
Measuring Code Modernity of the C# Language Codebases
MARKS TROICINS, University of Twente, The Netherlands

This research addresses the problem of determining the modernity of soft-
ware systems by analyzing the use of new language features and their
adoption over time. The concept of modernity signatures is used throughout
the research to represent the point in time that the codebase would have been
written. This can provide valuable insights into the health of a codebase, the
evolution of the codebase, and the evolution of the programming language
itself. The modernity meter is developed to analyze different codebases
involving C# running within the .NET runtime environment using static
analysis methods. It will aid in calculating and analyzing the modernity
signatures. The research describes the technical details of the modernity
meter, analyzes the obtained modernity signatures, and concludes the study.

Additional KeyWords and Phrases: Abstract Syntax Tree (AST), Code Moder-
nity, Modernity Signature, C#, Static Analysis

1 INTRODUCTION
In the software engineering field, the concept of “modernity” can be
defined as the extent to which the source code of a software system
utilizes new features and capabilities of the programming language
it is written in, as described in a study conducted by Admiraal et al.
[7]. The formal definition of a modernity signature is provided in
Section 5. It is important to investigate the modernity of a codebase
as it can provide meaningful insights into its evolution and the
evolution of the programming language itself.
First, the active use and adoption of new language features can

serve as an indicator of the overall health of a codebase. Intuitively,
actively maintained and updated code will also naturally use newer
language features at least to some extent. Regularly maintained code
is also more likely to be robust, secure, and scalable, while outdated
and neglected code is more prone to bugs, security vulnerabilities,
and performance issues according to Lehman [5]. In essence, lower
modernity is indicative of the codebase moving towards becoming
a legacy.
Second, analyzing the modernity of software systems can help

understand how the system is advancing and evolving over time.
By identifying trends in the adoption of new features across the
codebases, we can gain insights into the practices of the developers
and estimate how rapidly is the system evolving. For example, we
can find and analyze bugs, and issues regarding the security of the
codebase [4, 6].
Third, the investigation of modernity can aid in assessing the

language evolution itself. It is insightful to analyze if the new fea-
tures are adopted and used by developers as this can indicate if
the language designers are investing their time wisely in incorpo-
rating these features. By examining the uptake of these features,

TScIT 41, July 5, 2024, Enschede, The Netherlands
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

it becomes possible to assess whether the efforts of language de-
signers are aligned with the needs and preferences of the developer
community.
This paper researches what analysis techniques are applicable

to estimate the modernity of the C Sharp (C#) language [1], which
is a widely-used programming language developed by Microsoft
Corporation [2]. It is the fifth most popular programming language
according to the TIOBE index [3] at the time of writing. By analyzing
the adoption of new language features and best practices over time,
we aim to provide insights into the evolution of C# codebases and the
effectiveness of modern coding practices. While analysis platforms
for C# already exist, the topic of modernity in the context of C# has
been an under-researched field with many open gaps left, which are
going to be partly addressed in this paper.

1.1 C# Language Levels
C# continues to evolve, solidifying its place as a powerful and ver-
satile programming language in the developer community. As of
November 2023, the latest release, C# 12.0, brings a host of signifi-
cant enhancements to the language. Among the most notable are
collection expressions1 and primary constructors2, which introduce
new, expressive ways for developers to write and organize their
code.
In addition to these syntactic advancements, C# frequently in-

corporates features that enrich the language without altering its
grammar. For instance, C# 11.0 introduced UTF-8 string literals,
enabling automatic encoding of string literals into their UTF-8 byte
representations. Such features enhance the language’s functionality
while maintaining compatibility with existing code.

Every codebase that utilizes C# can be assessed based on its lan-
guage level, defined as the minimum C# version required for the
code to compile and run correctly. For example, as of May 9, 2024,
the ShareX3 codebase necessitates C# version 10.0 or higher. Mod-
ern .sln4 (solution) files encapsulate this information, detailing the
minimum required C# version and .NET5 framework, ensuring that
all dependencies and versions are correctly identified and managed,
but does not evaluate the modernity of the codebase which leaves
it an open topic.

