
Enhancing OntoUML Accessibility through Structured Text Generation
and Text-to-Speech
TOM NIEUWLAND, University of Twente, The Netherlands

OntoUML is a modeling language for creating conceptual ontologies, which
often presents challenges in comprehension for non-experts. Additionally, its
graphical representation poses accessibility challenges for visually impaired
individuals. This research addresses these issues by exploring methods to
enhance the understanding and accessibility of OntoUML models through
structured text generation and text-to-speech conversion. I propose a trans-
lation approach that converts OntoUML models into controlled natural lan-
guage, using Semantics for Business Vocabulary and Business Rules (SBVR)
as an intermediate representation, and subsequently into speech. This ap-
proach aims to make OntoUML models more accessible and improve their
usability, thereby; facilitating collaboration between modelers and other
stakeholders, including individuals with visual impairments.

Additional Key Words and Phrases: OntoUML, SBVR, Natural Language
Generation, Accessibility, Text-to-Speech

1 INTRODUCTION
OntoUML extends the Unified Modeling Language (UML) and is
used as a language for the conceptual modeling of ontologies. The
language has its roots in the Unified Foundational Ontology (UFO),
which is a foundational ontology that addresses the fundamen-
tal notions of conceptual modeling [14]. The commitment to this
meta-ontology makes OntoUML ontologies more accurate when
compared to ontologies represented in other forms, for example, in
the Web Ontology Language (OWL), or in standard UML [12].
OntoUML enables users with the ability to model conceptual-

izations and abstractions into concrete artifacts that can be com-
municated and analyzed [13]. These models are useful in various
domains like requirement engineering, semantic web, and software
engineering [8, 10]. The difference between OntoUML and stan-
dard UML lies in the addition of stereotypes to classes and relations
[7, 19]. These stereotypes highlight a deeper ontological meaning of
the concepts and relationships they are associated with. They can
also impose restrictions on how concepts can relate to each other.
However, the inherent complexity of OntoUML models makes them
hard to understand for people who are not experts in modeling and
ontologies [5]. Furthermore, these conceptual models are created
and represented graphically, creating a significant limitation to the
use of OntoUML by people that suffer from visual impairment.

This research aims to reduce the gap between the complexity of
OntoUML and its accessibility. One potential approach to reduce
this gap, is to translate OntoUML models, serialized in OntoUML
Vocabulary [22], into natural language specifications. OntoUML
Vocabulary is a machine processable representation of OntoUML
models which makes it a suitable representation for this translation,

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

since the translation will be handled by a computer program. The
translation process could use an intermediate representation, such
as structured English using SBVR. SBVR is a formal framework
developed by the Object Management Group (OMG) to capture
business semantics in a precise and unambiguous manner [20]. It
uses a form of structured English to define business vocabulary
and rules. Due to this approach, SBVR is well-suited for use as an
intermediate representation between modelers and non-experts [4].
The SBVR representation of OntoUMLmodels can then be translated
into a natural language specification. By employing text-to-speech
technology on these natural language specifications, they can be
made accessible to people with impaired vision.
This research will explore how to implement this approach to

answer the following question: "How can OntoUML models serialized
in OntoUML Vocabulary be converted into controlled English text that
explains the models to people unfamiliar with the concepts, making
it also accessible to people with visual impairments?". To ensure a
successful response to the research question, it is important to begin
by answering the following four sub-questions.

(1) What methods exist for converting (Onto)UML models into
text, and what are their corresponding advantages and limi-
tations?

(2) How can an OntoUML model serialized in OntoUML Vo-
cabulary be converted into English text while balancing its
understandability with loss of meaning?

(3) How can English text be converted to speech?
(4) How to implement the conversion into a working prototype?

The rest of this paper is structured as follows: Section 2 presents
related work. Section 3 details the development of the tool and its
design decisions. Finally, Section 4 discusses the results, answering
the sub-research questions and the main research question and
concludes the paper.

2 RELATED WORKS
To gather relevant literature for this research, databases such as
Google Scholar, ResearchGate, and ScienceDirect were used. Search
terms as “OntoUML to natural language”, “Natural Language Gener-
ation”, “SBVR to natural language” and “Making models accessible
to visually impaired” were employed to find scientific papers. Based
on the resulting papers’ abstracts, a selection of these papers was
chosen for further analysis.
Papers [1, 6, 24] researched the topic of translating ontologies

into English text. Specifically, [24] provided a brief overview of
various ontology verbalizers; however, none of these focused on
OntoUML. Additionally, some approaches required manual input to
work [3, 9, 15]. All reviewed papers used some form of intermediate
representation, indicating the benefits of using such an approach
for translation. An intermediate representation serves as a bridge
between the original information (in this work’s case, OntoUML

1



TScIT 41, July 5, 2024, Enschede, The Netherlands Tom Nieuwland

Vocabulary), and the final text, facilitating the removal of unneces-
sary and repetitive information. However, these papers relied on
self-defined intermediate solutions, limiting their applicability in fu-
ture research. By using a standardized intermediate representation,
tools and research developed for the intermediate representation
would be directly applicable to this research.

