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ABSTRACT 

The growing rate of biodiversity loss highlights the importance of effective conservation initiatives, such as 

rewilding, to restore and preserve natural landscapes. Accurate land cover mapping is essential for these 

initiatives, as it helps to identify and understand landscape structures. It is also crucial in monitoring 

landscapes, making informed decisions, and implementing conservation strategies. Additionally, landscape 

heterogeneity indices are essential for understanding landscape heterogeneity and ecological complexity, 

which will help in successful conservation strategies.  

 

This study investigates the optimization segmentation parameters and compares classification accuracy and 

landscape heterogeneity indices at different spatial resolutions of UAV images. Specifically, this research 

focuses on analysing the impact of shape and compactness on the segmentation accuracy and the effect of 

the spatial resolution on land cover classification accuracy and evaluating the sensitivity of landscape 

heterogeneous indices across various resolutions. Based on the segmentation accuracy metrics, findings 

indicate that optimal segmentation parameters include shape values ranging from 0.05 to 0.3 and 

compactness values from 0.7 to 0.9, yielding the highest segmentation accuracy. High-resolution UAV 

imagery (3.5 cm) outperformed lower resolutions (12 cm and 25 cm) with an accuracy of 85%. This high-

resolution imagery captures fine-scale landscape features necessary for accurate classification and effective 

conservation planning. The study highlights a significant improvement in classification accuracy with higher-

resolution UAV imagery that captures detailed landscape features. Additionally, optimizing segmentation 

parameters, particularly shape and compactness, further enhances the accuracy of land cover classifications. 

The importance of variable selection is also emphasized, indicating that selecting fewer, more relevant 

variables improves the approach's efficiency by reducing computational requirements and time. 

Furthermore, the results show that the values of landscape heterogeneity indices are sensitive to different 

spatial resolutions. Higher-resolution images provided a detailed understanding of landscape structure, 

capturing subtle variations critical for conservation efforts. Implementing these methodologies across 

different ecosystems and geographical regions can generalise and adapt this approach to various 

environmental monitoring projects.  

 

 

 

Keywords: UAV, Multi-Resolution Segmentation, Segmentation Accuracy, Segmentation Accuracy 

Metrics, Land Cover classification, Classification Accuracy, Spatial Resolution, Landscape Heterogeneity 

Indices, Environmental Monitoring. 
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1. INTRODUCTION 

1.1. Background  

Biodiversity is “the variety of life on Earth, in all its forms, from genes and bacteria to entire ecosystems 

such as forests or coral reefs”(United Nations, 2024a). It refers to the species in the ecosystem, the evenness 

of their distribution, and the differences in their interactions. Over the past decades, the effect of biodiversity 

loss has been the focus of much ecological research (Hooper et al., 2005). The 2030 Agenda for Sustainable 

Development's Goal 15 is to “protect, restore and promote sustainable use of terrestrial ecosystems, 

sustainably manage forests, combat desertification, and halt and reverse land degradation and biodiversity 

loss” (United Nations, 2024b). Human activities continue to affect the environment locally and globally. 

This causes dramatic changes in ecological communities, which significantly affect the landscapes. 

Understanding the connectivity of various land cover within landscapes is essential for assessing the 

potential impacts of management interventions (Malanson & Cramer, 1999). Rewilding, a conservation 

strategy that focuses on protecting and restoring ecosystems and natural areas, is essential in maintaining 

and enhancing biodiversity (Svenning et al., 2016). It is a rapidly developing ecosystem management concept, 

a transformative approach to biodiversity conservation. Recently, rewilding has been broadly known as 

repairing or refurbishing ecosystem functions by reintroducing the selected species (Pettorelli et al., 2019). 

Rewilding also aims to increase the biodiversity and complexity of an ecosystem by allowing nature to take 

its course (Arya, 2023). Rewilding helps restore landscape heterogeneity, which is the spatial complexity and 

diversity of landforms, vegetation types, and habitats within an ecosystem (Svenning et al., 2016).This 

heterogeneity supports diverse species populations and genetic diversity, which is essential in the ecosystem's 

adaptability and resilience (Fahrig et al., 2011). Landscape heterogeneity is considered a significant indicator 

of biodiversity (Katayama et al., 2014). Landscape heterogeneity refers to the diverse nature of landscapes 

at different scale (Malanson & Cramer, 1999). The complexities and diversity in the spatial distribution of 

habitats are represented as landscape heterogeneity, and it is caused by the distribution of ecological systems 

(Kie et al., 2002). It consists of qualitative and quantitative differences in landscape components (Tonetti et 

al., 2023). Because of its role in reflecting habitat diversity and spatial complexity, landscape heterogeneity 

is essential in developing conservation strategies (Duflot et al., 2014). Quantifying spatial heterogeneity 

through Landscape heterogeneity indices (LHI) helps ecologists understand the effects of habitat 

fragmentation. This understanding is essential for conserving natural habitats and maintaining ecological 

balance (Navarro & Pereira, 2012).  

