (𝑞0, 𝑎?)) ∧𝑎? ∈ in(𝑇 (𝑞0, 𝑥 !))

(6) 𝑞0 has an input 𝑎? and an output 𝑥 ! enabled. Additionally, the

state reached by 𝑎? does not have 𝑥 ! enabled and the state

reached by 𝑥 ! also does not have 𝑎? enabled.

𝑎? ∈ in(𝑞0) ∧𝑥 ! ∈ out (𝑞0) ∧𝑥 ! ∉ out (𝑇 (𝑞0, 𝑎?)) ∧𝑎? ∉ in(𝑇 (𝑞0, 𝑥 !))

A test interaction in a concurrent SA is considered concurrent (C) if
it is determined non-deterministically to which subsequent state the

system will transition, using either a normal "single-step" transition

or, if possible, a double-step transition. That is, if for each of the six

possible situations in Figure 3, it is determined non-deterministically

to which of the states highlighted in blue the system will transition.

3.5 Encoding the concurrent test assumption
To formalise this concurrent test assumption and use it on a specifica-

tion’s underlying game arena𝐺A𝐶
, we define a new implementation

of 𝐺A𝐶
’s Moves function in the spirit of Definition 2.9.

Definition 3.5. Let A𝐶 = (𝑄, 𝐿𝐼 , 𝐿𝛿𝑂 ,𝑇
2, 𝑞0) be a concurrent SA.

The functionMoves𝐶 : 𝑄⊥ × (𝐿𝐼
⋃{𝜃, 𝑠𝑡𝑜𝑝?}) ×𝐿𝛿

𝑂
→ 2

𝑄⊥
encodes

the concurrent test assumption described in Section 3.4:

Moves𝐶 ((𝑞, 𝑖), 𝑎, 𝑥) =

{(𝑇 2 (𝑞, 𝑥), 2)} if 𝑎 = 𝜃

{(𝑇 2 (𝑞, 𝑎), 1)} if 𝑥 = 𝛿

{(𝑇 2 (𝑞, 𝑥𝑎), 21), (𝑇 2 (𝑞, 𝑎𝑥), 12)} if 𝑎 ∈ in(𝑇 2 (𝑞, 𝑥))
∧𝑥 ∈ out (𝑇 2 (𝑞, 𝑎))

{(𝑇 2 (𝑞, 𝑎𝑥), 12), (𝑇 2 (𝑞, 𝑥), 2)} if 𝑥 ∈ out (𝑇 2 (𝑞, 𝑎))
{(𝑇 2 (𝑞, 𝑥𝑎), 21), (𝑇 2 (𝑞, 𝑎), 1)} if 𝑎 ∈ in(𝑇 2 (𝑞, 𝑥))
{(𝑇 2 (𝑞, 𝑎), 1), (𝑇 2 (𝑞, 𝑥), 2)} otherwise

Note that the six cases of the Moves𝐶 function definition corre-

spond exactly with the six cases in Figure 3. We briefly explain each

case (assuming that all proposed actions are enabled in the relevant

states):

(1) If 𝑎 = 𝜃 (i.e., the tester provides no input): execute 𝑥 !.

(2) If 𝑥 = 𝛿 (i.e., the SUT provides no output): execute 𝑎?.

q0 q1
x!

δ

(a) Case 1

q0 q1
a?

δ

(b) Case 2

q0

q1 q2

q3 q4

a? x!

x! a?

(c) Case 3

q0

q1 q2

q3

a? x!

x!

(d) Case 4

q0

q1 q2

q3

a? x!

a?

(e) Case 5

q0

q1 q2

a? x!

(f) Case 6

Fig. 3. Concurrent cases

(3) If it would be possible to take both the double-step 𝑎?𝑥 ! and

𝑥 !𝑎?, take either.

(4) If it would be possible to take the double-step 𝑎?𝑥 ! but not

𝑥 !𝑎?, execute either 𝑎?𝑥 ! or 𝑥 !.