As the intermediate representation, this work uses SBVR, which
was found to be a suitable format since it provides a form of struc-
tured English that allows for precise expression of rules while re-
maining understandable to domain experts. [4] highlights a tool
developed to translate UML models extended with the Object Con-
straint Language (OCL) to SBVR structured English. Again, this work
did not work for OntoUML models, however it provided valuable
insight into the translation of UML models to SBVR. Its approach of
creating a translation for each type of UML construct was carried
over to this research, in the form of a translation for each type of
OntoUML construct. [21] shows a tool for creating a translation
from OntoUML to SBVR. The tool has been archived since 2021, but
shows a working translation. However, the translation is very ex-
tensive and precise, this makes not very applicable in this research,
since this research aims to make the model more understandable.
However, it does show promising use of SBVR Vocabulary entries
to represent OntoUML classes.

The performed literature research did not result in any works re-
garding the translation of SBVR into natural language. This is likely
because SBVR is usually created from natural language to embed
more precision rather than translating SBVR to natural language,
since SBVR is already understandable to most people.
Literature research into text-to-speech tools, yielded papers [16,

17, 23], that all present tools for blind and visually impaired people.
All of these papers make use of the open-source Google Text-to-
Speech (gTTS) tool [11]. This tool provides the exact functionality
that is needed in the last step if the proposed translation method of
this research.

3 DEVELOPMENT
After the exploration of various methods that can be used to trans-
form OntoUML to a form of natural language and speech, a three-
step process was developed. The first step is the translation of an
OntoUML model, serialized in OntoUML Vocabulary, into a form
of SBVR structured English. The next step in the process is the
translation of this SBVR structured English into a form of natural
language. The final step is to transform this natural language into
speech.

3.1 Scope
The translation that will be described below is not functional for
all OntoUML models. The scope of the translation and tool were
narrowed to work for a subset of UML and OntoUML constructs.
This tool will make use of UML classes and their names, further-
more it will consider inheritance, bidirectional associations, and
unidirectional associations. The coverage of OntoUML stereotypes
can be found in Table 1.

Table 1. OntoUML stereotype coverage

Covered Not covered
All Class stereotypes Formal

Material Derivation
Mediation Containment

Characterization SubCollectionOf
ComponentOf SubQuantityOf
MemberOf

Valid models are limited to models using the OntoUML prefix:
<https://purl.org/ontouml-models/vocabulary/>. In the nat-
ural language specification, the existence of grammatical errors, in
the form of wrong articles and improper use of plural forms, will be
tolerated.

Although this narrowed scope restricts the valid models that can
be translated by the tool, it was necessary to keep the research fea-
sible within the allotted time. Without the restricted scope, it would
not be possible to provide well-thought out translation patterns and
a working tool. All limitation to the scope can be seen as points for
future research.

3.2 OntoUML to SBVR
This work makes use of the Vocabulary entries from the SBVR spec-
ification [20]. A vocabulary entry in SBVR is a representation of a
single concept that is built up following a specific structure. The
primary representation of the entry is the concept which it describes.
This concept can then be explained using the following: definitions,
sources, a dictionary basis, a general concept, a concept type, ne-
cessities, possibilities, reference schemes, notes, and examples. In
our translation, we will only make use of general concepts, concept
types, necessities and possibilities to explain the concept. The other
options for explanation are either difficult to formulate with the
limited data available in the OntoUML Vocabulary representation
of a model, or would only add repetitive information. Therefore, the
use of these would not be beneficial to the understandability of the
OntoUML model, making them redundant for our application.

The translation is done by defining a translation pattern for one
OntoUML construct at a time. This is a similar approach used in
[4], but using OntoUML constructs instead of UML constructs. First,
OntoUML classes and their stereotypes are used to establish the
Vocabulary entries and their concept type. Then, OntoUML general-
izations will be used to determine the general concept, for applicable
entries. Following that, OntoUML generalization sets will be used to
generate necessity and possibility rules. Finally, OntoUML relations
and their stereotypes are used to generate additional necessity and
possibility rules.

3.2.1 Creating Vocabulary entries. For every class in the OntoUML
model, we create an entry. The primary representation of this entry
is the name of the class. This is done since every entry should cover
exactly one concept, which aligns with how classes are used in
OntoUML.

