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Management summary 
This research is a collaborative effort with Flaschenpost, Germany's largest online grocery 

retailer. We value the company's expertise and are working together to enhance its operations. 

Flaschenpost, with its warehouses spread across Germany, specialises in last-minute delivery 

of groceries to customers' houses. Its renowned business model promises the delivery of 

groceries within two hours of placing the order. 

Problem 

Due to the company's business model and substantial growth, it needs help with the number 

of orders they are processing daily. Around 20% of potential sales in orders get lost due to 

capacity constraints. After a detailed analysis of the company operations, the capacity 

bottleneck was found in the warehousing department, specifically in the warehouse picking 

process. From there, a more in-depth insight was gained into the warehouse picking process 

and potential problems that could cause a low warehouse capacity, causing the missing of 

potential orders. From this, the following research question was formed: 

How to reduce the average order picking time in the warehouse picking process of 

Flaschenpost? 

Solution 

Our research, based on a comprehensive literature review, proposes the development of new 

batching and routing algorithms as the most effective solution to enhance the warehouse 

picking process. By optimizing the routing algorithm, we significantly reduced the pickers' 

walking distance, thereby accelerating the order fulfilment process. The batching algorithm, 

on the other hand, enables the simultaneous collection of multiple orders, further expediting 

the order fulfilment process. These improvements directly translate to increased warehouse 

capacity and a reduced ratio of missed sales opportunities. 

To implement these solutions and to increase the warehouse capacity, this research provides 

three deliverables: 

• Time-savings heuristic for batching 

• Priority policy for collection of orders 

• Dynamic programming based routing algorithm 

A time-saving heuristic provides a local optimum approach for selecting the batches that save 

the most time. This approach, combined with the priority policy created, provides a sequence 

in which the orders should be collected and minimizes order delay. Once the batches have 

been created and sorted, when the warehouse worker is available, they are given the next 

batch in line, for which a route is constructed and provided to the warehouse picker. 

Results 

To measure the performance of the solutions generated in this research, we have 

benchmarked their performance against the current company batching and routing algorithms. 

To be able to measure, a simulation environment was created, which was inspired by the 

warehouse layout of the company, where several variables could be changed, including the 

number of aisles, the number of products in a warehouse, and the number of orders. By 

changing the parameters of the warehouse, we could see how different combinations of 

batching and routing algorithms perform. This analysis concluded that the best-performing 

combination was the time-savings batching algorithm combined with the dynamic 

programming routing algorithm, which resulted in a 67.5% reduction in route lengths and the 
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time it takes to collect each batch when compared against the benchmark company 

algorithms. 

Conclusion 

The resulting solutions proposed in this research should provide the company with a faster 

and more efficient warehouse picking process. By reducing the time, it takes to collect and 

fulfil orders to a third of what it used to be, the warehouse capacity should increase by three 

times if the benchmark is to be used as the current representation of the state of the company. 

This will result in a reduction of lost potential sales and a reduction of labour costs since fewer 

people will be needed to fulfil the orders, thus resulting in higher revenue and lower operations 

costs. 
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1 Introduction 
In this first chapter, we introduce the company Flaschenpost, which has presented us with the 

problem we will solve in this thesis. Here, we will become familiar with the context of the 

problem and the critical decisions that have been made to help us structure the research for 

this thesis. In section 1.1, we provide some background information about the company and 

are introduced to the problem that the company faces in section 1.2. Once we have defined a 

problem, we discuss what methodology we plan to use to solve this problem in section 1.3. 

Sections 1.4 and 1.5 provide us with the main research question and sub-questions, which 

will help us break down the significant problem presented by the company into a set of more 

minor, efficiently addressable problems. After we have divided the problem into smaller ones, 

we look at the company's current state and get a deeper insight into its operations in section 

1.6. In sections 1.8 and 1.9, we discuss the KPIs that we will use to measure the company's 

performance and how we ensure that the data we are measuring is valid and reliable. Finally, 

we discuss the conclusions of this chapter and how we plan to use them in the remainder of 

our thesis. 

1.1 About Flaschenpost 

The problem we were presented with was from Flaschenpost1. Flaschenpost is a German 

company that was founded in 2016. The company initially started as a beverage supplier, and 

due to its massive success, it has turned into an online supermarket as well as the largest 

Fast Moving Consumer Goods (FMCG) supplier in Germany in 2022 (ecommerceDB.com, 

2023). Because of the fast growth rate, the company was bought by the Oetker Group in 2020, 

and to this day, the company keeps working and collaborating with other businesses and 

brands. 

Today, the company delivers groceries to people in over 190 cities across Germany. It owns 

over 30 warehouses and plans to expand more in the future, even outside of Germany. It 

currently has around 20,000 employees and fulfils over 10 million orders per year. But what 

really sets it apart is its business model, which promises to deliver orders from the website to 

the customer's door within 2 hours. 

While the company's achievements are impressive, from the sheer scale of its operations with 

many different warehouses to its ambitious business model, many logistical issues need to be 

overcome for it to fulfil its promises. To help them in this venture, the company has allowed 

me to provide specific solutions for their warehousing operations. More specifically, how can 

these warehouse pricking processes be modified to improve their performance? 

1.1.1 Context 

Before we get into the details of the company's problem, it is important that we understand 

why this problem is relevant in the industry today and how even small improvements can save 

a lot of resources.  

Just last year, the FMCG market accounted for 7.5% of Germany's total food market revenue 

(GfK, 2024). When we combine this with the information that in Germany in 2023, the total 

food revenue was around 197.6 billion euros (GfK, 2024), from this, we get that the yearly 

 
1 The infromation about the company came from their website: 
https://www.flaschenpost.de/unternehmen/ueber-uns 

https://www.flaschenpost.de/unternehmen/ueber-uns
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revenue of the FMCG market just is currently estimated to be around 14.82 billion euros. Aside 

from these large numbers, we can also see that in the last five years, the number of people 

who have been purchasing their groceries online has been steadily increasing; throughout this 

period, just in Germany, the number of people who regularly order groceries has increased by 

1.7 million (IfD Allensbach, 2023).  

From all this data, it can be concluded that the companies' sales and demand have been 

rapidly increasing. Because of that, certain parts of the company's infrastructure need to be 

changed to cope with this newly created demand. Throughout this thesis, my goal is to help 

this company achieve its target and gain more insight into warehousing processes. 

1.2 Problem Description 

The company handles millions of orders, all needing to be sorted and processed. Since the 

company has over thirty warehouses, before the customer even starts to order, they are first 

sorted into a region that belongs to the warehouse closest to them. This information is vital 

because different warehouses have different capacities at a given time. Before the customer 

can place an order, the warehouse needs to check if it has enough capacity to handle new 

demand; if that is possible, the customer then places an order, which is then sent to the 

warehouse to be processed. Once the order reaches the warehouse, it is placed on a list and 

waits to be collected by a picker. Once the order is collected by a picker and delivered to the 

depot, it is loaded into a truck, and the remaining orders are waiting to be loaded before the 

truck departs. A truck follows the previously constructed route and delivers the orders to the 

customer's door. 

With this overview of who the company is and how its orders are being processed, it will be 

easier to understand its problems. Due to the significant increase in demand, the infrastructure 

the company has used so far has reached the limits of its capacity. Over the past few years, 

the focus has been optimizing vehicle routing, the last phase of the operations before the 

customer receives their order. However, a high focus on vehicle routing optimization left the 

optimization of other processes in the warehousing operations neglected, thus leading to 

certain bottlenecks. 

To fix this, the company has decided to start a new project on warehousing operations with 

the final goal of increasing its warehouse capacity. They would like to find out what approaches 

and methods exist that could be implemented to reduce time and workforce, or ideally, both, 

when it comes to processing orders. 

1.2.1 Norm vs. Reality 

According to Heerkens (2017), when defining a problem, it is important to know the difference 

between the current situation (the reality) and the desired state (the norm). To put this into the 

perspective of our company and thesis, the missed order ratio of the company is less than the 

company desires. We define the order missed order ratio as one minus the ratio of the placed 

and fulfilled orders out of all the potential orders that the company can get. 

The main reason for the loss of potential orders is the lack of capacity. As described in the 

problem description, before the customer can buy the groceries, the system checks if it has 

enough vehicles, stock, and workforce in the warehouse to deliver the order placed within two 

hours. If that is not the case, the system will notify the customer and provide them with an 

option on the website to have their groceries delivered after the two-hour window, which 

means that the system will register the order and place it automatically for the customer when 

there is more capacity. However, some customers are not willing to wait longer than two hours 

and decide to cancel their order completely. This phenomenon is called shopping cart 



3 
 

abandonment (Kapoor & Vij, 2021). While shopping cart abandonment can be caused by a 

wide variety of reasons, such as a complicated checkout process or lack of a user-friendly 

interface, after several discussions with the company, the main reason for the card 

abandonment, in this case, is the fact that customers must wait to place their orders. That is 

why the company wants to decrease the missed orders ratio to as much as possible to reduce 

the number of lost potential sales thus achieving their norm.  

  

1.2.2 Problem Cluster 

As described in the previous section, the company focuses on reducing the missed orders 

ratio as much as possible. To help us map out the cause and effect of the company’s problem, 

we have decided to make this our action problem. According to Heerkens (2017), the action 

can be defined as a gap between the norm and the reality, as seen from the perspective of 

the problem owner. To help us find the origin of this problem, we will make a problem cluster 

to narrow down the exact cause of this problem, as can be seen in Figure 1. 

 

Figure 1: Problem Cluster 

From this problem cluster, we can find several reasons for the high missed orders ratio. Firstly, 

the volatile order rate and high variability in order sizes make it difficult to know how many 

orders can be accepted at any given time. Because of that, sometimes more or fewer orders 

are accepted than are strictly necessary. Secondly, the order processing time is longer than it 

needs to be. When we talk here about the order processing time, we refer to the time it takes 

to process an order in the warehouse, from when the order arrives to when it is placed in the 

van and sent to be delivered. We stop at the vehicle routing because the company has 

extensively optimized this process. 

If we investigate the causality of these issues a layer deeper, several potential core problems 

begin to emerge. A core problem, as defined by Heerkens (2017), is the main problem we will 

solve. While the action problem is the problem owner's main issue, the problem's real cause 
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might be something else. In a problem cluster, there can be multiple core problems; however, 

for this thesis, we will only select one.  

The first potential core problem is the inaccurate estimation of the capacity constraints. This 

is a problem since the company only sometimes ideally estimates how many orders they can 

handle, which sometimes leads to them underestimating or overestimating their capacity. 

However, this does not improve the missed orders ratio by as much as we would want because 

the main reason for the potential lost sales is low capacity. Knowing exactly how much we can 

handle would allow us more “breathing room” and not take more orders than we can handle, 

but the capacity of the warehouse would not be changed, and the rate at which the orders 

arrive is not something we can control, thus making the effort/reward ratio not worth it. 

The second potential core problem would be the sub-optimal scheduling of the workforce. 

What this means is that sometimes, in the warehouse itself, there need to be more workers to 

fulfil the orders, and then there are other times when the warehouse has too many workers, 

and their idle time is seen as a loss from the company. The goal here would be to have an 

optimal number of workers at all times in the warehouse such that the demand is still being 

met and there is minimal idle time where no work gets done. However, this process in the 

company is already being improved, and models for such a problem are already being made. 

This is good for us because, since the company has already decided to address this issue 

themselves, that means that they are aware of it and that we can focus our efforts on a different 

problem. 

Finally, we get to the last potential core problem, which is the less-than-optimal picking process 

in the warehouse. What we here mean by the picking process is that once an order arrives at 

the warehouse, it is sorted and placed in a queue. Once the order progresses to the front of 

the queue, the worker takes the order and picks up all the items from the warehouse that 

belong to that order. The time it takes for the picker to collect all of the items and deliver them 

to a van, plus the time the order was waiting in the queue, is how we measure order processing 

time. This order processing time affects how long it takes for an order to be fulfilled, and the 

more time it takes to complete an order, the fewer orders we can fulfil in a day. Therefore, the 

time it takes to fulfil the orders directly affects the warehouse's capacity, and due to the 

shopping cart abandonment effect it indirectly affects the missed orders ratio. Because of such 

a significant impact on warehousing operations and its apparent connection to the extended 

order processing time, we have decided to take this as our core problem for this thesis. 

Throughout the rest of this chapter, we will explore the approach we will take, what questions 

we must answer, and the possible solutions we should consider. 