1.2 Static Code Analysis
Code examination without the execution of it is called static code
analysis [10]. This technique has a lot of usage, for example, it can be
used to find bugs in codebases [4] or to analyze how secure they are
[6]. Static analysis is used in this research to analyze the codebases,

1https://github.com/dotnet/csharplang/blob/main/proposals/csharp-12.0/collection-
expressions.md
2https://github.com/dotnet/csharplang/blob/main/proposals/csharp-12.0/primary-
constructors.md
3https://github.com/ShareX/ShareX
4https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-
sln-file?view=vs-2022
5 .NET is a secure, reliable, and high-performance application platform. https://dotnet.
microsoft.com/en-us/learn/dotnet/what-is-dotnet

1

https://github.com/dotnet/csharplang/blob/main/proposals/csharp-12.0/collection-expressions.md
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-12.0/collection-expressions.md
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-12.0/primary-constructors.md
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-12.0/primary-constructors.md
https://github.com/ShareX/ShareX
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/extensibility/internals/solution-dot-sln-file?view=vs-2022
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet


TScIT 41, July 5, 2024, Enschede, The Netherlands Marks Troicins

thus the definition of the modernity signature and the implemen-
tation of it is built around it. There already exists an open-source
implementation of the C# compiler with an API surface for building
code analysis tools which is called Roslyn6. The implementation
provided by .NET is used as a foundation for the implementation of
the modernity meter for this research.

Most of the existing C# analysis software that can be found open-
source or that are described in scientific articles have a strong focus
on standards enforcement and security. The standards enforcement
tools warn the user of problems in a codebase like formatting errors
or code smells, and some of them might even propose a solution
or edit the code autonomously. Security-focused tools either work
similarly or apply patches or extra logic to code if it is being executed.
All these tools have in common that they rely on patternmatching to
find parts that need attention, which is achieved with static analysis.

2 PROBLEM STATEMENT
This paper aims to define the modernity signature that can be cal-
culated with the static analysis. The calculated modernity signature
is analyzed to determine if the static analysis is an appropriate tech-
nique to evaluate the modernity of a codebase. More precisely, we
will answer the following research question:

To what extent can we use static analysis methods to reliably deter-
mine the modernity of the codebases developed in the C# language?
To aid in answering the research question, the following sub-

questions are answered:
RQ1 How can we define a modernity signature of a C# code-

base?
RQ2 What factors influence the modernity signature defined in

RQ1 ?
RQ3 To what extent can the static modernity signature of an

unknown C# codebase be used to represent the point in time
that the code would have been written?

3 RELATED WORK
Deep research on code modernity was conducted by Admiraal et al.
[7]. This study introduces the concept of modernity signature and
formally defines it. The modernity signature is calculated for code-
bases developed in PHP and Python languages, thus the approach
is slightly different for them. The paper also discusses different
normalization techniques that can be applied while calculating the
modernity signatures. Van den Brink et al. researched the derivation
of modernity signatures for PHP systems with static analysis, which
served as an inspiration for this research in some ways [13].
Static analysis of C# codebases has been performed before, for

example by Koshelev et al. [9]. This article considers various aspects
of static analysis of C# programs in order to detect the maximum
number of software bugs in an acceptable time. The paper also
discusses some methods that take into account popular features
of C# at all levels of analysis. Similar research was conducted by
Sharma et al. where they explored code smells in open-source C#
repositories [12], which are indicators of quality problems that make
software hard to maintain and evolve. Another study conducted by

6https://github.com/dotnet/roslyn

Shaukat et al. researched and compared eight different existing C#
static analysis tools within one software system [11].