3.2.2 Determining concept types. For each Vocabulary entry, we
then determine the concept type. The concept types of an entry can

2



Enhancing OntoUML Accessibility through Structured Text Generation and Text-to-Speech TScIT 41, July 5, 2024, Enschede, The Netherlands

Fig. 1. OntoUML model example 1

be an ‘individual noun concept’, ‘general concept’, ‘verb concept’,
‘characteristic’, ‘binary verb concept’ or a ‘role’. Since each of our
entries has a term as the primary representation, we only use the
concept types ‘general concept’ and ‘role’. The other concept types
are meant for types of primary representations that are not used in
this translation. To distinguish between ‘general concept’ and ‘role’,
we can look at the stereotype of the OntoUML classes. This tells us
how the concept is used in the model and which concept type best
fits. The OntoUML class stereotypes are split in the following way:
‘role’, ‘roleMixin’, ‘phase’ and ‘phaseMixin’ are translated into the
concept type ‘role’. That is done because these stereotypes are used
on concepts that describe a state or role of other concepts. That
makes them more fitting to the concept type ‘role’, compared to
‘general concept’. All the other class stereotypes are translated into
the concept type ‘general concept’. This covers the two possible
resulting rules:

(1) Concept Type: role
(2) Concept Type: general concept

3.2.3 Determining general concepts. After determining the concept
type for each entry, we can determine the general concept. The
general concept of an entry can only be present if the entry has
some general concept above it in the model. Therefore, we have
a look at the generalizations in the model. A generalization is a
relation that connects two concepts together. One of these concepts
is considered the ‘general’ and the other is considered the ‘specific’.
A generalization tells us that the ‘specific’ is a specialization of
the more general concept ‘general’. For every class in the model
that is the specific part of some generalization, we can define the
general of that generalization to be its general concept. However,
some generalizations are also part of generalization sets. These
sets will provide more information about the generalizations it
groups together. Therefore, these sets are handles separately in
the next section. To prevent repetition, the following rule is only
generated for the specific of a generalization that is not part of some
generalization set:

• General Concept: (general)

Figure 1 shows an example of two OntoUML classes and a gener-
alization. Their corresponding SBVR entries, according to the rules
discussed so far, would be:

Person
Concept type: general concept

Teacher
Concept type: role
General Concept: Person

After determining the general concept, we will determine the
necessities and possibilities. This is split into two different stages.

Fig. 2. OntoUML model example 1

First, we will handle all the generalization sets and second, we will
have a look at all other relationships.

3.2.4 Handling generalization sets. A generalization set is a group
of generalizations. The term ‘specifics’ is used to describe the group
of every ‘specific’ of each individual generalization, that is part of
the set. The ‘general’ of every generalization in the set is always
the same, and is considered to be the ‘general’ of the set as well.
Generalization sets will generate a necessity rule, for each of the
specifics of the set. This will be of the form: ’Necessity: each
(specific) if of type (general)’. For the general of the set,
the necessity/possibility rule is dependent on whether the set is
disjoint and complete. ’Disjoint’, means that an instance of the
‘general’ can only be an instance of one of the specifics. When a set
is not disjoint, a general can be multiple specifics at the same time.
’Complete’, means that the specifics of the set cover all possibilities
that the general can be an instance of. When a set is not complete,
it means that the general can be an instance of something that is
not present in the model. We have four different combinations of
disjoint and complete, each creating a unique sentence to describe
the relationship between the general and the specifics. The sentences
can be found in Table 2. These sentences are created in a way that
they accurately describe the relation without the use of technical
terms and keeping to the short format that is desired.
Figure 2 shows an example of an OntoUML class as the general

of a generalization set, with two specific classes below it. Their
corresponding SBVR entries, according to the rules discussed so far,
would be:

Person
Concept type: general concept
Necessity: each Person is exactly one Man or Woman

Man
Concept type: general concept
Necessity: each Man is of type Person

Woman
Concept type: general concept
Necessity: each Woman is of type Person

3.2.5 Handling relations. When talking about a relation between
two concepts, the terms ‘source’ and ‘target’ are used. The ‘source’
and ‘target’ are the concepts that the relationship connects. The
relation is considered to originate from the ‘source’ and applies
to the ‘target’. For example, a relation ‘component of’ between

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Tom Nieuwland

Table 2. Translation patters for generalization sets

Type of generalization set Resulting rule
disjoint / complete Necessity: each (general) is exactly one (specifics)

disjoint / not complete Necessity: each (general) is at most one (specifics)

not disjoint / complete Necessity: each (general) is at least one (specifics)

not disjoint / not complete Possibility: it is a possibility that a (general) is one or multiple (specifics)

Table 3. Translation patters for relations

Relational stereotype Resulting rule part
Component of (TGT) Is a component of
Component of (SRC) Is composed of

Characterization (TGT) Characterizes
Characterization (SRC) Is characterized by

Member of (TGT) Is a member of
Member of (SRC) Has as member
Mediation (TGT) Is required by
Mediation (SRC) Requires
Material (TGT) Is connected to
Material (SRC) Is connected to

No stereotype (TGT) Is associated to
No stereotype (SRC) Is associated to

the source ‘Table leg’ and the target ‘Table’, signifies that ’A table
leg is a component of a table’. Relations will generate a necessity
or possibility rule based on their stereotype and cardinality, for
both the target concept and source concept of the relation. The
stereotype of the relationship determines the middle part of the rule
that describes the relation between the two connected concepts.
These sentences are intentionally kept short and precise to fit the
style of SBVR structured English. This causes the deeper ontological
meaning of stereotypes to be hidden in the SBVR specification. This
is required for keeping the it concise, and understandable to non-
experts. They are constructed in a way that they still reflect most
of the meaning of the stereotype in an understandable way, setting
them apart from generic UML relations. Table 3 shows the resulting
middle rule part, for each of the covered stereotypes (see Table 1
for the coverage). This is done from both the target’s perspective
(TGT), and the source’s perspective (SRC).