1.3 Problem Solving Approach 

In this thesis, to solve the problem that we saw in the previous section, we will use the 

Managerial Problem-Solving Method (MPSM). As described in the book by Heerkens (2017), 

this method consists of 7 phases. The MPSM method is a standard methodology used in 

Industrial Engineering and Management due to its versatility and ability to break down the 

problem into smaller and more manageable parts. In this section of the thesis, we will discuss 

each phase based on the work of Heerkens (2017) and how they will help us solve our 

problem. 
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Figure 2: MPSM (Heerkens, 2017) 

Phase 1: Defining the Problem– in the initial phase of the thesis, our goal is to define the 

specific problem that the company has. This phase of the thesis has already been done in the 

previous sections of this report. Often, when working with companies, the problems that the 

company thinks they have differ from the ones they have. That is why, in the problem 

description section of this report, we have developed a problem cluster to help us find the 

action and the core problem and help us bridge the gap between the norm and reality. 

Phase 2: Formulating the Problem-Solving Approach—The second phase of the MPSM is 

focused on formulating the questions that will help us gain more knowledge and understanding 

of our problem and outline the approach we must take to reach our solution. This step will be 

done in the following sections of this chapter, where we will formulate our research and 

knowledge questions as well as certain KPIs that we would like to measure to track the 

improvement of our solution. 

Phase 3: Analysing the Problem – The third phase of this cycle is used to re-evaluate the 

problem we have defined in the first phase and start doing more in-depth systematic research 

about the problem. In the first 2 phases, we usually are led by our intuition and what the 

company has told us the problem is from their perspective. However, in this phase, we aim to 

take a more scientific approach to this problem and start using the research cycle to help us 

answer some of the knowledge questions we have formed in the previous phase. These 

answers will help us understand the causal relationship between the KPIs and what methods 

of improvement currently exist.  

Phase 4: Formulating Solutions– once we have gotten some further insight into what kind 

of solutions already exist and the causal relationships between different variables, our goal is 

to start forming our list of potential solutions to the problem. These solutions can be completely 

new or extensions of the current solution approaches, with the latter being the more common. 

Apart from just formulating the solutions, we also need to have a list of criteria that will help us 

in the later phases to determine what kind of solution would fit the most. 

Phase 5: Choosing a Solution—This phase is one of the most straightforward ones. Since 

in the previous phase, we formulated a list of solutions and the criteria that should be used to 

evaluate them, in this phase, the goal is to select one of the solutions based on those criteria. 

It is also important to justify why that specific solution has been chosen over others. 

Phase 6: Implementing the Solution—Once we have selected the solution, it is time to 

implement it. In this phase, we will create an implementation plan and outline the steps we 

should take to implement our solution. Once that has been completed, we will also elaborate 

on how exactly we implemented it in practice since sometimes those two can differ. 

Phase 7: Evaluating the Solution – In the final phase of the MPSM, the focus is on evaluating 

the solution we implemented in the previous phase. Regarding the evaluation, we need to 
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focus on all six previous phases of the MPSM. This can then be further narrowed down to 

three key takeaways: How well was the problem defined? How good are the solutions that 

were provided? How well is the chosen solution implemented? Depending on the answers to 

these questions, we can determine whether the solution that has been chosen improves the 

performance based on the KPIs we chose and whether it bridges the gap between the norm 

and the reality that the company wants. 

 

 

1.4 Main Research Question 

In the problem identification section, we found our core problem by analysing the problem 

cluster. From there, we found that the main issue was the warehouse picking process. Based 

on these observations, we formed the following research question. 

How to reduce average order picking time in the warehouse picking process of Flaschenpost? 

This research question will focus specifically on the process of item collection in the 

warehouse. The main goal will be to reduce the time it takes to collect the items. By reducing 

the time, we increase the capacity of the warehouse and, therefore, reduce the number of lost 

potential sales, thus aligning us with the company goals and its action problem. 

 

1.5 Sub-research Questions 

We will now go in detail through each of the knowledge questions and explain what their role 

is in our thesis. Since the research question we created in the previous section is quite 

extensive, it will take time to answer it. That is why we have created a list of knowledge 

problems, which can be perceived as a list of research sub-questions that will help us answer 

our main research question. The idea behind this research question is to divide this thesis's 

work into three main parts. The first part is getting familiar with the problem; the second part 

is trying to find existing solutions and create our own; the third and final part will focus on our 

solutions' quality. We will thoroughly review each knowledge question and explain their role in 

our thesis. 

1. What are the current methods and models being used in the company for the picking 

process? 

The first question is supposed to help us understand how the company currently does its 

picking process. This question is closely tied with phase three of the MPSM, where we are 

trying to gain in-depth knowledge of the problem and hopefully uncover any other potential 

constraints that we might have missed at first glance. From the answer to this question, we 

will obtain some initial data and what parts of the process need improvement. 

2. What models and heuristics currently exist that deal with the warehouse picking 

problem? 

For this research sub-question, the focus is somewhere between phase three and phase four 

of the MPSM. This question addresses the third phase by first looking at all the possible 

solution approaches one could use to improve a warehouse. By doing this research, we get 

more in-depth knowledge of the problem and what things we should consider. The fourth 

phase is addressed because once we know all the possible ways to improve the warehouse 

picking process, we will generate a list of possible solutions that could be used in this thesis. 
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3. Which KPIs are relevant for the improvement of the Flaschenpost’ s order picking 

efficiency? 

Once we have an in-depth understanding of the problem and a list of potential solutions, the 

next part of our thesis will decide which solution to pick, which nicely correlates with phase 

five, the solution choice. To help us select the best solution for the company, we must first 

identify how the company evaluates its performance. To do that, we will create a list of KPIs 

based on the numerical and real-world performance of the mathematical models and heuristics 

that we have found. 

4. How can these algorithms that exists be modified such that they are applicable to our 

picking process? 

After implementing the solution, we created from the previous sub-question and combining 

that with the KPIs we selected in the third sub-question alongside some additional metrics, it 

is time to step into the final phase of the MPSM. The goal of phase seven is to evaluate the 

solution we created and show how it addresses the core problem. Doing so provides additional 

validity to our thesis and the chosen approaches. 

5. How to evaluate the mathematical models and heuristics and its impact on the 

Flaschenpost’ s warehouse picking process? 

After implementing the solution that we have created from the previous sub-question and 

combining that with the KPI’s that we have selected in the third sub-question alongside some 

additional metrics, it is time to step into the final phase of the MPSM. The goal of the phase 

seven is to evaluate the solution that we have created and to show how it addresses the core 

problem. By doing so we provide additional validity to our thesis and the approaches that were 

chosen.  

6. What are the next steps the company should take and future recommendations on how 

to further improvement of our solution? 

Finally, when the entire MPSM cycle has been completed and the solutions are implemented, 

we will provide the company with a list of the following steps that can be taken and future 

recommendations. We provide this information for two reasons. Firstly, due to the scope and 

limitations of the thesis, not all aspects of the problem can be addressed and implemented, 

and secondly, in IEM, process optimization is never truly complete, and there are always more 

steps that can be taken to improve further. 

1.6 Current State at the Company 

Before we try to fix the company's problem, we must first get a firm grip on the methodology 

and the operations process used, specifically in the warehousing operations, since this is the 

aspect of the company that we are focusing on. This is helpful for two reasons: the first is to 

understand the constraints and limits, and the second is to pinpoint which parts of the picking 

process need to be improved to model these problems mathematically in later chapters and 

form appropriate algorithms. The following BPM (Business Process Model) has been created 

to understand how the company works. 
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Figure 3: BPM of warehousing operations 

As shown in Figure 3, there are two possibilities when the customer wants to place an order 

through the company’s website. One is to place an order right now, and the other is to place 

an order at some point in the future. When the customer places an order, the system evaluates 

if it can be fulfilled at this moment or, if option two is used, if the order can be fulfilled later. The 

system estimates this right now by taking several factors into account. Is it possible to fulfil 

this order within two hours? What is the current warehouse utilisation, how many orders are 

in the queue right now, can the order be batched with any other order, and is there enough 

space in the vehicles? If the customer cannot place the order right now, an alternative option 

will be presented to them. 

Once the customer has placed the order, it is processed by the appropriate warehouse based 

on the delivery address. Once the order reaches the warehouse, it will be divided into smaller 

components. For this, we can use the analogy of a shopping cart; when a customer places an 

order, it is treated as a list of groceries that a customer wants to buy. The order is treated as 

a "shopping cart" full of groceries; however, when packaging and delivering these groceries, 

they need to be placed outside of the shopping cart into grocery bags. In this thesis, we refer 

to these "grocery bags" as boxes. When an order arrives at a warehouse, the groceries are 

divided into boxes with actual grocery bags where the items are placed. These boxes are then 

placed into a queue to be collected. Each box will contain only the items that belong to one 

specific order. That means that the picker can collect boxes that belong to different orders but 

the contents of each box belong to one order only. These boxes are then batched together 

and placed in a queue waiting to be collected. When the workers pick up orders, they carry 

them in a cart with a maximum capacity of 6 boxes and are given a sequence in which they 

should pick up the items for each box. The worker then places the items in their respective 

boxes based on which item belongs to which order. Once the route has been completed, the 

worker drops off the collected items in the drop-off area, where the van drivers collect the 

boxes that belong to their driving route. When all the orders that belong to that van have been 

fulfilled and placed in said van, the groceries will be delivered to each of the respective 

customers. 

 

1.6.1 Batching and Routing 

Within the warehouse operation, we notice two distinct processes that take place and require 

substantial computational resources: batching and routing algorithms. These algorithms are 

crucial for warehouse operations as they consolidate orders and create routes the pickers 

need to follow. Both algorithms use simple heuristics that are not optimised for speed or 

efficiency. 

The batching algorithm applies the FIFO (First in, First Out) policy. This algorithm first breaks 

down every order into boxes that need to be collected; sometimes, the entire order fits into 
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one box and other times, multiple boxes are needed. Once all the orders are split into boxes, 

the algorithm will find all the boxes from the oldest order and add them to the batch. After this, 

it will find the closest boxes within a distance of the already selected boxes and add them to 

the batch. The algorithm will repeat this process until there are six boxes in a batch since that 

is the maximum capacity of the cart. 

Once the orders have been divided into boxes and consolidated into batches, a route is 

constructed, which provides the order in which the picker must collect the items. The routing 

algorithm will take one of the boxes from the batch and construct the route for the first box. 

Once all the items from the first box have been collected, it will then take the second box and 

construct a route for the second box; this process will repeat itself until all the boxes have 

been filled out with their respective items.  

The route is formed for each box using a greedy2 algorithm. The algorithm picks an item 

closest to the picker at that moment, and from there, it utilises the nearest neighbour heuristic 

until every item in that box is collected, and then it moves on to the next box. 

1.7 KPI Selection 

To evaluate the performance of our solution, we will use the company's current method and 

benchmark its performance against the performance of our solution. As a metric for 

comparison, we have listed several KPIs that could be used to track the performance of each 

solution. The KPIs chosen are as follows: 

1. Average time it takes for one route to be completed (related to time vs distance) 

2. The average distance per route (again, time vs distance) 

3. Order throughput rate (how many more orders were handled per time unit) 

4. Average backorder rate (relate that to how many orders out of x get backlogged) 

5. Total time spent in order fulfilment (to find out what is the actual capacity of the 

warehouse) 

6. Order delay time 

The first two KPIs measure average time and distance; while they correlate, they are still not 

one-to-one, and both give us different information. The difference in performance 

measurement between time and distance is explained in more detail in the following section. 

The order throughput rate tells us how many orders were processed per unit of time. At the 

same time, this KPI would be helpful to measure since it is directly correlated to our action 

problem; since this company data is not accessible to us, it will not be possible to benchmark 

the company's performance against our data. The average backorder rate will tell us how 

many orders out of x get backlogged due to capacity constraints; unfortunately, it is impossible 

to measure this data since the company cannot provide us with it. This KPI is something that 

the company could measure once they implement our solution into their operations and 

develop the proper technical background to track it. The total time spent in order fulfilment will 

tell us the warehouse's capacity and how many orders the warehouse can handle in a day. 

The order delay time will give us further information if the warehouse is over-utilized since then 

we can track how much impact order backlogs have. We lack the data to track both of these 

KPIs and do not have any data collection method. Since four out of six KPIs cannot be tracked, 

valid questions could be raised about these measurements' validity and reliability. The 

reasoning behind why the data cannot be collected and how we will ensure that the 

measurements are still reliable are explained in the next section.  

 
2 A greedy algorithm is an algorithm that implements a greedy strategy. In a greedy strategy one makes a 
choice that is best at the moment (Jungnickel, 2013). 
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1.8 Validity and Reliability 

To solve the problems we have discovered in this chapter, specific data is helpful to make our 

solutions as accurate as possible and measure the performance clearly. Some of this 

information, such as the layout of the warehouse, how items are stored in it, and the algorithms 

currently used in the warehouse operations, are available to us. However, there are parts of 

the data that we cannot access due to confidentiality or technical reasons; this data includes 

the history of orders, the location of each item in the warehouse and the exact layouts of the 

warehouses. Because we need this data, there are reasonable concerns about the validity 

and reliability of this research. 