4 METHODOLOGY
The modernity signature will use statistics about the usage of spe-
cific syntax patterns in the abstract syntax tree (AST) of the se-
lected codebase to derive its modernity. For example, the following
grammar rule was introduced as a replacement for the multiplica-
tive_expression, which added a rule for the range_expression:

multiplicative_expression :
range_expression
| multiplicative_expression '*'

range_expression
| multiplicative_expression '/'

range_expression
| multiplicative_expression '%'

range_expression ;

Range expressions were added in version 8.0 of the C# language,
which also affected the grammar rule of the multiplicative_ex-
pression, where unary_expression was replaced by range_ex-
pression. That means, if we detect the presence of range_expres-
sion in an AST of the codebase, we can conclude that it requires
at least C# version 8.0 to run it. Then this process of associating
language features and a language version its introduced in, and its
detection in the AST has to be done for all the grammar rule changes
throughout the evolution of the language. The occurrence amount
of each detected version-specific feature is saved in a defined data
structure, which represents the modernity signature for a selected
codebase.

4.1 Developing and Calculating a Modernity Signature
The Roslyn analysis platform can provide an Abstract Syntax Tree
representation of the C# codebase, which then can be traversed
with the interpreter pattern. The interpreter compares each node
to the specific syntax pattern and check for other conditions to
determine if it is associated with any of the documented features.
Each occurred version-specific feature then should be written to
a C# dictionary7, that stores language versions as keys, with the
corresponding values representing the number of features specific
to each version. This is how it is defined with C# language:

Dictionary <double , int > modernitySignature =
new Dictionary <double , int >();

This definition is very specific to the C# language and needs a
broader mathematical definition so that it is understandable. This
dictionary can be described as a set of tuples, where the tuple stores
the language version and the amount of version-specific features
detected in the codebase. The dictionary holds the modernity sig-
nature for a codebase at a specific version, which is then added to
a list with the same dictionaries but for different versions of the
repository. Then this list defines the modernity signature of the
repository. A formal mathematical definition is provided in Section
5.1 based on this approach.
7https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-
2?view=net-8.0

2

https://github.com/dotnet/roslyn
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.generic.dictionary-2?view=net-8.0


Measuring Code Modernity of the C# Language Codebases TScIT 41, July 5, 2024, Enschede, The Netherlands

4.2 Testing the Modernity Signature
Testing throughout the development of the modernity signature is a
crucial part of the process. There is no room for testing in terms of
the definition of the modernity signature itself, but a lot of testing
should be done within the implementation, to check if the docu-
mented features are recognized correctly. The testing methodology
that is used throughout the development of the modernity signature
is unit testing. By applying this testing strategy, the recognition
of each documented feature was tested in isolation. For instance,
one of the test cases to check if the extension of partial methods8 is
recognized correctly is:

partial class MyClass
{

partial void PartialMethod ();
}
partial class MyClass
{

partial void PartialMethod ()
{

Console.WriteLine("test");
}

}

By applying this testing strategy, the recognition of each doc-
umented feature was tested with one to three different test cases.
By testing each documented feature with several edge cases, we
reduced the amount of false detects and false positives, which is the
biggest concern for the modernity meter, as it should be as accurate
as possible to aid in answering the research question.

4.3 Collecting Codebases
When the modernity meter is developed and tested, it needs to be
applied to real existing projects, to calculate the modernity signa-
tures for them. Then, the modernity signatures can be examined to
determine if it is possible to represent the point in time at which the
codebase would have been written. GitHub [14] is used to find rele-
vant repositories for the calculation. There are some requirements
and reasons for them, that a repository should meet in order to be
analyzed within the research:

I The main language used across the repository should be C#.
That means that at least 85 percent of the codebase should be
written in the C# language.

Reasoning: The tool can only analyze the C# code.
II The repository should contain an .sln file with a consistent

path to it.
Reasoning: The current implementation can find a .sln file only

in the main repository’s directory, without an .sln file it is
unable to load the C# code.

III The repository should have a commit history dating back to
its creation, with at least 300 commits in total.

Reasoning: There should be a reasonable amount of commits
spread throughout the evolution of the repository so that it
can be analyzed at different points in time.

8https://github.com/dotnet/csharplang/blob/main/proposals/csharp-9.0/extending-
partial-methods.md

Various C# codebases were found that satisfy the stated require-
ments. The codebases were selected from the 50 most starred public
repositories using C#. Table 1 presents the selected repositories for
the calculation of the modernity signature. There are repositories
that met the conditions but were not selected. The reasons for this
are discussed in Section 7.3.