The cardinality is responsible for both describing the cardinal
relationship between the concepts and determining whether the
rule is a necessity or a possibility. The cardinality constraint of the
relation is determined based on the cardinalities’ lower and upper
bounds in the following way:

• If the lower and upper bounds are the same, the cardinality
constraint is written as ‘exactly (lower bound)’.

• If the lower bound is 0 and upper bound is ‘*’, the cardinality
constraint is written as ‘some’.

• If the lower bound is 0 and the upper bound is not ‘*’, the
cardinality constraint is written as ‘at most (upper bound)’.

• If the lower bound is not 0 and the upper bound is ‘*’, the
cardinality constraint is written as ‘at least (lower bound)’.

Fig. 3. OntoUML model example 3

• If the lower bound is not 0 and the upper bound is not ‘*’,
the cardinality constraint is written as ‘at least (lower bound)
and at most (upper bound)’.

In the case where the cardinality constraint is written as ‘some’,
the rule is written in the form of a possibility. It cannot be written
as a necessity, since it can be zero or more. The rule is written as a
necessity in all other cases, creating the following four options for
the rule:

From the target’s perspective:

(1) Necessity: each (target) (rule part) (cardinality
constraint) (source)

(2) Possibility: it is a possibility that a (target)
(rule part) (cardinality constraint) (source)

From the source’s perspective:

(1) Necessity: each (source) (rule part) (cardinality
constraint) (target)

(2) Possibility: it is a possibility that a (source)
(rule part) (cardinality constraint) (target)

Figure 3 shows an example of two OntoUML classes connected
with a ’memberOf’ relation. The corresponding SBVR entries, ac-
cording to the rules discussed so far, would be:

Tennis Player
Concept type: general concept
Necessity: each Tennis Player is a member of at least 1
Tennis Club

Tennis Club
Concept type: general concept
Necessity: each Tennis Club has as members at least
10 Tennis Player

An example of the set of SBVR Vocabulary entries that are gen-
erated from a larger OntoUML model can be found in Section 1 of
Appendix B.

4



Enhancing OntoUML Accessibility through Structured Text Generation and Text-to-Speech TScIT 41, July 5, 2024, Enschede, The Netherlands

3.3 SBVR to Natural Language
The SBVR to natural language transformation is done by transform-
ing our previously defined SBVR Vocabulary entries into a form of
natural language. This process involves four main steps.

3.3.1 Grouping. The first step in the process is to group concepts
together, based on mutual referencing and generalization sets. This
is done, to group concepts together that lie close to each other in
the original model. This way we can write a paragraph about every
group, which will result in a more natural text. If we would not
group concepts together, the entire text would be just a list with
explanations of concepts. The grouping works by iterating over all
rules and making a group per rule that contains all concepts listed
in that rule. We then remove any groups that are a subset of another
group. This removes unwanted repetition, while making sure all
concepts are still part of at least one group. The next step is to group
together any triangles, where a triangle is a combination of three
groups that only contains three distinct concepts. These groups can
be represented by a single group consisting of the three distinct
concepts.

3.3.2 Ordering. The next step is to create an ordering of the groups.
This is done to create coherence between subsequent paragraphs in
the final text. When the subsequent paragraphs contain overlapping
elements, the text as a whole seems more natural and coherent. To
achieve the ordering of the groups, a greedy algorithm is used. This
greedy algorithm puts the first group at the top of a list. Then it
tries to find another group with an overlapping element. When such
a group is found, this group is put to the top of the list, and the
process repeats. This is done until all groups are on the list. When no
group can be found with an overlapping concept, a random group
is picked, and put on top of the list.

3.3.3 Paragraph writing. After the groups have been formed and
ordered, a paragraph is written for each group. The first step in
this process is to loop over all the Vocabulary entries of the group.
For each entry, the rules must be filtered. The rules are checked
for whether they contain concepts that are not part of the group.
When that is the case, these rules are removed. The remaining
rules are split into three different categories: normal rules, generals
of generalization sets, and specifics of generalization sets. Each
category of rules is processed differently. The type of rule can be
determined by the middle part of the rule, based on the translation
patterns used in the OntoUML to SBVR section.

Normal rules get translated from their structured representation
in the Vocabulary entry, into a more natural flowing sentence. For
every old rule, a new sentence is rewritten to the form: ’A(n) (con-
cept) (identifier) (cardinality + targets).’ The identifier
is determined based on the original rule, where ’(P)’ and ’(N)’ rep-
resent ’Possibility:’ and ’Necessity: ’ respectively. The translation
patterns for this part, can be found in Table 4.
After the rules are translated, they are processed further. This

process consists of grouping together rules in two different ways.
The first way is to group together rules that connect the same con-
cept in the same way to different targets.
For example, the sentence ‘A table leg is a component of ex-
actly 1 table.’, and the sentence ‘A tabletop is a component

Table 4. Translation patters for identifiers

SBVR notation Natural Language notation
General concept: .. .. is a(n) ..
(N) .. requires .. .. needs ..