That is why when it comes to data (especially when measuring performance), it is essential to 

know that the data that will be generated to make and evaluate the solution and the methods 

used are based on real-life examples of data and extensive interviews with the company 

supervisor. According to Cooper (2014), we can look at three types of validity. The first is called 

content validity, and it explains to what extent our data covers the problem we have defined. 

The second one is called construct validity, and it explains whether the criteria we measure 

track the performance of the warehouse well. The third one is called criterion-related validity, 

and it tells us if the measurements we take accurately represent the current state of the 

performance. 

When it comes to the solution of this thesis, which will be a mathematical model, it is essential 

to know that every model has limitations that separate it from reality. Throughout this thesis, 

the goal is to reduce these assumptions as much as possible since they reduce the quality of 

the construct validity, which impacts the overall quality of the results. Nevertheless, some 

assumptions will already have to be made. The central assumption made here is that the 

workers will follow the instructions and not deviate from them; secondly, while the data on the 

distance and the layout of the items in the warehouse can be somewhat accurately 

represented from the architectural plans, the walking speed, and the time it takes to pick up 

items will have to be approximated. These approximations, alongside other relevant data 

necessary for the modelling, will be based on historical or real-life data examples so that the 

content validity is not significantly infringed. 

Finally, when it comes to the model simulation, the data we have chosen is based on past 

orders. We will then take both the company algorithms and the ones developed in this thesis 

and simulate several scenarios to ensure a reliable and accurate analysis of the performance 

of the algorithms. The challenge that is presented here is measuring the performance of these 

models. Koster, Le-Duc & Roodbergen (2006) talk about the estimation of models through 

time and distance. In this paper, they explain that the correlation between distance and time it 

is not one-to-one. The main benefit of distance is that it is more precise out of the two since 

the distance can be easily measured; however, time, while intuitively lower when the distance 

is shorter, the percentage of reduced time varies on other factors as well such as walking 

speed, aisle congestion and the experience of the workers. If the distance is reduced by 5% 

on average, the picking time might only be reduced by 3% due to varying walking speeds. 

This is where criterion-related validity is affected, and it is essential to use both measures 

when evaluating models as well as proper statistical methods to account for such variations 
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1.9 Conclusion 

Throughout this chapter, we have introduced the company and the problems that we are 

facing. We have then broken down this problem into a series of subproblems, which we called 

research sub-questions; by answering these questions in the following chapters, we will slowly 

build up to the solution we need. Aside from breaking down the problem, we have also gained 

detailed insight into the company operations and algorithms they used, which have helped us 

narrow down the exact mathematical problems in the company. We will now use this 

information to form a theoretical framework and have a more structured approach to our 

solution. 
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2 Literature Review 
Once we have identified the problem, we have decided on our methodology and designed the 

research. This chapter will discuss the theoretical framework we have formulated for this thesis 

and provide a clear overview of the literature relevant to the warehouse picking problem. This 

chapter will consist of four sections; the first three sections divide the theoretical framework 

into three main sections. These sections have been derived from the literature overview of 

Koster, Le-Duc & Roodbergen (2006). Throughout this chapter, we will base the theoretical 

framework on the works of this paper. With that in mind, the warehouse picking problem can 

be looked at from three aspects: the warehouse design, batching and zoning, and routing. 

Each of these sections is quite detailed and complex; however, the point of this chapter is to 

provide a brief overview of each of them and show different approaches to the warehouse 

picking problem and the specific problems these three different frameworks solve. The final 

section of this chapter will be the conclusions, which explain which aspect of this framework 

will be used and why those have been selected for this thesis. 

2.1 Warehouse Design 

The first aspect through which we can look at the problem focuses on the design of the 

warehouse. When we talk about warehouse design, we refer to two parts. The first part 

focuses on the layout itself; what we mean by that is the number of aisles that the warehouse 

has, how they are placed around the warehouse, whether the warehouse is automated (also 

known as parts-to-picker systems) or run by humans (picker-to-parts systems). If humans run 

it, do they need to use vehicles to move around the warehouse, or is it small enough to walk 

just around? Can humans carry the items, or do they need a machine? Such decisions are 

crucial for travel time and distance that will have to be passed. This problem is also known as 

the "internal layout design configuration problem" (Koster, Le-Duc, & Roodbergen, 2006), and 

many models exist that try to tackle this issue.  

The second part of the warehouse design focuses on the storage assignment policies. These 

policies are used to decide how we want to place items around the warehouse; these decisions 

are essential for efficient operations. While many policies exist, we will list five main ones 

according to (Islam & Uddin, 2023) and briefly discuss how they work. Random storage means 

that items are placed randomly throughout the warehouse. Closest open location storage: This 

method is often used in small warehouses; it takes the closest available spot from the entrance 

and places the item there. Dedicated storage is used when every item has a specific place in 

the warehouse and does not change over time. Full turnover storage means that the items 

close to the entrance are the ones that are ordered most often; such storage policy is quite 

dynamic and needs to be regularly updated. Class-based storage policy utilizes the fact that 

some items are often ordered together and are, therefore, placed close to each other. Each of 

these policies has specific pros and cons and depending on the routing method used and the 

warehouse layout, different ones are chosen. While there is much research on this topic, more 

is needed to reduce the company's order processing time significantly. Nevertheless, a policy 

will be provided in Chapter Six of the thesis. 

 

2.2 Batching and Zoning 

The second approach we could tackle when trying to improve warehousing operations is pre-

routing preparation. This means that, before the construction of the shortest route begins, 

several decisions can be made to reduce the total workload of the warehouse employees. 
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Three approaches can be considered when it comes to pre-routing: zoning, batching, and a 

combination of both.  

Zoning means that the warehouse is divided into several zones based on the layout of the 

warehouse. One or multiple workers are assigned to each zone; these workers then only 

traverse the area of their zone and collect items from that zone. This way, the order is split into 

smaller sub-orders based on the warehouse zones, where each worker only fulfils a part of 

the more significant order. The pros of such an approach are less travelling time for the 

warehouse workers and faster collection of items; however, the downsides are that when the 

order is split into smaller parts, the synchronization of different orders and matching all the 

sub-orders creates additional work. Some zones might be ordered from more often than 

others, which could lead to an uneven workload distribution.  

The second option, batching, is used when multiple orders arrive at the warehouse. In these 

cases, it is sometimes possible to combine some of the orders such that instead of the worker 

going twice to the same place in the warehouse, they make a longer route and collect several 

orders simultaneously. This approach saves both time and resources, and according to Koster, 

Le-Duc, and Roodbergen (2006), any kind of batching using even some simple heuristics is 

better than no batching. There are two main approaches when it comes to batching: one is 

making a linear programme (LP) model, and the other one uses heuristic algorithms. It is worth 

mentioning that while these are the most common approaches to the order batching problem, 

they are not the only ones. Several new approaches have been developed in the last few 

decades, or so that also try to utilise genetic algorithms and other similar metaheuristic 

approaches, which will not be covered due to the scope of this thesis. 

2.2.1 Linear Programming Approach 

The first approach is the LP approach, and two reasons make this approach attractive. The 

first reason is that this approach forces us to model our problem as a mathematical model, 

which helps us clearly define the problem. However, the second reason, which is even more 

important, is that an LP solution is global optimum, and this is often desired for industrial 

engineering. Another way one could perceive the batching problem is like a knapsack 

problem3, where some of the LP models have gotten their inspiration, but there were still a few 

key differences between them. When it comes to modelling order batching as an LP, there 

have been several attempts throughout the years; one of the first-ever LP models for order 

batching was created by Vinod (1969), and some of the others that were also popular 

throughout the years include Kusiak, Vannelli & Kumar (1986), Bozer & Kile (2008) and Kulak, 

Sahin & Taner (2011). 

However, while an LP approach does provide optimal solutions, the order batching problem is 

known to be an NP-hard problem and is only solvable in polynomial time if the batches contain 

at most two orders (Briant, et al.,2020). This poses a problem for any case when the batch 

size is larger than two orders. Another reason is that most LP models do not consider different 

order priorities but treat them equally. Due to these problems, developing solutions for the 

order batching problem using LP models stopped being the preferred approach. That is why, 

in the last decade, the focus has also been turning towards efficient metaheuristic approaches, 

which are essential for further improvement (Cergibozan & Tasan, 2016). 

 
3 Knapsack problem – “…a set of entities, each having an associated value, from which one or more 
subsets has to be selected in such a way that the sum of the values of the selected entities is maximized, 
and some predefined conditions are respected.” (Martello & Toth, 1987) (p.213) 
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2.2.2 Heuristics Approach 

Since the LP algorithms are not practical in real life, the next natural step is to look for a 

heuristic that will provide us with near-optimum solutions, which are, in practice, already more 

than satisfactory. Within the heuristics algorithms, two main types can be found: seed and time 

window algorithms (Il-Choe & Sharp, 1991). Seed algorithms usually take one order (the seed) 

and try to find another order that could be combined with this one. Several methods of 

selecting the seed order and the algorithms check if another order can be added to the seed 

order; Koster, Poort & Wolters (1999) provide a very nice overview of these algorithms and 

policies. 

One of the significant benefits of seed algorithms is that they are fast and can handle large 

numbers of orders with relative ease. However, their batching is relatively primitive and not 

very efficient. That is where the time-saving algorithms become relevant. While more 

computationally intensive, they perform better overall than the seed algorithms (Koster, Poort, 

& Wolters, 1999). The time-saving algorithms work by calculating the time saving between two 

orders, which is defined as the time it would take to collect both orders individually minus the 

time it would take if they were collected. This is then done for every possible combination of 

the two orders, and the one with the largest time saving is selected. The remaining logic of 

clustering these orders together later varies per algorithm; however, everyone utilizes this 

time-saving mechanic in some shape or form. In their paper, Koster, Poort & Wolters (1999) 

have developed a methodology to decide what kind of heuristic algorithm is appropriate and 

alternatives in case it is too computationally intensive. 

2.3 Routing 

The final way to approach the warehousing operations is by developing shorter routes when 

collecting items. This is the most direct and practical approach out of the three. While the first 

two approaches help when it comes to warehouse operations by reducing time, if the routing 

algorithm that is used needs to be fully optimised, all these other optimisations are wasted. 

The routing itself brings the warehouse design, batching, and zoning together and combines 

the best of both. One can take three approaches in route construction: LP, DP, and heuristics. 

Routing aims to make the paths workers must traverse as efficiently as possible since the 

design and layout are most utilised. 

2.3.1 Dynamic and Linear Programming Approaches 

Within the warehousing literature, this problem is often referred to as the picker routing 

problem, and the preferred approach to solving this problem is using DP and LP methods. 

These methods are preferred over the heuristics because they provide a globally optimal 

solution. One of the first ever DP algorithms developed for a warehouse was by Ratliff and 

Rosenthal (1982), whose algorithm has been created for only single-block warehouses4. After 

Ratliff and Rosenthal, several extensions to their algorithms have been created, with some of 

the most popular being by Cornuejols, Fonlupt & Naddef (1985) and Roodbergen & De Koster 

(2001). There have also been several LP solutions, which are not as popular as the DP 

solutions due to their high computational intensity; in their paper, Valle, Beasley & Cunha 

(2017) provide a different insight into how we can model the picker routing problem which can 

be particularly useful when mathematically modelling the problem. 

 
4 Single-block warehouses – are warehouses that consist of only one row of aisles, where you could only 
enter and exit an aisle at the begining or the end. 
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However, there is one central assumption that most of these models assume, which is only 

the case in some warehouses: that they assume a rectilinear layout5. When Ratliff and 

Rosenthal developed a DP algorithm to solve the picker routing problem, they formulated their 

problem as a variation of a TSP problem. The travelling salesman problem is famously 

recognisable as an NP-hard problem. However, if formulated as a rectilinear variation of the 

TSP (there are some differences between the traditional TSP and the picker routing problem 

that are discussed in Chapter Three), it is possible to solve it in polynomial time, but if this is 

not the case the problem again becomes impossible to solve in practice. This approach cannot 

be used for the warehouses that deviate from this layout. Another problem that these 

algorithms face is that they do not consider something called “aisle congestion” (Koster, Le-

Duc, & Roodbergen, 2006), which occurs when many pickers go to the same aisle, thus 

creating a traffic jam in the warehouse, which reduces the speed at which the pickers move. 

Since each route is constructed individually, the interaction between the routes is not 

considered. 

2.3.2 Heuristic Approaches 

In cases where a DP or LP is not possible to implement or takes too much time, a routing 

heuristic stands out. Unlike the DP and LP, the heuristics will not provide the optimal solution; 

however, their very cheap calculation requirements allow them to consider other problems, 

such as aisle congestion (Koster, Le-Duc, & Roodbergen, 2006). Another benefit of the routing 

heuristics is that they are a lot more intuitive to warehouse pickers; the reason this is important 

is that the warehouse pickers sometimes deviate from the optimal route that is provided 

because it is not intuitive to them, which leads to longer picking time and sub-optimal routes. 