Table 1. Open source repositories selected for modernity signature calcula-
tion

Project Link to
repository

Versions an-
alyzed

Time frame
of versions

Files Link 93 10/02/2019 -
13/05/2024

Clean Archi-
tecture

Link 65 08/08/2017 -
10/04/2024

.NET Aspire Link 55 09/01/2024 -
13/06/2024

ShareX Link 31 23/02/2017 -
09/05/2024

SteamTools Link 29 21/07/2022 -
27/04/2024

MQTTnet Link 17 08/05/2022 -
23/05/2024

5 SIGNATURE DEFINITION

5.1 Formal technical definition
A modernity signature provides a quantitative measure of the ex-
tent to which a codebase utilizes features from different versions
of its programming language. Formally, we define the modernity
signature of a codebase as a list𝑀 of length 𝑁 ,
𝑀 = [𝐶1,𝐶2, . . . ,𝐶𝑁 ],

where each element 𝐶𝑖 corresponds to a set, which is defined as:
𝐶𝑖 = {(𝑉𝑗 , 𝑓 (𝑉𝑗 )) | 𝑉𝑗 ∈ 𝑉 },

at codebase’s version 𝑖 . Here 𝑉 is the set of documented language
versions and 𝑓 is a function mapping each version to the number of
versions-specific features. An example of 𝐶𝑖 in a JSON9 format:

{
"7.1": 3036,
"7.2": 49,
"7.3": 1880,
"8.0": 564,
"9.0": 683,
"10.0": 200,
"11.0": 38,
"12.0": 948

}

To construct the modernity signature, we first document the
features introduced in each version of the C# language. There are
currently 16 different versions of the C# language according to
documentation provided by Microsoft10. Then we parse the selected
9https://www.json.org/json-en.html
10https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-
history

3

https://github.com/dotnet/csharplang/blob/main/proposals/csharp-9.0/extending-partial-methods.md
https://github.com/dotnet/csharplang/blob/main/proposals/csharp-9.0/extending-partial-methods.md
https://github.com/files-community/Files
https://github.com/ardalis/CleanArchitecture
https://github.com/dotnet/aspire
https://github.com/ShareX/ShareX
https://github.com/BeyondDimension/SteamTools
https://github.com/dotnet/MQTTnet
https://www.json.org/json-en.html
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history


TScIT 41, July 5, 2024, Enschede, The Netherlands Marks Troicins

codebase to a syntax tree to identify instances of these features,
where the amount of the pulled versions of the selected codebase is
represented by 𝑁 .

Each documented feature 𝐹 is associated with the minimum ver-
sion 𝑉𝑚𝑖𝑛 that supports it. This means that the presence of feature
𝐹 in the selected codebase directly contributes to the calculation of
the static modernity signature by populating the set𝐶𝑖 and possibly
incrementing minimal language version to run the codebase at ver-
sion 𝑖 , meaning that the codebase requires at least language version
𝑉𝑚𝑖𝑛 or higher to run.

Finally, the overall modernity signature 𝑀 is a list that stores all
the minimum versions required to support detected instances of
documented features 𝐹 in the codebase.

It is important to note, that the research does not consider the impact
of the different versions of different variations of the .NET and only an-
alyzes documented features that were introduced in different versions
of the C# language. Proper documentation of version features exists
only for versions 7.1 and higher, so the research omits the versions
before 7.1.

5.2 Implementation
The implementation and the testing of it is based on themethodology
presented in Sections 4.1 and 4.2. We reference the implementation
as a "C# Codebase Modernity Meter" or just a "Modernity Meter".