(N .. is a component of .. .. is a component of ..
(P) .. is a component of .. .. can be a component of ..

(N) .. consists of .. .. consist of ..
(P) .. consists of .. .. can consist of ..

(N) .. characterizes .. .. characterizes ..
(P) .. characterizes .. .. can characterize ..

(N) .. is characterized by .. .. is characterized by ..
(P) .. is characterized by .. .. can be characterized by ..
(N) .. is a member of .. .. is a member of ..
(P) .. is a member of .. .. can be a member of ..
(N) .. is required by .. .. is required by ..
(P) .. is required by .. .. can be required by ..
(N) .. is associated to .. .. is associated to ..
(P) .. is associated to .. .. can be associated to ..
(N) .. is connected to .. .. is connected to ..
(P) .. is connected to .. .. can be connected to ..

of exactly 1 table.’, get combined into the single sentence ‘A
table leg or tabletop is a component of exactly 1 ta-
ble.’. The second way is to group together rules that connect the
same target in the same way to different concepts.
For example, the sentence ‘A table consists of exactly 4
table leg.’, and the sentence ‘A table consists of exactly
1 tabletop.’, get combined into the single sentence ‘A table
consist of exactly 4 table leg, and exactly 1 tabletop.’.
This is done to reduce repetition and once again group together
concepts that lie closely together.
Rules that connect a general to its specifics get translated next.

These rules are rewritten into a sentence that explains the rule in
more detail than before. This is done to better highlight the differ-
ences between sets based on their completeness and disjointedness.
The translation of these rules can be found in Table 5.

Rules that connect a specific of a generalization set to a general
are not used for the translation. This is because the link between
these concepts is already covered in the previous section. Adding
another line, to state the connection, would be repetitive. The reason
the rules from the perspective of the specifics is left out as opposed
to the rule from the general’s perspective is due to the extra in-
formation carried in the rule from the general’s perspective. That
rule offers insight into the completeness of the set, and whether the
generalization set is disjoint.

After all sentences have been generated and processed, they are
combined to form a single paragraph of the natural language speci-
fication.

3.3.4 Combining everything. When all groups have been processed,
and all paragraphs have been written, the paragraphs get written
into a single text file. This text file resembles the natural language
specification of the model.

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Tom Nieuwland

Table 5. Translation patters for generalization sets from SBVR to NL

Rule in SBVR specification Resulting sentence
.. exactly one .. Every (general) is either a(n) (specifics).
.. at most one .. A(n) (general) can be a(n) (specifics), or another possibility, but only 1 at the same time.
.. at least one .. Every (general) is at least one (specifics), but can also be multiple at the same time.

.. is one or multiple .. A(n) (general) can be a(n) (specifics), or another possibility, it can also be multiple at the same time.

An example of the natural language specification generated from a
set of SBVRVocabulary entries can be found in Section 2 of Appendix
B.

3.4 Natural Language to Speech
The natural language processing starts by slightly altering the text to
increase the pauses between paragraphs and at the end of sentences.
Using the standard pause length, the speech was quite fast, which
made it hard to follow. Increasing the pauses between sentences
and paragraphs improved the understandability of the speech.
After the text is altered, it is passed to the gTTS tool. This tool

is generates a speech version from the inputted text. This speech
version of the text is than saved in MP3 format.

4 CONCLUSIONS
This research focused on finding a way in which OntoUML could
be made more accessible by answering the main research ques-
tion. This question is answered by the cumulative answer to the
sub-questions. In the search for finding existing methods of con-
verting (Onto)UML models to text, many different approaches were
found in the literature. Unfortunately, none of these approaches
were based on OntoUML. However, taking inspiration from them,
this research provides a methodology of how to approach the trans-
lation of OntoUML models into a form of natural language and
speech using a three-step process. This three-step approach shows
a way how OntoUML models can be translated into understandable
English without sacrificing a lot of the meaning embedded in the
models. Using gTTS to convert the natural language specification
to speech proved a sufficient way for the conversion of English
text into speech. The whole three-step process is implemented in a
single Python based prototype tool, which is available in [18]. This
tool performs the transformation that bridges the gap between the
sophistication and complexity of OntoUML and the understand-
ability of the models that can be created using it, broadening the
use of OntoUML to non-experts and people that suffer from visual
impairment.

Future work is needed to take the methodology and the tool to
the next level. This work can be done in a few different directions.
The first direction would be the extension of the current coverage.
This would involve research into the uncovered UML and OntoUML
constructs and how these constructs can be translated into SBVR
Vocabulary entries. A consequent step would be to define new trans-
lation patterns for the SBVR to natural language transformation, in
case new types of SBVR rules are generated. The second direction
for future research could involve improvement of the current tool.