This problem is solved with heuristics because the output is much more intuitive and thus 

results in less route deviation (Gademann & Velde, 2005). An overview and a comparative 

analysis of the most popular heuristic can be found in the paper by Koster, Le-Duc & 

Roodbergen (2006). 

2.4 Conclusion 

This chapter has given us better insight into the solutions and approaches to warehousing 

operations and the benefits and downsides of each. Regarding warehouse layout, the 

company is currently divided into four main zones: beverages, FMCG, frozen goods, and other 

household essentials. For the thesis, we will consider only two, beverages and the reset, since 

these two are only physically divided. However, changing the design of the warehouse or 

implementing any changes to its layout would require it to pause its operations for a couple of 

days, which would incur too high costs for this project. That is why our search for the solution 

was narrowed to two approaches, batching and routing since they will impact the warehouse's 

performance the most. When implementing the solutions, batching and routing will have to be 

implemented separately for beverages and the rest.  

 
5 Rectilinear layout – is defined as a graph where there are nodes set up in a rectangular shape 
representing the beginning and the end of each aisle and in between two vertical nodes there are items 
that must be collected. 
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3 Mathematical Model 
When it comes to modelling a warehouse picking problem, several decisions and assumptions 

need to be made. The assumptions include the layout of the warehouse and others that will 

be used to relax the constraints of the model to make it solvable. These assumptions will help 

us in the solution generation phase and algorithm selection. 

3.1 Warehouse Layout 

The company's warehouses are usually split into two zones: the FMCGs and the bottling 

section. We will have a separate algorithm running for batching and picker routing. The 

warehouse layout that we will consider for both types of zones and the problem will be based 

on the works of Vallea, Beasley, & Cunha (2017) since the real layout of the warehouse can 

be perceived as a rectilinear layout. A model representation of the warehouse layout can be 

seen in Figure 4. 

 

Figure 4: Warehouse layout (Vallea, Beasley, Cunha, 2017) 

The following graph shows a section of the warehouse that consists of four blocks, which make 

a total of three aisles (vertical lines) and three cross-aisles (horizontal lines). The graph 

consists of two sets of vertices: VA which represents the ends and beginnings of sub aisles 

(black dots), Vo which represents the locations of where the items must be collected (white 

dots).  

3.2 Problem Formulation 

The warehousing problem can be formulated as follows. There is a set of orders O that we 

need to collect in a warehouse. Each order o ∈ O consists of a set of products po ⊆ P. 

However, not every product has its own dedicated location. We assume here that every 

product that is within arm’s reach of the warehouse picker, so both sides of the aisle and 

on any of the shelves, is in the same location. This reduces the number of nodes and the 

complexity of the computations. From this a new subset of locations Lo ⊆ L for each order 

o ∈ O, note that the size of the set Lo and po does not need to be the exact same size, since 

there could be multiple products at the same location. Given these sets, our goal is to 

collect these orders in the warehouse by traversing the shortest distance possible. This 
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problem will now be split further into two sub-problems, the order batching problem and a 

picker routing problem. The warehouse picking problem can be solved without batching. 

However, literature shows that order batching significantly improves the overall 

performance of the warehouse, which is why we have decided to also include batching in 

our mathematical formulation.  

3.2.1 Order Batching Problem Formulation 

Order batching problem can be formulated as follows, given a set of orders o ∈ O and a set of 

locations Lo ⊆ L the goal is to batch these orders such that the overall travel distance that the 

picker must traverse is reduced. For this, we need to make several assumptions: 

1. We assume that every order fits in the cart independently. 

2. We assume that every picker has a cart with the same capacity C. 

3. We assume that the orders will be split upon arrival into two parts the bottles and the 

FMCGs, each for their respective zones.  

4. For the FMCG zone in the warehouse we assume that the orders cannot be split 

amongst pickers, this means that the picker will have to utilise the sort-while-pick6 

policy when collecting items.  

5. For the bottled zone, we assume that the order can be split amongst the pickers and 

will be sorted once they arrive to the depo; this means that the workers will utilise the 

pick-and-sort7 policy while collecting items. 

6. Since orders do not have the same priority, we will have to sort them into priority sets 

based on their deadline.  

We will split each order o ∈ O into two parts (assumption 3) of for FMCG and ob for bottles, 

thus one order o = of ∪ ob. Since batching will be done separately for each zone, we can take 

one of the two as the order thus making two new order subsets Of, Ob ⊆ O however, the 

batching model will be the same for both zones. Only difference between the two is that for 

bottles instead of orders being batched we will be batching a set products p ⊆ P (assumption 

5) such that p = ⋃ 𝑝𝑜𝑜∈𝑂 . It is important to note that for batching in both zones we will not be 

looking at the batches as a set of products but rather as a set of locations lo. To be able to 

formulate this problem mathematically we will need to create set of possible batches S that 

consists of orders o such that s ∈ S contains a set of orders os ∈ s. From this set, we can then 

calculate the length of each route of each batch s ∈ S.  

However, since not every order has the same priority (assumption 6) we have decided to 

define three different classes of priority for orders. The set of orders O will be split into three 

different subsets oj ⊆ O where j = 1,2,3, with 1 being the highest priority and 3 the lowest. To 

find an optimal solution we would have to treat each order with an equal level of priority 

because only then is it possible to find the orders that match best together, but that would 

collide with our assumption 6. This means that the solution that we will find will not be one that 

could be considered a global optimum but rather a local optimum. We prioritize optimally 

batching as many orders from the highest priority class together and filling up the remaining 

space with orders from priority classes 2 and 3. To implement this approach we will split the 

order set O into priority classes and into zones (ojf, ojb ⊆ O), then we will take the set o1f and 

o1b, separately, and treat this subproblem as a standard order batching problem where every 

 
6 Sort-while-pick – is a picking policy where a picker that collects multiple orders, while collecting items 
sorts them as they collect them into their respective orders.  
7 Pick and sort policy refers to the – is a picking policy where the picker first collects all the items, delivers 
them to the depo and sorts the items into their respective orders there. 
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order in that set will have equal priority since the orders are in the same class. Once all the 

orders have been consolidated, the batches that have remaining space available will be added 

to the set of orders with the priority class two and treated as orders themselves. The process 

will be repeated and the order set from class two will be consolidated using the standard order 

batching problem formulation. This will then finally be repeated for the third class of priority. 

From the results of this approach, we will be able to define six different types of batches:  

• batch with orders only from class one 

• batch with orders mixed from classes one and two 

• batch with orders only from class two 

• batch with orders mixed from classes one and three 

• batch with orders mixed from classes two and three 

• batch with orders only from class three  

To model the consolidation of the set of orders for each class j individually we will use the 

linear programming formulation of (Muter & Öncan, 2015). 

𝑚𝑖𝑛 ∑ 𝑑𝑠 ∗ 𝑦𝑠

𝑠∈𝑆

 

s.t. 

∑ 𝑎𝑜𝑠 ∗ 𝑦𝑠 = 1

𝑠∈𝑆

, 𝑜 ∈ 𝑂𝑏/𝑓 

∑ 𝑐𝑜 ∗ 𝑎𝑜𝑠 < 𝐶

𝑜∈𝑂𝑓/𝑏

, 𝑠 ∈ 𝑆 

𝑦𝑠 ∈  𝔹, 𝑠 ∈ 𝑆 

 

Where ds are length of route of batch s, aos is 1 if order o is included into batch j and 0 

otherwise, co is the capacity of the order o, C is the total capacity of the cart, ys is a binary 

decision variable if batch s is used or not. The set S of possible batches can be generated if 

all possible combinations of batches satisfy the capacity of the cart constraint, where each 

batch could be represented as a vector of aos. 

3.2.2 Picker Routing Problem Formulation 

Once we have found our set of batches that we have to collect and have ensured that it 

contains all the orders, the next step is to formulate the routes for these batches. To make the 

problem formulation more understandable we will look at only one batch from the set since 

the same process will be applied to each batch individually. Before we model the problem, we 

list several assumptions that have been made: 

1. We assume that the warehouse has a rectilinear layout as shown in Figure 4  

2. Based on assumption 1 we are assuming that a directed weighted graph can be 

constructed from this rectilinear layout as shown by (Roodbergen & Koster, 2001)  
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Figure 5: Weighted rectilinear graph (Roodbergen & Koster, 2001) 

3. Unlike a standard travelling salesman problem where each vertex can be visited only 

once here the vertices that belong to the set Va can be visited multiple times however 

vertices that belong to the set Vo can be visited only once.  

4. Each arc in the graph can be traversed only once 

5. We do not consider aisle congestion; that is, every route construction is done 

irrespective of the previous or future routes to be formed. 

6. We assume that there is no route deviation by the pickers 

Once we receive one of the batches that need to be considered we split this batch into a set 

of locations Ls ⊆ L which represents the set of products that must be collected. For the FMCGs 

we assume that the picker will sort each product into a box with an appropriate order and that 

they will know which product belongs to which order. Since priority of orders has already been 

addressed through batching, when it comes to routing every item will have the equal priority 

when it needs to be collected since only once the entire batch is collected will we deliver it to 

the depo. That also means that the order will not be picked sequentially but rather every order 

will be collected simultaneously. To model this problem, we will base our objective function 

and the constraints on the works of (Vallea, Beasley, & Cunha, 2017). We are given a graph 

D=(V, A) which has a set of vertices V = Va ∪ Vo ∪ vs(starting vertex which can be outside of 

the rectilinear graph) and  a set of arc A which connect these vertices with their respective 

neighbours. From this formulation the following objective function can be given. 

min ∑ 𝑑𝑖𝑗 ∗ 𝑥𝑖𝑗

(𝑖,𝑗)∈𝐴

 

Where dij represents the distance between the vertex i and j, which is also the weight of the 

arc a ∈ A, and xij which is a binary variable that is 1 if the arc is used in a tour to collect batch 

s ∈ S and 0 otherwise. The goal of this objective function is to reduce the distance that the 

picker has to traverse through the graph to collect all of the items. 

Constraints 

The constraints used in this model will be similar to the constraints proposed by (Vallea, 

Beasley, & Cunha, 2017) with one small variation, which is that we do not consider that the 

model needs to know to which cart which order belongs. In their paper, Vallea, Beasley & 

Cunha (2017) model the problem with the approach of using a separate trolley for each order 

and that way, they represent batches in their model. Since they return all the routes at once 
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for all of the batches, however, we are simplifying our model and providing it only one batch 

at a time, which is why we do not consider the carts in our constraints. Another thing that we 

do not consider is the capacity constraints for the carts and the pickers since those are already 

considered in the batching, so we assume that the batches received already fit into the picker's 

cart. 

Graph constraints 

When forming a route there are several graph constraints that need to be considered. (1) the 

number of arcs going into vertex i ∈ V (δ-(i)) needs to equal the number of arcs going out of 

vertex i (δ+(i)). (2) the total number of arcs that are connected to vertex j and could be used 

needs to be less than or equal to the total number of arcs that are used for vertex j for every j 

that is part of the route R. These can be modelled as follows. 

∑ 𝑥𝑖𝑗

(𝑖,𝑗)∈ 𝛿+(𝑖)

=  ∑ 𝑥𝑗𝑖

(𝑗,𝑖)∈ 𝛿−(𝑖)

 

∑ 𝑔𝑗

𝑗 ∈𝑅

≥  𝑦𝑖𝑗 + ∑ 𝑥𝑗𝑘

𝑗,𝑘 ∈ 𝐴(𝑅)

  ∀𝑖 ∈ 𝑅, 𝑅 ⊆ 𝑉  {𝑣𝑠}, |𝑅| > 1 

𝑥𝑖𝑗 ∈  𝔹 ∀ (𝑖, 𝑗) ∈ 𝐴 

3.3 Conclusion 

In this chapter, the warehouse picking problem was mathematically formulated and divided 

into two smaller problems. For both problems, a set of reasonable assumptions was provided 

that made the problem constrained and easier to model. The assumptions and constraints 

formulated in this chapter will be used in the following chapter to formulate an optimal solution 

that we plan to implement and use in this thesis. This also ensures that the generated solution 

addresses the precise problem we are trying to solve for the company.  
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4 Solution and Implementation 
 

In this chapter, we discuss the solution created for this thesis. This solution consists of two 

parts corresponding to Chapter Three's problem formulations. In section 4.1, we discuss the 

batching heuristic that was selected and the reasoning behind this solution choice, after which 

we briefly explain how the solution was implemented and the structure of the code. Section 

4.2 explains how the DP solution has been developed for routing. Here is why this solution 

has been chosen and what optimisations to the initial model we made are given. In section 

4.1, we also briefly explain the implementation and structure of the code.Both solutions have 

been implemented in a programming language called Julia. While this programming language 

has not been used throughout our studies, it is a language that is rapidly gaining popularity 

among industrial engineers within the industry. It is also the company's preferred language.  