(5) If it would be possible to take the double-step 𝑥 !𝑎? but not

𝑎?𝑥 !, execute either 𝑥 !𝑎? or 𝑎?.

(6) If it is not possible to take any double-step transitions, take

either 𝑎? or 𝑥 ! (identical to the non-deterministic test assump-

tion).

Note that the resulting states in cases 3 to 6 (corresponding to the

highlighted states in Figures 3c to 3f) are not necessarily distinct.

3.6 Concurrent test cases
Test cases must be altered slightly in order to take into account

possible double-step transitions. We therefore define a concurrent
test case as follows:

5

TScIT 41, July 5, 2024, Enschede, The Netherlands Karsten E. Roelofs

Definition 3.6. A concurrent test case for an SA A is an SA

T𝐶 = (𝑄𝑡 , 𝐿𝐼 , 𝐿
𝛿
𝑂
,𝑇 𝑡 , 𝑞𝑡

0
) as defined in Definition 2.7, with the fol-

lowing alterations:

• The transition function𝑇 𝑡
is a double-step transition function

from Definition 3.2.

• For every mixed state in the specification, if a transition is

added to the test case which in the specification could be a

double-step transition, also add the second action from the

double-step transition.

4 APPLICABILITY
We evaluate the applicability and usefulness of the newly defined

concurrent test assumption, once again using the system specifica-

tion depicted in Figure 2 as an example.

4.1 Modelability
In this section we consider the ’modelability’ of systems using a

concurrent test assumption as opposed to using existing assump-

tions (Section 2.2.2). Under modelability we understand the degree

to which a system is able to be modeled, using the given tools.

Consider the following two play prefixes, using a non-deterministic

and concurrent test assumption respectively, through the game

arena 𝐺A𝐶
underlying the concurrent SA A in Figure 2:

𝜋𝑁𝐷 = (𝑞0, 1) ⟨click?, pop-up!⟩ (𝑞2, 2) ⟨exit?, 𝛿⟩ (𝑞0, 1)
𝜋𝐶 = (𝑞0, 1) ⟨click?, pop-up!⟩ (𝑞3, 21)

Recall that in Example 3.1 we defined the real-life behaviour of this

system as directly transitioning to 𝑞3 if in 𝑞0 the user clicks the

button at the same time that the website displays the pop-up. In

𝜋𝑁𝐷 we see in the first turn, the users click is ignored, allowing

the user to subsequently close the pop-up with an 𝑒𝑥𝑖𝑡? action.

This is not how the system should behave, therefore this particular

system cannot be accurately modeled with a non-deterministic test

assumption. The same would go for the input-eager, output-eager

and input-fair assumptions; they all transition to either 𝑞1 and/or

𝑞2.

In 𝜋𝐶 the user clicks the button at the same time that the web-

site displays the pop-up, and the system transitions directly to 𝑞3,

simultaneously executing both the input and the output. This is

the desired behaviour of the system; therefore the concurrent test

assumption seems to allow us to correctly model a system which

could not be modeled by existing assumptions.

4.2 Resource efficiency
Due to its ability to take double-step transitions, test execution under

a concurrent test assumption may require less time and resources

than under its existing counterparts. Consider for example the two

following play prefixes of 𝐺A𝐶
:

𝜋𝑁𝐷 = (𝑞0, 1) ⟨click?, pop-up!⟩ (𝑞2, 2) ⟨click?, 𝛿⟩ (𝑞3, 1)
𝜋𝐶 = (𝑞0, 1) ⟨click?, pop-up!⟩ (𝑞3, 21)

Both prefixes end in 𝑞3, however 𝜋𝐶 requires one fewer turn to

arrive there. From this fact, we can see that the concurrent test

assumption might provide an advantage in the form of reduced run-

times during test execution. This attribute however, is offset by the

fact that test case generation under the concurrent test assumption

requires more time and memory due to the look-ahead imposed by

double-step transitions. While with e.g. an input-eager assumption

a number of unreachable states may be omitted from a test case, a

concurrent assumption requires not only all outputs to be enabled

but also subsequent inputs if their inclusion allows for a double-step

transition.