1.2. Land cover mapping and Remote sensing 

Land cover mapping is important in monitoring biodiversity conservation(Hansen et al., 2013). These maps 

contribute to identifying areas of high conservation importance, monitoring vegetation changes over time, 

and assessing the effects of environmental changes and human activities on ecosystems (Pettorelli et al., 

2014). It is also essential to have a land cover map, as it plays a significant role in determining spatial 

distribution. Mapping land cover provides helpful information about natural and man-made environments 

locally and globally. A land cover map is required for effective conservation and restoration efforts (Xie et 

al., 2008). Since vegetation is interconnected with its surroundings. As a result, land cover maps are used in 

various fields, including landscape planning, agriculture, conservation, forestry, geography, and plant ecology  

(Dias et al., 2004).Mapping land cover is essential for identifying, assessing, and implementing management 
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plans for natural areas (Dias et al., 2004). Remote sensing has emerged as an effective tool for vegetation 

and land cover mapping, with several advantages over traditional field methods (Xie et al., 2008). Remote 

sensing is the process of collecting information about the surface of the Earth without direct contact, usually 

through satellite or airborne sensors. These sensors collect data from multiple spectral bands, allowing for 

detailed analysis of vegetation characteristics (Asner et al., 2015). Using remote sensing imagery involves 

several considerations, processes, and techniques in Mapping land cover. There is a greater focus on 

addressing technical challenges in developing mapping techniques and improving precision in producing 

vegetation maps. The rapid growth of remote sensing technology has increased the availability of images at 

different spatial, spectral, and temporal resolutions. Studies show that using satellite images for land cover 

mapping is more efficient than aerial photographs (Kaneko & Nohara, 2014). However, satellite images 

from passive sensors have limitations, including cloud cover, spatial resolution, cost, and data availability. 

Unmanned aerial vehicles (UAVs) have evolved as a cost-effective solution to these limitations, offering 

very high spatial resolution and flexible data acquisition (B. Yang et al., 2019). 

1.3. Role of UAVs in remote sensing 

In recent years, UAVs have emerged as critical remote sensing tools, transforming how one perceives and 

studies our surroundings. UAVs have gained significant attention in remote sensing because of their 

unparalleled ability to capture high spatial resolution imagery with precision and efficiency (Colomina & 

Molina, 2014). The development of UAV remote sensing technology helps to increase data acquisition 

effectiveness (Huang et al., 2018). The increasing popularity of UAVs in remote sensing is due to their 

quickness and flexibility in data acquisition systems, which produce high-resolution data such as digital 

surface models (DSMs), orthoimages, and point clouds (Crommelinck et al., 2017). Using UAVs with 

mounted sensor systems is the most cost-effective method to get ultra-high-resolution images. The higher 

resolution of UAV-derived imagery enables scientists to conduct detailed analyses of habitat structure, 

species distribution, and ecological processes (Chabot & Bird, 2012). It produces precise vegetation mapping 

and helps monitor landscape changes (Yurtseven et al., 2019). The combination of low cost, high resolution, 

ability to operate at low altitudes, and not being affected by cloudy weather conditions have increased the 

use of UAVs in various fields of agriculture, forestry, and urban planning (Sibaruddin et al., 2018). According 

to the study of (Manfreda et al., (2018) UAVs can significantly improve environmental monitoring by 

providing high spatial detail over large areas. UAV-mounted sensors bridge the gap between field 

observations and traditional airborne and space-borne remote sensing. While UAV images are becoming 

more popular, some studies are comparing the advancements in UAV multispectral mapping with satellite 

data, as discussed by (B. Yang et al., (2019). Regarding adaptability, flexibility, rapid development, and high 

spatial and temporal resolution data, UAVs are better than manned airborne systems or satellites (Manfreda 

et al., 2018). UAVs are used in various fields, such as agriculture and environmental monitoring, to improve 

data efficiency for management and monitoring purposes (Kaneko & Nohara, 2014). UAV techniques have 

proven effective in mapping vegetation and providing precise classification in difficult on-the-ground 

investigation areas (Kaneko & Nohara, 2014). 