4.1 Batching Heuristic 

For our batching problem, we formulated our mathematical model like an LP, initially driving 

us towards formulating an LP model as a solution. However, the literature review in Chapter 

Two shows several downsides to using this approach, with the main one being that the 

calculation time it would take would not be realistically feasible in real life. That is why a 

heuristic approach has been chosen to solve the order batching problem. 

In their paper, Koster, Poort, & Wolters (1999) provide an excellent overview of seed and time-

saving algorithms and a methodology for selecting a heuristic based on different warehousing 

parameters. When deciding which batching heuristic to select, an important question we need 

to ask is: What size are the batches? According to Koster, Poort & Wolters (1999), if a batch 

contains no more than six or seven orders, then a time-saving algorithm performs better; 

however, if the batch contains more, then a seed algorithm is preferred. In our case, one picker 

continuously collects one batch at a time, and the picker's capacity is limited by the cart size, 

which can handle up to 6 boxes (the difference between the boxes and orders will be 

addressed in the implementation subsection). This makes our cart size an edge case small 

enough to use a time-saving algorithm.  

One downside to the batching heuristics provided in the paper by Koster, Poort & Wolters 

(1999) is that all the batching heuristics treat all orders as being equal. However, such an 

approach deviates from the reality of our problem, where the orders are sorted based on what 

time they have arrived. To relax this constraint in Chapter Three, we have decided to model 

our batching problem by forming three priority classes based on how urgently these orders 

need to be delivered. In such a model, we proposed that if the difference between the order 

arrival times is small enough, the difference in the priority can be ignored. This means that the 

orders in the same priority class could be treated equally.  

If we treat the orders within the same class equally, then the rest of the mathematical model 

explained in Chapter Three can be easily implemented. The approach used in this solution is 

almost identical to how batching was explained in Chapter Three. We would first batch as 

many orders as possible, using a time-saving heuristic, in the highest priority. Once all the 

batches have been created, we take the ones that still have space and place them into the 

second priority class, where we treat them as orders whose capacity is the sum of all the 

orders from that batch. We repeat this process in priority classes two and three. 
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4.1.1 Priority Policy 

After batching, as explained in the section above, we noticed that all the batches can be 

classified into one of the six types listed in Chapter Three. The problem with this approach is 

that while the orders have been batched together, we have yet to receive an order in which 

the batches should be collected. That is why a priority policy has been constructed to 

streamline the picking process and reduce the order delay time. The prioritization policy 

always takes the batch with the most orders from the priority set one. If both have the same 

number of orders from priority class one, then we compare the number of orders from priority 

class two. If both have the same number of orders from priority classes one and two, we will 

look at which batch has a greater size. If both batches are identical, then a random one of the 

two is selected. 

When modelling an order-batching problem with strict deadlines, finding an optimal solution 

becomes tricky. The main reason for that is that the order batching LP solutions always 

assume that there is an infinite workforce because every batch is immediately collected, and 

no waiting time occurs. However, this assumption is not realistic in real life. Since the 

workforce in a warehouse is limited, there are occasions when some orders get delayed due 

to capacity constraints, which we cannot control. That is why this batching heuristic tries to 

consolidate as many orders that are about to “expire”, and the priority policy always puts these 

orders at the front of the queue. This way, we, in theory, minimize the order delay compared 

to the company’s current order batching algorithm, which does not consider order priority. 

4.1.2 Time Savings Algorithm 

In the previous section of the batching heuristic, we provided a high-level description of the 

solution, how the batching interacts with different priority classes, and how these batches are 

ordered after they have been created. This section explains which time savings algorithm has 

been selected and how this algorithm works. 

When selecting a specific time-saving algorithm, selecting an appropriate routing heuristic is 

very important. This is because depending on the selected routing heuristic, the time saving 

will be calculated differently. There are two reasons for selecting a routing heuristic instead of 

an optimal routing algorithm: DP or LP. First, it is because, most of the time, it is enough to 

select a heuristic that approximates the time difference for time-saving. The second reason is 

that the calculation behind a routing DP or LP is usually longer than that of a heuristic. Since 

time-saving algorithms calculate a substantial number of routes for their time savings, the 

speed of route construction significantly impacts performance. 

In their paper, Koster, Poort & Wolters (1999) explain how the best time-saving algorithm to 

use if the batches contain less than six to seven orders is a variation of an algorithm created 

by Clarke & Wright (1964) and by using the S-shape8 heuristic for time savings calculations. 

We have chosen to use the S-shape heuristic due to the high item density within the 

warehouse, which, after several discussions with the company supervisor and referring to the 

literature, is the optimal heuristic to be used. In their paper, they talk about three variations of 

the Clarke & Wright algorithm: the basic variant, the recalculation of the time savings matrix, 

and the limitation of the number of batches. In this thesis and according to Koster, Poort & 

Wolters (1999), the algorithm we will use is the Clarke & Wright second variant, which we will 

 
8 S-shape heuristic – this heuristic looks at all items in a route and check in which aisle they are located it 
then constructs a route such that it goes through the entire aisle where there is at least one item to be 
collected it does so following an s shaped pattern, which is where the name comes from. Refer to the 
appendix for a graphical example. 
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explain in detail. This algorithm, which consists of five steps, is explained in a paper by Koster, 

Poort, and Wolters (1999). 

1. Calculate the time savings for all possible pairs of orders depending on the batch's 

capacity. Time savings are calculated by estimating the length of the route using the 

S-shape heuristic for each order individually and for the two orders combined in one 

route and taking the difference. 

2. Sort the time savings in a decreasing order. 

3. Find a pair with the highest time savings; if there is a tie, select one at random. 

4. Combine these two orders to form a batch if the picker's capacity allows it; if that is 

not the case, check the next two orders. 

5. If there are more orders that could be batched together, take the current batch and 

go back to step one, except this time, the batch 

 

4.1.3 Code Implementation 

Once we know how the matching algorithm works in theory, it is essential to explain how it 

was implemented in practice so the company could use it. In section 1.6, we explained how 

every order is split into boxes; this is important because when an order arrives, we receive a 

list of products. These products are defined as structs9 which contain specific fields; these 

fields contain information such as the product's name, id, volume and location within the 

warehouse. We then take this list of products and divide the order into several identical boxes. 

Since every product has a different volume, we place the products into a box until the sum of 

the products placed in a box does not exceed the box's volume.  

However, this still posed a problem of what items to place in which box, which presented us 

with a standard knapsack problem. To solve this problem, a greedy seeding algorithm has 

been implemented to sort the items based on their proximity and place as many orders as 

possible into one box. This way, each box will have its items in one proximity cluster, reducing 

the route length for each box. Within the code, these boxes are treated as structs that contain 

the box ID, order ID, from which the items are, and a list of products placed in that box. 

 
9 Struct – is a data type in Julia that behaves in a similar way as an object in an object-oriented 
programming (OOP) language with the main difference being that struct cannot have methods that are 
assigned to them, since Juila is not an OOP language. 
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Once all orders have been sorted 

into priority classes, we then divide 

these orders in their priority 

classes into a list of boxes, each 

belonging to their respective 

priority class. The remaining logic 

of the solution is the same as 

described in the previous sub-

sections of 4.1, where instead of 

batching orders, we are batching 

boxes, which are only partial 

orders. Since every cart in the 

warehouse can carry up to six 

boxes, the code will output a list of 

structs called batches, which will 

contain a list of boxes that belong 

to that batch.  

To ensure that the code is correctly 

running, a list of unit tests has been 

provided to ensure correct 

behaviour, as well as one final unit 

test that tests the entire batching 

with an example and a 

precalculated outcome to verify the 

validity of the code. 

 

4.2 Routing Dynamic Programme 

Once we have consolidated the orders into batches and provided an order for which these 

batches have to be collected, the next step is to construct routes for each. In Chapter Three, 

we explained how the layout of the company warehouse is rectangular, and in Chapter Two, 

we looked at several approaches that we could take to solve the picker routing problem. Route 

construction is a critical part of warehousing operations. It also has the most direct impact on 

the order throughput rate, which is why an approach providing an optimal solution has been 

chosen. 

When a picker receives a batch, that batch contains a list of products that must be collected; 

however, in Chapter Three, we propose that not every product has a unique location. This is 

why, for the picker routing problem, we must look at the list of locations a batch contains and 

find the shortest route to visit all these locations. The first ever DP approach that has shown 

how to solve a picker routing problem in polynomial time was created by Ratliff & Rosenthal 

(1982); however, in the DP model, they only consider a single-block warehouse, which differs 

from the warehouse that the company currently has. Almost two decades later, an extension 

of their algorithm has been made by Roodbergen & Koster (2001); in their extension, they 

have used the logic of Ratliff’s and Rosenthal’s algorithm but have extended it to a two-block 

warehouse. Since the warehouse layout in their paper is like that of the company, the solution 

generated here has been inspired by their work. 

Figure 6: Batching algorithm flowchart 
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4.2.1 Graph Theory Concepts Relevant to Routing Algorithms 

The original DP model created by Ratliff & Rosenthal provided several mathematical proofs 

as to why their solution is a global optimum. While we will not cover these proofs in this thesis, 

we must cover some of the terminology related to their work to understand better how their 

algorithm works. Since their algorithm is the basis of the paper written by Roodbergen & Koster 

(2001), the definitions and concepts extend to their paper, from which our solution was 

inspired. 

As mentioned in Chapter Three, this problem could be seen as a travelling salesman problem 

at first glance; however, there is one key difference between the two. In a travelling salesman 

problem, the goal is to find the shortest Hamiltonian cycle10; however, in the picker routing 

problem, that is not the case; in our graph, there is a set of vertices allowed to be visited 

multiple times which makes our solution a normal graph cycle. This relaxation of the constraint 

makes this variation of the travelling salesman problem solvable in polynomial time. 

Each time we connect a set of vertices within this DP model, we need a way to record this 

connection. A method of representing a section of a rectilinear graph is with equivalence 

classes. These classes consist of two or three types of data; the first type tells us if there is 0, 

E (even) or U (uneven) number of arcs connected to a single vertex. The second type of data 

tells us if the graph consists of 0,1, 2 or more components. When we have a subset of vertices 

that are part of a graph that is not yet connected, the number of sub-graphs in that subset of 

vertices is defined as several components. The third and final type of data exists only if the 

number of blocks in a warehouse is greater than one tells us in which block the components 

are located. 

Figure 7 shows a simplified example of a rectilinear sub-graph that connects only two aisles 

together in a single block warehouse. When constructing equivalence classes, we only focus 

on the number of arcs connected to the vertices representing the end of an aisle (big circles) 

and the total number of existing components. In our example, since we have only one block, 

the third data type telling us where the two components are located is unnecessary. The 

equivalence class in this example would consist of three parts: equivalency of arcs in the upper 

end of a single aisle, equivalency of arcs in the lower end of a single aisle and the number of 

components a graph has. When forming an equivalence class, we always only focus on one 

specific aisle at a time. 

 

Figure 7: Simple rectilinear graph representation. 

 
10 Hamiltonian cycle – “Given a graph, find a cycle that passes through every single vertex exactly once…” 
(Borkar, Ejov, Filar, & Nguyen, 2012)(p. vii) 
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An equivalence class can differ depending on which section of a graph we are currently looking 

at. For example, in Figure 7, if we focus only on aisle one and ignore the rest of the sub-graph, 

we will define this equivalence as (E, E, 2C). This means that an even number of arcs are 

connected to the top and bottom nodes of the aisle and that it consists of 2 components. If we 

now look at aisle 2, the equivalence class would then be (U, U,1C); since the number of arcs 

for both the top and the bottom end of aisle two has three arcs, they are therefore uneven, 

and the total number of components is now one. 

 

4.2.2 Stages, States and State Transitions 

Stages 

Now that we have a better understanding of certain graph theory concepts, we can use these 

concepts to understand better the stages of our dynamic programme, what possible states 

exist, and how we can transition from these states. As a reference, we will use an example of 

a small warehouse, as shown in Figure 8, that consists of two blocks and three cross aisles. 