The first implementation was developed to work with test cases
and was not capable of calculating the modernity signature for the
whole codebases (repositories). The modernity meter generated an
AST from the provided code snippet, and then Depth-First traversed
it within the interpreter pattern. Each node is then compared with
different syntax patterns and checked for other conditions if such
are needed to determine if this is a version-specific feature. For
example, this is a simple condition to recognize list patterns that
were introduced in the C# version 11.0:

if (node is ListPatternSyntax)
{

data.modernitySignature [11.0] += 1;
}

There also exist more complex features for recognition, such as
records with sealed base ToString override, detection of this feature
is done with these conditions:

if (node is RecordDeclarationSyntax
recordDeclaration)

{
foreach (var member in

recordDeclaration.Members)
{

if (member is MethodDeclarationSyntax m &&
m.Identifier.Text == "ToString" &&
m.Modifiers.Any(SyntaxKind.SealedKeyword) &&
m.Modifiers.Any(SyntaxKind.OverrideKeyword))

{
data.modernitySignature [10.0] += 1;

}
}

}

Once the first version of the modernity meter was tested and
finished, it had to be adjusted to calculate the modernity signature
for the repositories. To achieve that, the modernity meter uses the
capacities of Roslyn, which can create a virtual workspace for the
codebase from an .sln file. Once it opens the solution in the virtual
workspace, it provides a list of all classes written in C#. For each
class, the modernity signature is calculated and then combined for
all the classes. The modernity signature is then saved in a JSON
format. At this point, the signature is still calculated only for one
version of the repository, which is insufficient to meet the formal
definition. The implementation was adjusted with the possibility
of analyzing the repository after finding a commit with tags “v”,
“version” or “release”. If the repository lacks tags on the commits,
every n-th commit is analyzed until the repository reaches the state
where its structure is unprocessable by the modernity meter. At this
point, we have collected modernity signatures of each analyzed ver-
sion of the repository. To analyze the data in an understandable and
presentable manner, it is Max normalized according to the research
conducted by Zubcu [15] and plotted.

The repository containing the source code of the C# Codebase
Modernity Meter developed by the researcher can be found by
accessing this link: https://github.com/MarkOneLove/Modernity-
Analyzer.

6 RESULTS
The developed modernity meter calculated modernity signatures
for the repositories specified in Table 1. Calculated Max normalized
modernity signatures can be observed in Figures 1 - 6. It is important
to mention, that all the modernity signatures were calculated with
the same final version of the modernity meter discussed in the sec-
ond part of Section 5.2. Next, we analyze the calculated modernity
signature for each selected repository and interpret the results.

Figure 1. Active use of documented version-specific features began
only after 26/08/2020, which might indicate that the codebase
did not have a lot of source code or it consisted of features
from versions below 7.1. For most of the versions, the use of
the associated features grows towards 28/01/2024, which is
the date of the latest version. In the final version, the most
used features are from versions 7.1, 7.3, and 12.0.

Figure 2. Features from version 8 were used the most throughout the
observed history of the repository. We can also observe a
decrease of these features from the peak towards 30/11/2017
and growth towards the present time. In the final version, the
most used features are from versions 8 and 7.3.

Figure 3. Features from versions 7.1 and 7.3were used themost through-
out the history of the repository with inconsistent growth
and decrease. We can also observe active usage of features
from version 12.0 after the release of the language version.
This rapid growth might indicate that a big part of the code-
base was refactored and adopted the new capacities of the

4

https://github.com/MarkOneLove/Modernity-Analyzer
https://github.com/MarkOneLove/Modernity-Analyzer


Measuring Code Modernity of the C# Language Codebases TScIT 41, July 5, 2024, Enschede, The Netherlands

language.

Figure 4. Only features from versions 7.1, 7.2, and 7.3 were used un-
til 08/01/2022, after which features from version 10.0 were
adopted and mostly used. This indicates that the codebase
might have gone through a big release that adopted practices
of that time.

Figure 5. Consistent use of features from version 7.1 and 12.0 (after the
release of the version) can be observed. We can also observe
the rapid growth and the outstanding amount of features used
from version 10.0 after 12/02/2023, which can signal about a
refactoring of the codebase as version 10.0 was released way
before 12/02/2023.