With the current tool there are at least three things that could be
improved:

(1) Improved grouping algorithm
(2) Improved group ordering algorithm
(3) Grammatical correctness with regards to articles and plurals

Further improvements could show themselves when extensive test-
ing of the tool is performed. The third direction for future research
could involve this extensive testing of the current tool. This should
at least include the following tests:

(1) The natural language specifications should be evaluated by
modeling experts, to ensure correctness and accuracy

(2) The natural language specifications should be evaluated by
non-experts, to ensure their understandability

(3) The speech translation of the models should be evaluated by
people with visual impairment, to ensure their understand-
ability

(4) The tool should be evaluated across a diverse range of models,
to ensure its robustness

As a final direction for future research, the use of Large Language
Models (LLMs) and Artificial Intelligence (AI) could be explored to
improve the natural language specification. The use of these tools
could make the text more natural, since you would not have to rely
on strictly defined translation patters for the translation. However,
this could also impose problems with respect to the accuracy of the
natural language specification.

REFERENCES
[1] Ion Androutsopoulos, Gerasimos Lampouras, and Dimitrios Galanis. 2014. Gen-

erating Natural Language Descriptions from OWL Ontologies: the NaturalOWL
System. The Journal of Artificial Intelligence Research (JAIR) 48 (04 2014), 671–715.
https://doi.org/10.1613/jair.4017

[2] Pedro Paulo F. Barcelos, Tiago Prince Sales, Mattia Fummagali, and Claudenir M.
Fonseca. 2023. OntoUML/UFO Catalog. https://doi.org/10.5281/zenodo.8188545

[3] Kalina Bontcheva and Yorick Wilks. 2004. Automatic Report Generation from
Ontologies: The MIAKT Approach. In Proceedings of the 9th International Confer-
ence on Applications of Natural Language to Information Systems 3136, 324–335.
https://doi.org/10.1007/978-3-540-27779-8_28

[4] Jordi Cabot, Raquel Pau, and Ruth Raventós. 2010. From UML/OCL to SBVR
specifications: A challenging transformation. Information Systems 35, 4 (2010),
417–440. https://doi.org/10.1016/j.is.2008.12.002

[5] Guadalupe Cea, Elena Montiel-Ponsoda, and Mari Carmen Suárez-Figueroa. 2009.
Approaches to ontology development by non ontology experts. (2009).

[6] Dragos Alexandru Cojocaru and Stefan Trausan-Matu. 2015. Text Generation
Starting from an Ontology. In Romanian Conference on Human-Computer Interac-
tion. 55–60. https://api.semanticscholar.org/CorpusID:5687270

[7] OntoUML Contributors. 2024. OntoUML Documentation. https://ontouml.
readthedocs.io/en/latest/. Accessed: 2024-06-29.

[8] Maria Ferreira, Joao Moreira, Maria Campos, Bernardo Braga, Tiago Prince Sales,
Kelli Cordeiro, and Marcos Borges. 2015. OntoEmergePlan: variability of emer-
gency plans supported by a domain ontology. In 12th International Conference on
Information Systems for Crisis Response and Management, ISCRAM 2015. University
of Agder, 1–9.

6

https://doi.org/10.1613/jair.4017
https://doi.org/10.5281/zenodo.8188545
https://doi.org/10.1007/978-3-540-27779-8_28
https://doi.org/10.1016/j.is.2008.12.002
https://api.semanticscholar.org/CorpusID:5687270
https://ontouml.readthedocs.io/en/latest/
https://ontouml.readthedocs.io/en/latest/


Enhancing OntoUML Accessibility through Structured Text Generation and Text-to-Speech TScIT 41, July 5, 2024, Enschede, The Netherlands

[9] Dimitrios Galanis and Ion Androutsopoulos. 2007. Generating Multilingual De-
scriptions from Linguistically Annotated OWL Ontologies: the NaturalOWL Sys-
tem. Proceedings of the 11th European Workshop on Natural Language Generation,
ENLG 07 (01 2007), 143–146. https://doi.org/10.3115/1610163.1610188

[10] Bernardo Gonçalves, Veruska Zamborlini, Giancarlo Guizzardi, and José
Pereira Filho. 2009. An ontology-based application in heart electrophysiology: Rep-
resentation, reasoning and visualization on the web. Proceedings of the ACM Sym-
posium on Applied Computing, 816–820. https://doi.org/10.1145/1529282.1529456

[11] Google. 2024. GTTS: Google Text-to-Speech Documentation. https://gtts.
readthedocs.io/en/latest/. Accessed: 2024-06-29.

[12] Giancarlo Guizzardi. 2005. Ontological Foundations for Structural Conceptual
Models. Ph. D. Dissertation.

[13] Giancarlo Guizzardi. 2007. OnOntology, ontologies, Conceptualizations, Modeling
Languages, and (Meta)Models. Frontiers in artificial intelligence and applications
155, 18–39.