 

Figure 8: Simple undirected warehouse graph 

In every dynamic programme,, there is a set of stages at which we have to make certain 

decisions. These decisions then define what states are possible in future stages. In Figure 8, 

we can see that red ellipses define the stages of our dynamic program. The order of the stages 

also shows the order in which the route is constructed. In their paper, Roodbergen & Koster 

(2001) provide a name for and notation for the different types of stages and how they are then 

connected.  A final route in a graph is defined as a tour subgraph T. When constructing a route; 

we add each subgraph created in a stage j to the tour subgraph T. Roodbergen & Koster 

(2001) provide three different notations for the stages based on which part of the graph the 

algorithm is currently at. Lj
- is defined as a subgraph consisting of all the edges left of aisle j 

and aj, bj, cj. Let Lj
+y be defined as the Lj

- ∪ Yj where Yj is defined as a graph containing all the 

edges and vertices between aj and bj. Lastly let Lj
+x be defined as Lj

+y ∪ Xj, where Xj is defined 

as a graph containing all the edges and vertices between bj and cj. To connect this to our 

example, if we wanted to define stage one using the mathematical notation of Roodbergen & 

Koster it would be L1
+y, stage two would be L1

+x, stage three L2
- and so on. 
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States 

To keep track of the current state of the graph at a given stages, we need to use equivalence 

classes. These equivalence classes will allow us to know the current state of a given aisle at 

that stage. Unlike the example of the equivalence class given in section 4.2.1, this equivalence 

class needs to contain more information. Firstly, there we need to store equivalency 

information of three vertices, aj, bj and cj. Secondly, we need to store the number of 

components that the graph currently contains. Third, since this is a two-block warehouse, 

when the number of the given components is two, we need to know which two of the vertices 

are in one component and which one is on its own. There are three possible combinations for 

when the number of components is two: a-bc, c-ab, and b-ac. In their paper, Roodbergen & 

Koster (2001) defined 25 unique equivalence classes, representing all the possible states a 

graph can have at a given stage. However, not every equivalence class that contains two 

components tells us how the vertices are distributed between the two. That is because, for 

every combination of equivalency except E, E, E, it is possible to deduce how the vertices are 

distributed. Therefore, the third information will be provided only for the equivalence classes 

that contain E, E, and and E and have two components. For the proofs, we refer to the paper. 

State transitions 

Two types of state transitions depend on the stage that we are transitioning to, and for every 

transition, there is a cost that is equivalent to the additional length that is added to the route. 

If we are transitioning to a vertical stage (Lj
+y or Lj

+x) then we have six possible choices. Ratliff 

and Rosenthal (1982) originally defined these six choices in the paper, which contains 

extensive proof of how those six options were defined. If the next stage is a horizontal stage 

(Lj
-) we have fourteen different choices. Since the number of possible horizontal choices 

depends on the number of cross-aisles in a warehouse, the possible number of choices was 

initially less than fourteen in the paper from Ratliff and Rosenthal (1982) but had to be 

extended to fourteen by Roodbergen & Koster (2001). 

Vertical configurations 

 

Figure 9: 6 possible vertical configurations (Roodbergen & Koster, 2001) 

If we are transitioning from stage Lj
+y to Lj

+x or from Lj
- to Lj

+y we must select one of these six 

options. However, four constraints need to be considered when considering the possible 

states. Firstly, configuration 6 is only possible if no items are to be collected in that specific 

sub-aisle. Secondly, if the number of items is less than two, configuration five cannot be 

selected since configuration five looks for the largest gap between the two item vertices. Since 

this is a discrete Markov Decision Process, the number of possible states and configurations 

that can be selected depending on the graph's current state brings us to our third and fourth 

assumptions. Depending on what stage we are in, there are two different tables, and 

depending on the current state, a list of possible configurations and the following states are 
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given. We refer to the appendix for these tables and to the paper of Roodbergen & Koster 

(2001) for further proof of these constraints. 

Horizontal configurations 

 

Figure 10: possible horizontal configurations (Roodbergen & Koster, 2001) 

In the case that we are transitioning from stage Lj
+x to L-, there are fourteen possible 

configurations, as shown in Figure 10. It is important to note that configuration 14 is possible 

if no items are to be collected right of aisle j. For the other possible configurations, like the 

vertical stages, there is a table that, depending on the previous state, provides a list of all 

possible configurations and future states. We refer to the appendix for the table of all possible 

state transitions. 

4.2.3 Further Optimization of the Dynamic Programme 

In this thesis, an improvement to the algorithm proposed by Roodbergen & Koster (2001) has 

been made to reduce the calculation time and complexity. Within this DP algorithm, the goal 

is at every stage to reach ideally all 25 states from the list of current possible states while 

removing the duplicates by selecting the cheapest of the two. However, it is not always 

possible to reach all 25 states. For example, in stage one, we start from the state (0,0,0,0). 

Since there is only one current state at stage one, we can have at most five options from the 

five configurations, assuming the sub-aisle is full. From this approach, we are trying to 

generate as many unique states as possible at every stage since they cover more possibilities. 

In this thesis, we propose that there is a specific case where exploring certain configurations 

will never lead to an optimal solution and could, therefore, be excluded. 

Picture a simple three aisle single block section of the warehouse as shown in Figure 11. In 

this warehouse section, there are three aisles with items located in aisle one and three. If we 

followed the algorithm from Ratliff & Rosenthal (1982) in stage one, we would find that there 

is a total of five possible configurations to be chosen, which leads us to five possible states; 

in stage two, we would have four possible options according to Ratliff & Rosenthal (1982) 

paper where they present five horizontal configurations to select from.  
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Figure 11: Example of a single block warehouse 

This leads us to stage three, where, since no items are to be collected from that aisle, we have 

three possible configurations to choose from. Configurations 1, 2, and 6 are the same as 

configuration 2, and configuration 5 is not possible since the number of items is less than two. 

However, in such a scenario, selecting configurations one or two will never lead to an optimal 

solution. 

Proof 

In stage 1, we could select five configurations which lead to 5 possible states, which are (U, 

U, 1C), (E, E, 1C), (E, 0, 1C), (0, E, 1C), (E, E, 2C). In stage two, when selecting horizontal 

configurations, we must consider all the previous five as possible current states. After trying 

all the possible configurations on all possible states and removing the duplicates, we get the 

following possible states at stage two: (U, U, 1C), (E, 0, 1C), (E, E, 2C), (0, E, 1C), (E, E, 1C). 

Once we reach stage three, since there are no items to be collected on each of these five 

possible states from stage two, configuration six can be used, and since no arcs are created, 

the total cost of this configuration is zero. This means it is only optimal to use configuration 1 

or 2 in stage three if they generate a new state. If we look at Table 2 from Ratlif and Rosenthal 

(1982), we will see that they will never generate a new state; therefore, configuration 1 or 2 

will never be optimal because the same states can be achieved with zero costs. 

This will be true for any arbitrary empty aisle in a single-block warehouse. To extend this proof 

further for the two-block warehouse, it can be shown that for any arbitrary sub-aisle, it is 

possible to achieve the same number of unique states by using just configuration six if no 

items are collected in that sub-aisle. The logic of the proof would be the same, except that 

there would be more possible states for which the proof should cover. 

. 

4.2.4 Numerical Example 

To show how this algorithm works in practice, a numerical example has been provided that 

shows stage-by-stage results for further understanding. In this numerical example, we will take 

the graph from Figure 8 and turn it into an undirected weighted graph, where the weights 

represent the distances between the vertices, as can be seen in Figure 12. 
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Figure 12: Weighted undirected warehouse graph 

Using the information from this graph, we will create three tables that show the algorithm's 

stage-by-stage results. The tables will contain information about which state we started, what 

configuration was used, what the next state is, and what the current cost is.  

Stage 1 Stage 2 

From 
state 

Config. Next 
state 

Cost From 
state 

Config. Next 
state 

Cost 

(0,0,0,0) 1 (0,U,U,1) 10 (0,U,U,1) 6 (0,U,U,1) 10 

(0,0,0,0) 2 (0,E,E,1) 20 (0,E,E,1) 6 (0,E,E,1) 20 

(0,0,0,0) 3 (0,E,0,1) 14 (0,E,0,1) 6 (0,E,0,1) 14 

(0,0,0,0) 4 (0,0,E,1) 14 (0,0,E,1) 6 (0,0,E,1) 14 

(0,0,0,0) 5 (0,E,E,2) 12 (0,E,E,2) 6 (0,E,E,2) 12 
Table 1: Numerical example solutions pt. 1 

Stage 3 Stage 4 

From 
state 

Config. Next 
state 

Cost From 
state 

Config. Next 
state 

Cost 

(0,U,U,1) 3 (0,U,U,1) 14 (0,U,U,1) 1 (0,E,E,1) 24 

(0,E,E,1) 12 (0,E,E,1) 28 (0,E,0,1) 1 (0,U,U,1) 28 

(0,E,0,1) 5 (0,E,0,1) 18 (0,E,0,1) 3 (0,E,0,1) 33 

(0,0,E,1) 6 (0,0,E,1) 18 (0,E,0,1) 4 (0,E,E,2) 33 

(0,E,E,2) 12 (0,E,E,2) 20 (0,0,E,1) 4 (0,0,E,1) 33 
Table 2: Numerical example solutions pt. 2 

Stage 5 Stage 6,7,8 

From 
state 

Config. Next state Cost From state Config. 
6 | 7,8 

Next 
state 

Cost 

(0,E,E,1) 1 (U,U,E,1) 34 (U,U,E,1) 14 | 6 (0,0,0,1) 34 

(0,E,E,1) 2 (E,E,E,1) 44 (E,E,E,1) 14 | 6 (0,0,0,1) 44 

(0,E,E,1) 3 (E,E,E,2,a-
bc) 

36 (E,E,E,2,a-
bc) 

14 | 6 (0,0,0,2) 36 

(0,E,E,1) 4 (0,E,E,1) 32 (0,E,E,1) 14 | 6 (0,0,0,1) 32 

(0,U,U,1) 1 (U,E,U,1) 38 (U,E,U,1) 14 | 6 (0,0,0,1) 38 

(0,U,U,1) 2 (E,U,U,1) 48 (E,U,U,1) 14 | 6 (0,0,0,1) 48 
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(0,U,U,1) 3 (E,U,U,2) 40 (E,U,U,2) 14 | 6 (0,0,0,2) 40 

(0,U,U,1) 4 (0,U,U,1) 36 (0,U,U,1) 14 | 6 (0,0,0,1) 36 

(0,E,0,1) 1 (U,U,0,1) 43 (U,U,0,1) 14 | 6 (0,0,0,1) 43 

(0,E,0,1) 2 (E,E,0,1) 53 (E,E,0,1) 14 | 6 (0,0,0,1) 53 

(0,E,0,1) 3 (E,E,0,2) 45 (E,E,0,2) 14 | 6 (0,0,0,2) 45 

(0,E,0,1) 4 (0,E,0,1) 41 (0,E,0,1) 14 | 6 (0,0,0,1) 41 

(0,E,E,2) 1 (U,U,E,2) 43 (U,U,E,2) 14 | 6 (0,0,0,1) 43 

(0,E,E,2) 2 (E,E,E,2,c-
ab) 

53 (E,E,E,2,c-
ab) 

14 | 6 (0,0,0,2) 53 

(0,E,E,2) 3 (E,E,E,3) 45 (E,E,E,3) 14 | 6 (0,0,0,3) 45 

(0,E,E,2) 4 (0,E,E,2) 41 (0,E,E,2) 14 | 6 (0,0,0,2) 41 

(0,0,E,1) 3 (E,0,E,2) 45 (E,0,E,2) 14 | 6 (0,0,0,2) 45 
Table 3: Numerical example solutions pt. 3 

These tables show the results of all the unique classes that could be generated at each stage 

and the associated cost. Since there are no items to be collected in the last aisle after we have 

constructed stage five, it is unnecessary to continue constructing the route since there is no 

need to traverse the remaining aisles. Nevertheless, the results for stages six, seven and eight 

were provided for mathematical completeness of the solution for stage 6. We would have 

selected configuration 14, which would make the next state always the same since stages 

seven and eight would use configuration six, which does not change the previous state nor 

add additional costs. 

In stage five, several solutions are marked red. Since stage 5 was the last stage where 

additional arcs would be added to a graph, any solution whose sub-graph contained more than 

one component could not be turned into a cycle, therefore not making it a valid solution. Once 

all the possible and infeasible solutions have been filtered, the subgraph with the lowest cost 

is selected and traced back through previous stages. The optimal solution for this example is 

marked in bold at each stage. Once we know which configuration to select at each stage, an 

optimal route can be constructed, as seen in Figure 13. 

 

Figure 13: Optimal route solution 



32 
 

4.2.5 Code Implementation 

Before explaining how this algorithm has been implemented into code, it is important to 

understand which data structures have been selected and how the data has been organized. 

A location matrix has been created to store the graph data, such as each item's distances and 

locations. The reason behind selecting a matrix to store data rather than a graph is that sorting 

and accessing the data in a matrix is much faster than in a graph and requires fewer overhead 

costs. Each item location was stored as a tuple that contained three number aisles, sub aisle 

(1 for bottom and 2 for top) and the distance from the bottom end of that sub aisle. Once the 

algorithm receives a batch, it gathers the list of all the locations from a batch and sorts them 

into the location matrix, where columns represent the aisle, and rows represent sub-aisles. 

Each element of the matrix would contain a list of distances from the bottom end of that sub-

aisle that the picker would need to visit. 