Therefore the degree to which the concurrent test assumption

provides an increase or decrease in total resource efficiency relies

on how often a test case is reused; if a test case gets generated once

and is subsequently used a hundred times, then the time lost in

generation may well be made up for during repeated execution. Of

course, the opposite also holds true; if a test case is executed only

once after generation, the total efficiency is likely to be worse with

a concurrent assumption than it would have been with another.

5 DISCUSSION
In [1], Van den Bos & Stoelinga conjecture that a concurrent inter-

pretation of input-output conflicts may prove to be beneficial or

well-suited for systems dealing with concurrent processes. After

formalising this concurrent test interaction, we have demonstrated

that it may indeed proof to be beneficial when working with con-

current software systems, as it allows the accurate modeling of

concurrent interactions, which was not possible with existing test

assumptions (as demonstrated in Section 4.1). Some findings in this

research however, are far from conclusive, and show no concrete

results in the form of real test generation and execution using the

new concurrent test assumption. We will discuss the results and

shortcomings of this research and provide recommended avenues

of approach for future work.

5.1 Shortcomings
As it was considered out of scope given the limited temporal con-

straints imposed on this research, the proposed framework does not

provide formal definitions or descriptions on the relation between

concurrent test cases and game strategies (discussed in [1]). Addi-

tionally the ioco conformance relation [8, 6] and its correlation to

alternating trace inclusion (also discussed in [1]) remain unexplored

in the context of a concurrent test assumption.

Furthermore, a concrete software implementation of the concur-

rent test assumption is lacking. Such an implementation is a crucial

next step for this line of research, as it would allow us to draw more

significant conclusions based on empirical evidence.

5.2 Future work
As mentioned in Section 5.1, a formal description of the relation

between concurrent test cases and game strategies is lacking from

the current paper. The most pressing matter for future work would

be to thoroughly investigate this relation and the implications a

concurrent test case may have for test case generation via game

strategies.

Secondly, as discussed in Section 5.1, a software implementation

of a model-based testing application (making use of game strategy

synthesis techniques) would enable the collection of empirical data,

6

Formalising Concurrent Test Interactions in Model-based Testing via Games TScIT 41, July 5, 2024, Enschede, The Netherlands

which may be used to draw stronger conclusions on the area of re-

source efficiency, as discussed in Section 4.2, in addition to verifying

whether the proposed framework holds water.

Furthermore, the effects of a concurrent test assumption on the

ioco conformance relation remain unexplored. It might be intrigu-

ing to see if the concurrent test assumption has any interesting

implications for the ioco relation, and whether it proves beneficial

there.

Lastly, in this framework it was decided to implement concur-

rency by subsequent execution of actions in the span of one, while

leaving states and transitions unchanged. Perhaps a different ap-

proach, such as replacing double-step transitions with a single ac-

tion in which both occur truly simultaneously, may provide useful

results.

6 CONCLUSION
We have formalised the concurrent test assumption conjectured

by Van den Bos & Stoelinga in [1] and its efficacy has been anal-

ysed. Based on our evaluations, we conclude that the novel test

assumption may allow for the accurate modeling of certain systems

dealing with concurrent processes, in addition to possibly providing

an increase in overall testing efficiency. Empirical validation is still

required to evaluate real world effectiveness. We have identified

multiple avenues for further academic study.

ACKNOWLEDGMENTS
I would like to thank dr. Petra van den Bos for her help in under-

standing the source material, her useful feedback and supervision

over the duration of this research.

Furthermore, I would like to thank my wonderful girlfriend Bente

for her continued aid and support over the last months.