[14] Giancarlo Guizzardi, Alessander Benevides, Claudenir Fonseca, Daniele Porello,
João Almeida, and Tiago Prince Sales. 2022. UFO: Unified Foundational Ontology.
Applied Ontology 17, 1 (01 2022), 167–210. https://doi.org/10.3233/AO-210256

[15] Feikje Hielkema. 2009. Using natural language generation to provide access to
semantic metadata. Ph. D. Dissertation. University of Aberdeen.

[16] Tushar Khete and Aditya Bakshi. 2022. Autonomous Assistance System for
Visually Impaired using Tesseract OCR gTTS. Journal of Physics: Conference
Series 2327 (08 2022), 012065. https://doi.org/10.1088/1742-6596/2327/1/012065

[17] Supriya Kurlekar, O Deshpande, A Kamble, A Omanna, and D Patil. 2020. Reading
Device for Blind People using Python OCR and GTTS. International Journal of
Science and Engineering Applications 9, 4 (2020), 49–52.

[18] Tom Nieuwland. 2024. OntoUML Translator. https://gitlab.utwente.nl/s2812304/
ontouml2sbvr. Accessed: 2024-06-20.

[19] Object Management Group. 2017. About the Unified Modeling Language® -
Version 2.5.1. https://www.omg.org/spec/UML/2.5.1/About-UML. Accessed:
2024-06-29.

[20] Object Management Group. 2017. Semantics of Business Vocabulary and Business
Rules (SBVR). http://www.omg.org/spec/SBVR/. Accessed: 2024-06-29.

[21] Tiago Prince Sales, John Guerson, Freddy Brasileiro, and Bernardo . 2021. menthor-
editor ontouml2sbvr. https://github.com/MenthorTools/menthor-editor/tree/
master/net.menthor.ontouml2sbvr. Accessed: 2024-05-28.

[22] Tiago Prince Sales, Claudenir M. Fonseca, and Pedro Paulo Favato Barcelos. 2023.
OntoUML Vocabulary. https://w3id.org/ontouml/vocabulary. Accessed: 2024-06-
20.

[23] C Venkata Sai, D Thrinethra, and SVS Devi. 2023. Voice Based Email System for
Blind People. Journal of Electronics and Informatics 5, 2 (2023), 226–234.

[24] Robert Stevens, James Malone, Sandra Williams, Richard Power, and Allan Third.
2011. Automating Generation of Textual Class Definitions from OWL to English.
Journal of biomedical semantics 2 (05 2011), 1–20. https://doi.org/10.1186/2041-
1480-2-S2-S5

A USE OF ARTIFICIAL INTELLIGENCE
During the preparation of this work the author used ChatGPT-3.5,
in order to generate basic documentation for the implemented tool.
After using this tool/service, the author reviewed and edited the
content as needed and takes full responsibility for the content of
the work.

B ONTOUML TO NATURAL LANGUAGE
SPECIFICATION EXAMPLE

In this Appendix, an example will be shown of the developed trans-
lation patterns and tool. Figure 4, shows an OntoUML model in its
graphical state. This model is taken from the OntoUML/UFO catalog
[2]. The model describes various concepts from Formula One and
how they relate to one another. Section 1 will show the set of SBVR
Vocabulary entries that are generated by the tool, based on the For-
mula One OntoUML model shown in Figure 4. Finally, Section 2 will
show the Natural Language specification that is generated based in
the set of SBVR Vocabulary entries from Section 1.

Note that there is an issue related to the concepts ’Driver’ and
’Race’, in both the SBVR specification and natural language speci-
fication. These rules are reversed from how they are represented
in Figure 4. This is due to a mistake in the serialized version of the
OntoUML model, where the relation is represented in the wrong
direction. It is not a problem with the tool.

B.1 Formula One represented by SBVR Vocabulary entries
F1 Season
Concept Type: general concept
Necessity: each F1 Season is composed of at least 8 Race

Race
Concept Type: general concept
Necessity: each Race is exactly one Regular Race or Sprint Race
Necessity: each Race is a component of exactly 1 F1 Season
Necessity: each Race requires exactly 1 Circuit
Possibility: it is possible that a Race is required by some Driver
Necessity: each Race requires exactly 1 Grand Prix
Necessity: each Race requires exactly 1 F1 Car

Grand Prix
Concept Type: general concept
Necessity: each Grand Prix is required by at least 1 Race
Necessity: each Grand Prix is connected to at least 1 Circuit

Driver
Concept Type: role
Necessity: each Driver is of type Racing Team Member
Necessity: each Driver requires at least 2 Race
Necessity: each Driver is connected to at least 1 F1 Car
Necessity: each Driver is characterized by exactly 1 Driving Strategy

Racing Team
Concept Type: general concept
Necessity: each Racing Team has as members at least 2 Racing Team
Member

Circuit
Concept Type: general concept
Possibility: it is possible that a Circuit is required by some Race
Possibility: it is possible that a Circuit is connected to some Grand
Prix

Engine
Concept Type: general concept
Necessity: each Engine is of type F1 Car Piece
Necessity: each Engine is a component of exactly 1 F1 Car

Tire
Concept Type: general concept
Necessity: each Tire is of type F1 Car Piece
Necessity: each Tire is a component of exactly 1 F1 Car