Another critical decision was to select how the state transition tables would be stored to have 

quick access to the possible states and configurations. For these tables, three dictionaries 

were created with respect to the tables, where the key was the current state, and the value 

was a list where the index would be the configuration and the element of that index would be 

the next state. The reason behind selecting the dictionary as a data structure was because, in 

Julia, depending on the type of data and the amount of data, the dictionary will select an 

optimal low-level data structure optimized for quick access.  

Once the data has been sorted into a 

location matrix, an algorithm will calculate all 

possible combinations of states at each 

stage, remove the duplicates, and store the 

results of that stage in a matrix. The solution 

matrix consists of states with four fields: 

length, which represents the cost; previous 

class, configuration, and the current class. 

The solutions of each stage are placed in 

one column of a matrix, which has a 

dimension of 25 by the number of stages. 

Once generated, the algorithm returns the 

solution matrix from which the route can be 

constructed. 

 

 

4.3 Conclusion 

In this chapter, we have discussed two solutions created for this thesis and the mathematical 

background necessary for a deeper understanding of both. Aside from the background of how 

they were created, we also showed how the routing algorithm could be improved to reduce 

the necessary calculation resources. A high-level explanation of the code and key design 

decisions has been provided, providing insight into both solutions' implementation. Using the 

solutions developed in this chapter, we plan to compare the solution created here with the one 

the company currently uses and do a performance analysis where we discuss the differences 

between the two in terms of the KPIs selected in Chapter One.  

Figure 14: Routing algorithm flowchart 
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5 Performance analysis 
This chapter discusses the performance of the company algorithms and the algorithms 

developed in this thesis. The algorithm's performance will be based on some KPIs selected in 

chapter one. The chapter consists of three main sections. 5.1 discusses the setup necessary 

for comparing the algorithms and explains how the company algorithms have been 

implemented. Section 5.2 will discuss the results of the analysis, what variables were changed, 

and how they affect the performance of the algorithms. Section 5.3 discusses the analysis's 

conclusions and the results' validity. 

5.1 Experimental Setup 

We have created a simulation environment to conduct the performance analysis between the 

routing dynamic program and the batching heuristic developed in this thesis against the 

company routing and batching heuristics. The simulation environment that we have created 

can be modified based on several input parameters that we change throughout our 

experiments. The first step in constructing a simulation environment is creating the warehouse. 

For the construction of the warehouse, the rectilinear layout assumed in Chapter Three is 

used. In each experiment, the number of aisles can be changed, thus changing the size of the 

warehouse; the number of cross aisles remains constant at three.  

As the number of aisles increases, the number of products increases linearly. This means that 

for our experiments, every new aisle added increases the number of products by a fixed 

amount. These products are then evenly distributed amongst the aisles. This behavior was 

based on observing the company warehouse in Munster, where the number of products 

remains roughly the same in each aisle.  

When it comes to the total number of products that a warehouse has, we conducted several 

iterations of the simulations where we kept all of the variables constant except the number of 

products. We noticed that the larger the number of products, the more consistent the 

simulation outputs become. The main reasoning behind this is that as routes are being 

constructed, the more locations we have, the larger the dataset of possible scenarios covered; 

thus, when measuring the distances of the routes, the average distances seem to converge 

better. This number was around 1000 products per aisle. 

After the warehouse has been defined with the number of aisles and the number of products, 

the next step is to simulate the arrival of orders. This step is crucial since the arrival of orders 

affects how the batching algorithms will perform and, therefore, will also affect the length of 

the routes. When it comes to generating the orders to compare the batching and routing 

algorithms performance, we have decided to look at the warehouse from a static point rather 

than a dynamic one. What we mean by static is that we generate a set of orders containing a 

list of products, an ID of an order, and the time to delivery; this time to delivery is between 1 

and 120 minutes. The reasoning is that at any point in the warehouse, the newest order can 

last at most 120 minutes until delivery. This simulation approach is called static because all of 

the orders are generated at the beginning, and we know from the start which order has to be 

delivered and where, which could be perceived as if we took one moment in the warehouse 

in the day, froze it, and tried to solve it using different algorithms. The reason behind choosing 

this approach over the dynamic simulation is that to simulate the dynamic scenario; we would 

have to implement time steps where we "freeze" the warehouse situation every n minutes, 

solve it using batching and routing algorithms, and then, in the next time step we update the 

order set with the new orders that have arrived and remove the ones that have been fulfilled. 

This would essentially be running the static simulation many times over. 
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Lastly, once the simulation environment is set up and the orders are generated, the next step 

is to select the batching and routing algorithms. In our case, we can choose between batching 

and routing. For batching, we have the time-saving heuristic created in this thesis and the 

company batching heuristic; as for the routing, we can choose between the dynamic 

programming algorithm and the company routing heuristic. The remainder of this section 

explains both company algorithms in more detail. 

 

5.1.1 Batching 

As explained in Chapter One, the batching 

algorithm utilizes the FIFO policy. This means 

that when implementing this algorithm, we first 

had to divide every order into a box; for the 

division of order into boxes, a seed algorithm 

explained in section 4.1.3 was reused to place 

items across different boxes. Since every box 

belongs to exactly one order, each box will 

have a deadline that represents the deadline 

for one order. Once a list of boxes has been 

created, the oldest box in the list will be 

selected as a seed. To select the boxes that 

will be selected for this batch, a centre of 

gravity heuristic11(COG) is used. Once a list of 

batches is made, they are fulfilled in the order 

they were created. 

 
11 Centre of gravity heuristic – in their paper Koster, Poort & Wolters (1999) explain that this is a heuristic 
algorithm used in batching seed algorithms that calculates the gravity of the ever order, which is the 
average aisle of all the locations in an order, and then looks for the centre of gravity closest to the one of 
the seed order and repeats this until the capacity of the batch is fulfilled. 

Figure 15: Company batching algorithm flowchart 
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5.1.2 Routing 

Once the batches are created, they are sent to 

the routing algorithm to construct the routes. 

As explained in Chapter One, when the routing 

algorithm receives a batch, the algorithm will 

extract a list of locations from one of the boxes 

and create a route using the nearest neighbour 

heuristic. During the route construction, the 

nearest neighbour heuristic works by 

calculating the shortest distance from the 

current location to the location of every other 

product. When all the distances have been 

calculated, the shortest one is selected, and 

the new current location is the product's 

location to which it was selected. This product 

is then removed from the list of locations to be 

visited, and the process continues until no 

locations are visited. Once all the items that 

belong to the first box have been collected, a 

new route is constructed for the following box 

from the last location of the picker. This 

process is repeated until the last box has been 

collected.  

5.2 Comparative Analysis 

With the experiment setup described in the previous section, a comparative analysis can be 

performed where we take the two batching and two routing algorithms and see how they 

perform in various situations that will be simulated. This analysis can be divided into two main 

approaches: individual performance and combined performance. In the individual 

performance, we first batch the orders using the thesis algorithm and then create routes for 

these batches using the routing algorithm created in this thesis. Then we do the same, except 

that, in this case, we use the batching and routing algorithm that the company currently uses. 

This way, we compare the performance of the entire warehouse using two different solutions.  

However, because two algorithms are used simultaneously, this could impact the validity of 

the analysis since it could be possible that only one of the two algorithms could be bad and 

would, therefore, hinder the performance of the other. That is why a second approach is 

necessary, where we combine the company's batching algorithm with the thesis's routing 

algorithm and the thesis's batching algorithm with the company's routing algorithm. By 

analysing the results of the individual and the combined approach, we can then have a more 

detailed overview of the algorithms and their performance. 

In this comparative analysis, the batching and routing algorithms are only two of many 

variables that can be changed. That is why we will also look at how these algorithms behave 

as the warehouse size increases and the number of products in the warehouse increases. 

This way, we can see how the scale affects the performance of the algorithm and at what rate 

the route length increases. 

Figure 16: Company routing algorithm flowchart 
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5.2.1 Individual Performance 

This section compares the performance of doing batching and routing using the company 

algorithms against the batching and routing using the algorithms developed in this thesis. To 

compare the two algorithms, we have decided to simulate how the algorithms behave as the 

number of aisles and products in those aisles increases. We start with ten aisles and 10,000 

locations in a warehouse; the reason for such a high number of locations is that it provides us 

with a larger set of possible scenarios, thus making the results more statistically significant. 

We then increment the number of aisles by 10 for each run and the number of locations by 

10,000 until we reach 100 aisles. The reason for increasing the number of locations linearly 

with the number of aisles is that it is logical to assume that as the size of the warehouse 

increases, so does the number of locations. For the number of orders, we have extrapolated 

from the company data that the number of orders a warehouse receives in a day is 

approximately around 1000. This would represent the total number of orders in one day in a 

warehouse, which is constant throughout all the iterations. The main reasoning behind this 

decision was that if the number of orders were different for every run, the sample size would 

be different, which could impact the validity of the results. 

 

Figure 17: Average length of a route for the individual performance 

In Figure 14, we can see one of the KPIs from Chapter One, the average length of a single 

batch, in meters, for the two combinations mentioned above. This graph shows that the overall 

performance of the batching and routing algorithms developed in this thesis outperforms the 

current company solution in the length of a route by 67.5%. Aside from reducing individual 

routes, this graph also shows how much more scalable the thesis solution is by observing the 

rate at which the route lengths increase as the size of the warehouse increases. While both 

solutions have linear growth, the company solution has a much higher coefficient than the 

thesis solution. 
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Figure 18: Average time of a route for the individual performance 

Aside from just comparing the length of a route, we have also decided to calculate the average 

time it takes to traverse a route generated by both solutions. Since we do not have the average 

walking speed of a warehouse worker, we decided to take the average walking speed of an 

ordinary person, which is 1.31 meters per second (Murtagh, Mair, Aguiar, Tudor-Locke, & 

Murphy, 2021) and use that as an estimation for the time it would take to traverse the route. It 

is important to note that this was a rather conservative route estimation since we do not know 

how long it takes to place the items into a box and unload them at the depot. Nevertheless, a 

pattern similar to the one observed in the average route length can be seen. 

5.2.2 Combined Performance 

After doing the individual analysis to improve the validity of our results, simulations using a 

mix of company and thesis solutions have been conducted where we combine the company 

batching algorithm with the thesis routing algorithm and the thesis batching algorithm with the 

company routing algorithm to see the performance. The remaining setup of the experiment 

variables has remained the same as in the analysis of the performance of the individual 

solutions. The reason is to keep the simulation environment for the algorithms the same so 

that nothing except the algorithms themselves affects the performance. 

 

Figure 19: Average length of a route for the combined performance 
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Figure 16 shows that combining the company batching we conducted algorithm with the thesis 

outperforms the thesis batching, combining routing algorithm. The overall difference in 

average length between the two is 60.12%. From this observation, we can conclude that the 

routing plays a significant role in the performance of the warehouse, and the length of the 

route’s pickers must traverse. 

 

Figure 20: Average time of a route for the combined performance 

For the average time it takes to traverse a route, an identical trend can be observed as in the 

average length of a route. It is important to note again that the estimation here is also 

conservative due to the same reasons as mentioned in the individual performance. 

5.3 Conclusion 

After comparing the individual solutions and the combinations of company solutions with the 

solutions created in this thesis, we can make several conclusions. 

 

Figure 21: Comparison of the average route length for all four scenarios 

From Figure 18, the thesis solution had the best-performing algorithms, closely followed by 

the combination of company batching and thesis routing algorithm. This leads us to conclude 

that batching is important and can play a significant role, as seen when looking at the 

performance of the company solution and the combination of thesis batching and company 

routing. What makes the difference is the routing, which best utilises all the batching and 

zoning opportunities that those algorithms create. This is also confirmed in Figure 18, where 

the route length drastically drops if a thesis routing algorithm is used. 
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Through this chapter, we have generated our data, created a simulation environment, and 

performed multiple experiments with different routing and batching algorithm combinations. 

Concern about the validity of such an approach could be raised since the generated data and 

the simulation environment created is not real-world data. However, when comparing the 

performance of algorithms, real data is optional for a reliable analysis to be concluded. Firstly, 

all the data, while artificial, has been inspired by the real-world data and information obtained 

by the company. Secondly, the layout of the warehouse and the way that the locations are 

stored is based on the real-life warehouses that the company uses. Lastly, when comparing 

two solutions, we mainly compare how efficient the routes created are. While real-world data 

would provide more accurate route lengths, the actual performance of the algorithms is scalar, 

as in, if the routes created by the DP are 67.5% shorter than the one made by the company 

heuristic, then even if the routes were shorter or longer, the percentage difference should stay 

roughly the same. This makes the conclusions in this chapter still valid even if the values differ 

from reality. 