Figure 6. The consistent growth of feature usage from versions 7.1,
7.3, 9.0, 10.0, and 11.0 can be observed throughout the ana-
lyzed time frame. This indicates that the repository might
have been expanded bit by bit with code that followed the
practices of the previous repository’s versions, which makes
sense as only 2024 and a small part of 2023 years were cov-
ered. There are some decreases in the usage of features, but
generally, they grow, which might mean that sometimes the
code was refactored, but only small parts of it.

All in all, the obtained results look almost as expected and provide
room for analysis and conclusions, which are drawn in the related
section.

Fig. 1. Files Max Normalized Modernity Signature

Fig. 2. ShareX Max Normalized Modernity Signature

Fig. 3. MQTTnet Max Normalized Modernity Signature

7 DISCUSSION
This section discusses what factors influence the modernity signa-
ture and is important to understand how the definition of it was
developed. We also discuss how the calculated modernity signature
represents the point in time when the codebase would have been
written. Another important topic that is discussed is the nuances of
the selection of the repositories for the signature calculation and
why only six of them were selected.

5



TScIT 41, July 5, 2024, Enschede, The Netherlands Marks Troicins

7.1 Factors Influencing the Modernity Signature
The definition and the implementation of the modernity signature
were not developed immediately and have gone through a lot of
research and refactoring. One of the concerns regarding the moder-
nity signature is what factors influence it. The most obvious answer
is the evolution and the features of the language itself, but in the
context of C# it is a bit more complicated, as it is dependent on
the runtime environment, which has its own versions. The first
idea was to change the definition to a 2-dimensional list and store
the versions of the runtime environment in it, but this idea was
quickly discarded for several reasons. First, there are no features
that can be detected from the AST that would be specific to the .NET
version, they all are specific to the C#, but not the environment.
Second, there are conceptually different variations of the runtime
environment, such as .NET Framework, .NET Core, .NET Standard,
and .NET, which makes it quite hard to linearly order them and only
makes the signature more complex for analysis. Third, it would not
extend the signature with useful data for analysis, as it would just
be a version associated with a C# version, which is not informative.
Conclusions about the minimum required runtime environment
version can be drawn based on the minimal required version of the
C# language, but this is irrelevant to this research.

7.2 Codebase Development Point in Time Representation
By analyzing the obtained modernity signatures, we can represent
the trends of the version-specific feature usage and make some
assumptions about the evolution of the codebase like it was done
in the section with results. Based on the observed trends, we can
estimate at what point in time and during which time frame was
the repository mostly developed and extended with code. With the
current implementation, it is not sufficient enough to estimate the
age of the codebase, as the modernity meter fails to scrape the oldest
versions of the repository and correctly process them. Generally,
it is possible to represent the relative point in time that the code
would have been written by observing feature usage trends, peaks,
and skewness from the calculated modernity signatures.

7.3 Open-Source Repository Selection for Signature
Calculation

There were many repositories that satisfied the requirements stated
in Section 4.3, but only the ones mentioned in Table 1 were actually
used for the modernity signature calculation. There are several
reasons why a lot of open-source repositories were unable to be
processed by the modernity meter.

First, in many of the repositories, an .sln file was either not present
or was located in different directories throughout the history of
the repository. For this reason, it was not possible to calculate the
modernity signature for the whole history of the repository or for
the solid time frame, which is at least one year.
Second, some of the repositories have a lot of source code and

the calculation of the modernity signature can take a lot of hours or
even days. For example, it took more than two hours to calculate the
signature for one version of the Roslyn repository using a personal
computing system with an eight-core processor and 32 GB of RAM.
Because of this some of the repositories were skipped out, as there

was not enough time to generate a modernity signature, which
would be sufficient for the observation and analysis.