7

https://doi.org/10.3115/1610163.1610188
https://doi.org/10.1145/1529282.1529456
https://gtts.readthedocs.io/en/latest/
https://gtts.readthedocs.io/en/latest/
https://doi.org/10.3233/AO-210256
https://doi.org/10.1088/1742-6596/2327/1/012065
https://gitlab.utwente.nl/s2812304/ontouml2sbvr
https://gitlab.utwente.nl/s2812304/ontouml2sbvr
https://www.omg.org/spec/UML/2.5.1/About-UML
http://www.omg.org/spec/SBVR/
https://github.com/MenthorTools/menthor-editor/tree/master/net.menthor.ontouml2sbvr
https://github.com/MenthorTools/menthor-editor/tree/master/net.menthor.ontouml2sbvr
https://w3id.org/ontouml/vocabulary
https://doi.org/10.1186/2041-1480-2-S2-S5
https://doi.org/10.1186/2041-1480-2-S2-S5


TScIT 41, July 5, 2024, Enschede, The Netherlands Tom Nieuwland

Fig. 4. OntoUML model describing Formula One

Chassis
Concept Type: general concept
Necessity: each Chassis is of type F1 Car Piece
Necessity: each Chassis is a component of exactly 1 F1 Car

F1 Car
Concept Type: general concept
Necessity: each F1 Car is composed of exactly 4 Tire
Necessity: each F1 Car is composed of exactly 1 Engine
Necessity: each F1 Car is composed of exactly 1 Chassis
Possibility: it is possible that a F1 Car is required by some Race
Possibility: it is possible that a F1 Car is connected to some Driver

Person
Concept Type: general concept

F1 Car Piece
Concept Type: general concept
Necessity: each F1 Car Piece is at most one Tire, Chassis or Engine

Engineer
Concept Type: role
Necessity: each Engineer is of type Racing Team Member

Mechanic
Concept Type: role
Necessity: each Mechanic is of type Racing Team Member

Racing Team Member
Concept Type: role
General Concept: Person
Necessity: each Racing Team Member is at most one Driver, Team
Manager, Engineer or Mechanic
Necessity: each Racing Team Member is a member of exactly 1 Rac-
ing Team

Team Manager
Concept Type: role
Necessity: each Team Manager is of type Racing Team Member

Regular Race
Concept Type: general concept
Necessity: each Regular Race is of type Race

Sprint Race
Concept Type: general concept
Necessity: each Sprint Race is of type Race

Driving Strategy
Concept Type: general concept
Necessity: each Driving Strategy is exactly one Aggressive Strategy
or Conservative Strategy
Necessity: each Driving Strategy characterizes exactly 1 Driver

Aggressive Strategy
Concept Type: role

8



Enhancing OntoUML Accessibility through Structured Text Generation and Text-to-Speech TScIT 41, July 5, 2024, Enschede, The Netherlands

Necessity: each Aggressive Strategy is of type Driving Strategy

Conservative Strategy
Concept Type: role
Necessity: each Conservative Strategy is of type Driving Strategy

B.2 Formula One represented in a Natural Language
specification

A Driver needs at least 2 Race. A Driver is connected to at least 1
F1 Car. A F1 Car can be required by some Race. A F1 Car can be
connected to some Driver. A Race can be required by some Driver.
A Race needs exactly 1 F1 Car.

A Circuit can be required by some Race. A Circuit can be con-
nected to some Grand Prix. A Grand Prix is required by at least 1
Race. A Grand Prix is connected to at least 1 Circuit. A Race needs
exactly 1 Circuit, and exactly 1 Grand Prix.

Every Race is either a Regular Race or Sprint Race.

A F1 Season is composed of at least 8 Race. A Race is a component
of exactly 1 F1 Season.

A F1 Car Piece can be a Tire, Chassis, Engine, or another possi-
bility, but only 1 at the same time. Every Chassis, Engine, or Tire is
a component of exactly 1 F1 Car. A F1 Car is composed of exactly 4
Tire, exactly 1 Engine, and exactly 1 Chassis.

A Racing Team Member is a Person.

A Racing Team Member can be a Driver, Team Manager, Engi-
neer, Mechanic, or another possibility, but only 1 at the same time.
A Racing Team has as members at least 2 Racing Team Member. A
Racing Team Member is a member of exactly 1 Racing Team.

A Driver is characterized by exactly 1 Driving Strategy. A Driving
Strategy characterizes exactly 1 Driver.

Every Driving Strategy is either an Aggressive Strategy or Con-
servative Strategy.

9


	Abstract
	1 Introduction
	2 Related works
	3 Development
	3.1 Scope
	3.2 OntoUML to SBVR
	3.3 SBVR to Natural Language
	3.4 Natural Language to Speech

	4 Conclusions
	References
	A Use of Artificial Intelligence
	B OntoUML to Natural Language specification example
	B.1 Formula One represented by SBVR Vocabulary entries
	B.2 Formula One represented in a Natural Language specification