  



40 
 

6 Conclusion and Future Improvements 
In this chapter, we discuss the concluding remarks of this thesis and the future improvements 

that could be implemented in the company. Section 6.1 answers the main research question 

and sub-research questions, providing a clear summary of the research and discoveries found 

in this thesis and an explanation of how the company can benefit from this work. In section 

6.2, a list of future improvements to the solutions developed in this thesis and further 

improvements that could be made to the warehousing operations are also discussed.  

6.1 Conclusion 

At the beginning of this thesis, we were provided with a problem from the company: the order 

throughput rate at its warehouses was lower than desired. Through an extensive analysis of 

the company, we have narrowed down the problem to the warehouse picking process, from 

which our main research question has revealed itself:  How to reduce average order picking 

time in the warehouse picking process of Flaschenpost? However, this question is rather 

complicated to answer on its own. That is why a list of sub-questions has been created to 

provide a more structured approach to the answer. The remaining part of this section will 

answer each research sub-questions, except question six, which will be answered in section 

6.2. 

Research question 1: What are the current methods and models being used in the company 

for the picking process? 

The warehouse picking process can be looked at from three different aspects: the design of 

the warehouse, the batching and the zoning within a warehouse and the picker routing 

problem. For the company, redesigning a new warehouse storage assignment was too 

expensive to implement, which is why the dedicated storage approach that the company 

currently uses is considered good enough. This leaves us with batching and routing 

algorithms. These two aspects are the ones that impact warehousing operations the most and 

are the parts that we have decided to focus on the most within this thesis. The batching 

algorithm that the company uses is a greedy seed algorithm, where for the seed selection, 

they use the FIFO policy, and for finding boxes that will be added to their batch, they use the 

centre of gravity heuristics to find the orders that are closest to the seed order. Once the orders 

have been batched, the routing algorithm then proceeds to formulate routes for each box in 

that batch individually using a nearest neighbour heuristic. Using the algorithms mentioned 

here creates sub-optimal batches and routes that lead to longer picking times and, therefore, 

a lower order throughput rate. 

Research question 2: What models and heuristics currently exist that deal with the warehouse 

picking problem? 

To answer this research sub-question, we have conducted a literature review from which a 

theoretical framework, explained in Chapter Two, has been created. The literature review 

overview written by Koster, De-Luc, & Roodbergen (2006) provides a list of possible solutions, 

a detailed analysis of each approach, and the papers provide further information about the 

approaches. From there, we can distinguish three different approaches for batching and 

routing. For the order batching problem, the three solutions that exist are the LP approach, 

the machine learning approach, and the heuristic approach. Finally, for the picker routing 

problems, the three main approaches that exist are the LP, DP, and a heuristic approach. 

There are benefits and drawbacks to each of these approaches, for which a detailed analysis 

has been provided in Chapter Two of this thesis. 
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Research question 3: Which KPIs are relevant for the improvement of Flaschenpost's order-

picking efficiency? 

To measure the quality of the solutions created in this thesis, we measured the average length 

of a single batch route and the average time it takes to traverse it. These two were selected 

as the main KPIs used to measure the performance of the company algorithms and the 

algorithms created in this thesis. Apart from the two KPIs we have come up with four additional 

ones that, due to confidentiality or technical reasons, we could not measure but could be 

helpful to the company should they choose to implement the solution created in this thesis in 

their warehousing operations. The four additional KPIs are order throughput rate, average 

backorder rate, total time spent in order fulfilment and order delay time; the reasoning behind 

the selection of these KPIs and what insights they provide is explained in Chapter One.  

Research question 4: How can these algorithms that exist be modified such that they are 

applicable to our picking process? 

Once we identified the problem, answered Research Question 1, found the list of possible 

solutions, and showed it in Research Question 2, the next step was to define the problem 

mathematically and select the best approach for this thesis. In Chapter Three, a detailed 

mathematical problem formulation is provided, which is then used to filter out the solution 

approaches that were found in Chapter Two. In this thesis, for the order batching problem, a 

time-saving heuristic was selected for the batching algorithm by Koster, Poort & Wolters 

(1999), and a prioritisation policy was created to account for the order deadlines. As for the 

picker routing problem, a DP algorithm by Roodbergen & Koster (2001) was selected and 

further optimised for faster calculations, as explained in Chapter Four. Once selected, these 

algorithms were implemented in Julia, which could later be used in the company's analysis. 

Research question 5: How to evaluate the mathematical models and heuristics and its impact 

on the Flaschenpost' s warehouse picking process? 

Several more components had to be added to compare the performance of the solution 

created in this thesis with that of the company. We had to gather data to get some KPIs we 

found in Research Question 3. Since we could not get the data or the algorithms from the 

company, for this thesis, the algorithms had to be recreated, and the company data had to be 

generated. The company algorithms were used as a benchmark algorithm for our performance 

analysis, and the generated data was used as a simulation environment for the algorithms. To 

create these experiments, a simulation had to be built to generate orders for products and 

warehouses, and the routing algorithms would then construct their routes. We refer to Chapter 

Five for a more detailed explanation of how the experiments were set up and how the data 

was generated. 

6.1.1 Contribution of the Thesis 

Throughout this thesis, we have located the exact problem in the company warehouse, 

identified a list of possible solutions, selected the best one, implemented it, provided a detailed 

performance analysis of the solution, and answered all the research sub questions. However, 

in this subsection, we explain what contributions this thesis has generated for the company 

and how they can benefit from these results. 

When comparing the routing and the batching solution generated in this thesis against the 

heuristic algorithm that the company has used so far, the analysis tells us that the thesis 

solution creates 67.5% shorter routes than the current company solution. For the company, 

this means that by implementing this solution, they gain two main things: a higher-order 

throughput rate, which is what we have defined as the action problem of the company and an 
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increase in the capacity of their warehouses. Alongside the algorithm, the company can use 

the information in this thesis and the code documentation to make a list of future improvements 

to optimize their warehousing operations even further. 

6.2 Future Improvements 

In this section, we discuss the next steps that the company should take to use the solutions 

from this thesis, how the solutions can be improved further, and what additional steps the 

company can take to improve their warehousing operations even further. These improvements 

are based on the literature used in this thesis and the experience and knowledge obtained by 

doing this thesis. 

If the company wanted to implement this solution into their software, the first step would be to 

clean and organise the warehouse data. Since the company has over thirty warehouses, it 

would need to get the layout of each warehouse and the locations of all the products in every 

warehouse. The location of each product should be stored as a tuple containing the aisle, sub 

aisle and the distance from the lower end of the sub aisle. Aside from this, each product should 

be treated as an object with a unique ID and volume. The remaining information, such as the 

capacity of each box and the workers' speed, should also be estimated. Once we have all this 

data, we must implement batching and a routing algorithm. Since the orders arrive through 

the day, this poses a problem of creating optimal batches with the orders currently in the 

warehouse. However, the solutions generated quickly become obsolete as new orders arrive. 

To solve this problem, we recommend that the day be split into small time intervals and that 

new batches be created each time interval; this way, new batches will be recalculated more 

often, thus keeping the batches up to date. As for the routing algorithm, to reduce the 

calculation resources, the routes will only be constructed as the pickers take on them; this 

way, we do not calculate the route of every batch but of only the ones that get collected. 

However, as with all optimisation problems, the solutions can constantly be improved. If the 

company wants to implement the solutions, we provide these further improvements. Since the 

routing algorithm created in this thesis is a DP solution that finds optimal routes for large 

warehouses rather quickly, the improvement should focus on the batching algorithm created 

here. The problem with the batching algorithm that is used in the current solution is that it is a 

heuristic one; this means that while the solutions are better than the ones formed by the 

company algorithms, they are still not optimal. The standard approach to finding optimal 

batching solutions is using LP models. However, since the batching in this company should 

be recalculated every few minutes, the time it takes to solve the LP model is unrealistic for the 

intended use. That is why we recommend that the company use genetic algorithms to find 

better solutions, mainly because of the faster runtimes, which is more appropriate for the 

current problem.  

Lastly, if the company wants to improve their warehousing operations even further, the 

following steps would be to optimise the storage assignment of the warehouse as well as 

introduce a more synchronised zoning system into its warehouses. The company's current 

storage assignment method is a dedicated storage policy. This policy is one of the most 

common policies used in warehousing due to its simplicity of implementation. However, the 

main drawback of this allocation policy is that it does not continually optimise for shorter route 

constructions. That is why we recommend that the company changes to a full turnover or 

class-based storage policies, which, according to Koster, De-Luc and Roodbergen (2006), 

provide much shorter routes and better batches. Since we know that the company cannot stop 

its operations for a few days to reorganise the warehouse due to the high amount of lost 

potential sales, we recommend gradually implementing such a policy. The gradual 

implementation would work by creating an ideal warehouse layout by using, for example, a 
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class-based storage policy. Then, as one product gets out of stock, a product that would be in 

an ideal layout would be placed into the location of the product that just went out of stock. By 

swapping these products, the layout would gradually change into an ideal one within a few 

months. As for the zoning systems, the warehouses currently consist of two zones, the bottled 

and the FMCGs. However, some warehouses are topologically divided into even more 

sections, which could naturally be turned into their respective zones. For example, the 

company warehouse in Münster has its FMCG zone divided into three rooms: food, frozen 

goods, and household items. In this scenario, dividing the FMCG zone into three smaller ones 

could benefit the company. It is important to note that adding additional zones does not always 

improve performance and needs to be evaluated for each case. We hope that the ideas listed 

here benefit the company and that by implementing them, they increase the performance of 

the warehousing operations within Flaschenpost.  
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Appendix 

Appendix 1 (Research Design) 

The following Table 1 shows the overview of the research design that will be used throughout 

the thesis. 

Research question How to reduce average order picking time in the warehouse picking process of 
Flaschenpost? 

Knowledge questions MPSM 
phase 

Researc
h 
populati
on 

Research 
type 

Data 
gathering 
method 

Research 
strategy 

Research 
outcome 

Action plan 

What are the current 
methods and models 
being used in the 
company for the picking 
process? 

3 Compan
y 
employe
es & 
supervis
or 

Descriptive Unstructure
d interview 
& primary 
sources12 

Qualitative 
 

Overview of 
the current 
picking 
process 
method 

-Interview 
-Read about 
the company 
-Write an 
overview 

What models and 
heuristics currently 
exist that deal with the 
warehouse picking 
problem? 

3 & 4 Literatur
e & 
Databas
es 

Descriptive Literature 
study 

Qualitative List of 
possible 
solutions to 
the problem 

-Read 
research 
papers 
-Analyse 
them 
-Consult with 
the mentor 

Which KPIs are relevant 
for the improvement of 
the Flaschenpost’ s 
order throughput rate? 

5 Compan
y 
supervis
or & 
Literatur
e theory 

Descriptive Unstructure
d interviews 
& Literature 
study 

Quantitativ
e 

List of KPIs 
that I will 
use to 
select the 
best 
solution 

-Read 
research 
papers 
-Consult the 
company 
supervisor 
-Make a list 
of KPIs 

How can these 
algorithms that exists 
be modified such that 
they are applicable to 
our picking process? 

6 Compan
y 
datasets, 
Literatur
e, 
Compan
y 
supervis
or 

Explanator
y 

Companies’ 
database 
data & 
Literature 
study 

Qualitative Mathematic
al model 
and a 
heuristic 

-Select a 
solution 
-formulate 
the 
constraints 
-formulate 
the objective 
function 

How to evaluate the 
mathematical models 
and heuristics and its 
impact on the 
Flaschenpost’ s 
warehouse picking 
process? 

7 Compan
y order 
datasets, 
Literatur
e, 
Databas
es 

Explanator
y 

Primary 
sources & 
Literature 
study 

Quantitativ
e 

A detailed 
analysis of 
the model 
and 
verifying its 
performanc
e 

-Read the 
research 
papers 
-make a 
simulation 
-run the 
simulation 

 
12 Primary sources - annual reports and other internal company data 
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What are the next steps 
the company should 
take and future 
recommendations on 
how to further 
improvement of our 
solution? 

7 Literatur
e theory 
& 
Compan
y 
supervis
or 

Descriptive Unstructure
d interviews 
& Literature 
study 

Qualitative A list of 
recommend
ations and 
future 
improveme
nts 

-Summarize 
the 
knowledge 
obtained 
throughout 
the thesis 
-write a 
detailed plan 
on how to 
improve the 
solution 

 

Appendix 2 (S-Shaped heuristic) 

 

Figure 22: An example of a route using an S-shape heuristic (Koster, De-Luc, Roodbergen, 2001) 
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Appendix 3 (State transition tables) 

 

Figure 23: Transition state table from stage Lj
- to Lj

+y (Koster, Roodbergen, 2001) 

 

Figure 24: Transition state table from stage Lj
+y to Lj

+x (Koster, Roodbergen, 2001) 
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Figure 25: Transition state table from stage Lj
+x to Lj

- (Koster, Roodbergen, 2001) 
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