REFERENCES
[1] Petra van den Bos and Marielle Stoelinga. 2018. Tester versus Bug: A Generic

Framework for Model-Based Testing via Games. Electronic Proceedings in Theo-
retical Computer Science, 277, (Sept. 2018), 118–132. arXiv:1809.03098 [cs]. doi:
10.4204/EPTCS.277.9.

[2] Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. 2008. A game-

theoretic approach to real-time system testing. In Proceedings of the conference
on Design, automation and test in Europe (DATE ’08). Association for Computing

Machinery, New York, NY, USA, (Mar. 2008), 486–491. isbn: 978-3-9810801-3-1.

doi: 10.1145/1403375.1403491.

[3] A. Hartman and K. Nagin. 2004. The AGEDIS tools for model based testing. en.

Proceedings of the 2004 ACM SIGSOFT international symposium on Software testing
and analysis - ISSTA ’04. doi: 10.1145/1007512.1007529.

[4] Claude Jard and Thierry Jéron. 2005. TGV: theory, principles and algorithms. en.

International Journal on Software Tools for Technology Transfer, 7, 4, (Aug. 2005),
297–315. Company: Springer Distributor: Springer Institution: Springer Label:

Springer Number: 4 Publisher: Springer Berlin Heidelberg. doi: 10.1007/s10009-

004-0153-x.

[5] Lev Nachmanson, Margus Veanes, Wolfram Schulte, Nikolai Tillmann, and Wolf-

gang Grieskamp. 2004. Optimal strategies for testing nondeterministic systems.

ACM SIGSOFT Software Engineering Notes, 29, 4, (July 2004), 55–64. doi: 10.1145

/1013886.1007520.

[6] Mark Timmer, Hendrik Brinksma, and Mariëlle Ida Antoinette Stoelinga. 2011.

Model-Based Testing. Undefined. In Software and Systems Safety: Specification
and Verification. IOS, (Apr. 2011), 1–32. doi: 10.3233/978-1-60750-711-6-1.

[7] G. J. Tretmans and Hendrik Brinksma. 2003. TorX: Automated Model-Based

Testing. Undefined. In First European Conference on Model-Driven Software Engi-
neering. (Dec. 2003), 31–43. Retrieved May 3, 2024 from https://research.utwente

.nl/en/publications/torx-automated-model-based-testing.

[8] Jan Tretmans. 2008. Model Based Testing with Labelled Transition Systems. en.

In Formal Methods and Testing: An Outcome of the FORTEST Network, Revised
Selected Papers. Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, (Eds.)

Springer, Berlin, Heidelberg, 1–38. isbn: 978-3-540-78917-8. doi: 10.1007/978-3-

540-78917-8_1.

[9] Farn Wang, Sven Schewe, and Jung-Hsuan Wu. 2015. Complexity of node cover-

age games. Theoretical Computer Science, 576, (Apr. 2015), 45–60. doi: 10.1016/j.t
cs.2015.02.002.

7

https://doi.org/10.4204/EPTCS.277.9
https://doi.org/10.1145/1403375.1403491
https://doi.org/10.1145/1007512.1007529
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1145/1013886.1007520
https://doi.org/10.1145/1013886.1007520
https://doi.org/10.3233/978-1-60750-711-6-1
https://research.utwente.nl/en/publications/torx-automated-model-based-testing
https://research.utwente.nl/en/publications/torx-automated-model-based-testing
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1007/978-3-540-78917-8_1
https://doi.org/10.1016/j.tcs.2015.02.002
https://doi.org/10.1016/j.tcs.2015.02.002

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Games
	2.2 Model-based testing
	2.3 Specifications are game arenas

	3 Concurrent interactions
	3.1 Concurrency in SAs
	3.2 Concurrency in games
	3.3 From concurrent SAs to game arenas
	3.4 The concurrent test assumption
	3.5 Encoding the concurrent test assumption
	3.6 Concurrent test cases

	4 Applicability
	4.1 Modelability
	4.2 Resource efficiency

	5 Discussion
	5.1 Shortcomings
	5.2 Future work

	6 Conclusion
	Acknowledgments