Fig. 4. CleanArchitecture Max Normalized Modernity Signature

Fig. 5. SteamTools Max Normalized Modernity Signature

6



Measuring Code Modernity of the C# Language Codebases TScIT 41, July 5, 2024, Enschede, The Netherlands

Fig. 6. Aspire Max Normalized Modernity Signature

8 CONCLUSION

8.1 C# Modernity Calculator Conclusion
The modernity meter itself is a proof of concept, thus it is not perfect
and can be improved in different ways. Here we mention some of
the improvements that we feel can make the tool better.
First, the modernity meter currently makes type I and type II

errors, which stand for false positives and false negatives. For exam-
ple, it can detect the presence of features from the latest version at
the time of the codebase when that version was not released yet, or
it can skip out the presence of some version-specific features. For
this reason, the obtained results are not ideally accurate.

Second, the modernity meter can only recognize features starting
from C# language version 7.1 and omits the existence of all features
before that version. This is important and needs to be highlighted.
This is because we could not find proper documentation of features
from the versions below 7.1.
Third, the structure of the implementation can be refactored

from the interpreter to the visitor pattern to achieve more efficient
traversal and skip out syntax nodes that are not associated with
different versions of the C# language. It will guarantee that nodes
are visited only once and will provide more accurate results. The
visitor pattern also makes code more readable as each visit method
would be associated with one or few features which is much more
convenient than a list of conditional statements within one or few
methods. This improvement can be done to achieve better efficiency,
which was not a requirement for the modernity meter.

8.2 Research conclusion
In this section, we answer the set of sub-research questions created
to aid in answering the research question itself.

We have answered RQ1 in Section 5. Both the formal mathe-
matical definition and the details of the implementation of it were
explained.
Next, we answer RQ2 in Section 7.1. The factor that influences

the modernity signature the most is the evolution of the C# language
itself, another factor, that could have an influence but was omitted
by the research, is the runtime environment.

Finally, RQ3 is answered in Section 7.2. It is possible to represent
a relative point in time when the codebase would have been writ-
ten by observing peaks, skewness, increases, and decreases of the
calculated modernity signature.

To conclude, static analysis can be used to determine the moder-
nity of the C# language codebases, as most of the version-specific
features affect the grammar of the language, thus it is possible to
detect those by applying the discussed approach. It is not possible
to detect all version-specific features, as some of them affect the
compiler, standard libraries, concurrency, or other language aspects
that are undetectable with applied static analysis methodology. Thus
it can not be applied to the full extent.

9 FUTURE WORK

9.1 Methodology
The research is sufficient to answer the defined research question,
but there are some parts that were left under-researched and could
provide interesting results. By observing the obtained results, it
would be interesting to find out what exact features from each
language version are the most used and why. By researching each
feature separately, current results could be interpreted inmore detail,
which could explain why some of the results look unnatural at first
glance. By researching each feature, we could also point out trending
features and the ones that were almost never used, which could be
meaningful for C# language designers and developers to estimate
their work from another perspective.

9.2 Normalization
The modernity meter currently applies just one normalization tech-
nique, which is Max normalization, when the modernity signature
is collected for different versions of the codebase. This approach
leads to different normalization techniques just scaling the amount
of version-specific features, but not providing any insights. A good
addition to the modernity meter would be applying normalization
techniques straight away when analyzing the syntax tree, as it could
provide additional information about the evolution of the codebases.

REFERENCES
[1] High-level programming language developed by Microsoft that runs on the .NET

Framework. https://learn.microsoft.com/en-us/dotnet/csharp/
[2] Microsoft Corporation. https://www.microsoft.com/nl-nl/
[3] Indicator of the popularity of programming languages. https://www.tiobe.com/

tiobe-index/
[4] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler and J. Penix, "Using Static

Analysis to Find Bugs," in IEEE Software, vol. 25, no. 5, pp. 22-29, Sept.-Oct. 2008,
https://doi.org/10.1109/MS.2008.130

[5] M.M. Lehman, On understanding laws, evolution, and conservation in the large-
program life cycle, Journal of Systems and Software, Volume 1, 1979, Pages 213-221,
ISSN 0164-1212, https://doi.org/10.1016/0164-1212(79)90022-0

[6] B. Chess and G. McGraw, "Static analysis for security," in IEEE Security & Privacy,
vol. 2, no. 6, pp. 76-79, Nov.-Dec. 2004, https://doi.org/10.1109/MSP.2004.111

7

https://learn.microsoft.com/en-us/dotnet/csharp/
https://www.microsoft.com/nl-nl/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1016/0164-1212(79)90022-0
https://doi.org/10.1109/MSP.2004.111


TScIT 41, July 5, 2024, Enschede, The Netherlands Marks Troicins

[7] Chris Admiraal, Wouter van den Brink, Marcus Gerhold, Vadim Zaytsev, Cristian
Zubcu, Deriving modernity signatures of codebases with static analysis, Journal of
Systems and Software, Volume 211, 2024, 111973, ISSN 0164-1212, https://doi.org/
10.1016/j.jss.2024.111973

[8] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler and J. Penix, "Using Static
Analysis to Find Bugs," in IEEE Software, vol. 25, no. 5, pp. 22-29, Sept.-Oct. 2008,
https://doi.org/10.1109/MS.2008.130

[9] Koshelev, V.K., Ignatiev, V.N., Borzilov, A.I. et al. SharpChecker: Static analysis tool
for C# programs. Program Comput Soft 43, 268–276 (2017). https://doi.org/10.1134/
S0361768817040041

[10] Robert Charles Metzger, 14 - The Way of the Computer Scientist, Editor(s): Robert
Charles Metzger, In HP Technologies, Debugging by Thinking, Digital Press, 2004,
Pages 473-507, ISBN 9781555583071, https://doi.org/10.1016/B978-155558307-1/
50014-8

[11] R. Shaukat, A. Shahoor and A. Urooj, "Probing into code analysis tools: A com-
parison of C# supporting static code analyzers," 2018 15th International Bhurban

Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan,
2018, pp. 455-464, https://doi.org/10.1109/IBCAST.2018.8312264

[12] T. Sharma, M. Fragkoulis and D. Spinellis, "House of Cards: Code Smells in Open-
Source C# Repositories," 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), Toronto, ON, Canada, 2017, pp.
424-429, https://doi.org/10.1109/ESEM.2017.57

[13] W. Van den Brink, M. Gerhold and V. Zaytsev, "Deriving Modernity Signatures
for PHP Systems with Static Analysis," 2022 IEEE 22nd International Working
Conference on Source Code Analysis and Manipulation (SCAM), Limassol, Cyprus,
2022, pp. 181-185, https://doi.org/10.1109/SCAM55253.2022.00027

[14] Developer platform that allows developers to create, store, manage, and share
their code. https://github.com/

[15] Cristian Zubcu. 2023. Effect of Normalization Techniques onModernity Signatures
in Source Code Analysis. https://essay.utwente.nl/96034/ Publisher: University of
Twente.

8

https://doi.org/10.1016/j.jss.2024.111973
https://doi.org/10.1016/j.jss.2024.111973
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1134/S0361768817040041
https://doi.org/10.1134/S0361768817040041
https://doi.org/10.1016/B978-155558307-1/50014-8
https://doi.org/10.1016/B978-155558307-1/50014-8
https://doi.org/10.1109/IBCAST.2018.8312264
https://doi.org/10.1109/ESEM.2017.57
https://doi.org/10.1109/SCAM55253.2022.00027
https://github.com/
https://essay.utwente.nl/96034/

	Abstract
	1 Introduction
	1.1 C# Language Levels
	1.2 Static Code Analysis

	2 PROBLEM STATEMENT
	3 RELATED WORK
	4 METHODOLOGY
	4.1 Developing and Calculating a Modernity Signature
	4.2 Testing the Modernity Signature
	4.3 Collecting Codebases

	5 SIGNATURE DEFINITION
	5.1 Formal technical definition
	5.2 Implementation

	6 RESULTS
	7 DISCUSSION
	7.1 Factors Influencing the Modernity Signature
	7.2 Codebase Development Point in Time Representation
	7.3 Open-Source Repository Selection for Signature Calculation

	8 CONCLUSION
	8.1 C# Modernity Calculator Conclusion
	8.2 Research conclusion

	9 FUTURE WORK
	9.1 Methodology
	9.2 Normalization

	References