1.4. Object-Based Image Analysis (OBIA) 

UAVs provide higher spatial resolution and flexibility, enabling detailed data collection (Colomina & Molina, 

2014). However, the extensive dimension and complexity of UAV imagery make it difficult to extract 

meaningful information. Object-based image analysis (OBIA) addresses these challenges by using the spatial 

consistency of image objects, thus improving feature extraction and classification accuracy (Feng et al., 

2015). OBIA is widely used among other methods and helps achieve the most appropriate results (Yurtseven 
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et al., 2019). The application of OBIA was established for very high-resolution (VHR) images and has been 

helpful in various remote sensing applications for over two decades (Johnson & Ma, 2020). OBIA 

techniques measure image objects' structure, form, and spectral properties (Kavzoglu & Tonbul, 2017). In 

addition to spectral properties, it considers shape and texture properties, establishing it as an advanced 

method (Sibaruddin et al., 2018). In OBIA, image segmentation is essential in analysing remotely sensed 

data and can be used in various fields, including land cover mapping (Costa et al., 2018). These methods 

depend on segmentation and classification processes, which are sequentially carried out (Ez-Zahouani et al., 

2023). The accuracy assessment shows that object-based classification performs better than pixel-based 

classification when using multi-spectral Landsat imagery and the optimal segmentation method (Gao et al., 

2011). Moreover, OBIA is essential for land cover classification, ecological monitoring, and urban planning 

applications. By delineating objects based on their spatial and spectral characteristics, OBIA allows for more 

precise and thematically accurate land cover classification (Blaschke, 2010). 

1.5. Image segmentation in OBIA 

In OBIA, Image segmentation is the primary step, which uses the segmentation algorithm to divide image 

objects into homogeneous polygons, representing the landscape features (Lin, 2008). Segmentation 

algorithms are essential in understanding the structure of landscapes and their important elements at 

different scales (Möller et al., 2007). Different segmentation algorithms are used for various images, but no 

segmentation method is applicable universally (Monteiro & Campilho, 2006). Because each segmentation 

algorithm can produce different types of outputs depending on the parameters' settings in each algorithm, 

selecting the segmentation algorithm becomes difficult (Costa et al., 2018). Image segmentation requires 

precise identification of image objects (Hao et al., 2021). Segmentation quality is essential and differs 

depending on precision, complexity, and effectiveness (Prabu & Gnanasekar, 2021). The accuracy of image 

classification is significantly affected by image segmentation quality(Kavzoglu & Tonbul, 2017). Evaluation 

and refinement of segmentation parameterisation are essential to ensure the segmentation results before 

moving on to image classification (Gao et al., 2011). Several studies, including (Kavzoglu & Tonbul, 

2017)and (Monteiro & Campilho, 2006), have used segmentation evaluation metrics, like under-

segmentation, over-segmentation, root means square, Area Fit Index (AFI) and Quality Rate (QR), and 

different numbers of segments. These metrics were applied using manually digitised reference objects. 

However, there is still room for improvement in results by developing quality measures (Kavzoglu & 

Tonbul, 2017). 

1.6. Multi-resolution Segmentation (MRS) Algorithm 

The multi-resolution segmentation (MRS) algorithm in OBIA is used in many applications that involve very 

high-resolution images. This multi-resolution segmentation algorithm significantly helps to segment the 

image objects (Chen et al., 2021)and is the most used and widely successful. Studies have shown significant 

improvements in segmentation accuracy and reliability achieved by MRS across various datasets, highlighting 

its efficacy in real-world applications (Haralick & Shapiro, 1985). The MRS algorithm represents a 

hierarchical segmentation approach that uses multi-scale analysis to divide images into homogeneous regions 

(Happ et al., n.d.).To proceed with this segmentation algorithm, scale parameters, image layer weights, 

shapes, and compactness must be defined. Determining these parameterisations is a challenging part. 

Usually, it is done through a trial-and-error method (Munyati, 2018). Studies such as (Drǎguţ et al., 

2010)proposed and developed the ESP (Estimation of Scale Parameter) tool, which helps define the scale 

parameter in the multi-resolution algorithm and determine the heterogeneity of the object within the scene 
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by using the concept of local variance. However, there is a lack of studies that help determine the shape and 

compactness parameters to improve the segmentation algorithm's efficiency (Drǎguţ et al., 2010).  

 

Figure 1 (Herawan et al., 2021) provides a detailed visual representation of the parameters and criteria 

involved in the MRS algorithm. It explains the role of the Scale Parameter in defining the maximum standard 

deviation of the homogeneity criteria, which directly influences the size of the resulting objects. 

Homogeneity criteria work in pairs of shape and colour, balancing the overall segmentation processes 

further on the shape components, smoothness, and compactness. The figure detailed how smoothness and 

compactness are calculated and contribute to the overall segmentation. In the calculation, the variable b is 

a weighting factor that adjusts the influence of smoothness and compactness in shape parameters. 

 

 
Figure 1: Multi-resolution segmentation concept flowchart (Source: (Herawan et al., 2021)) 

1.7. Segmentation Accuracy 

Segmentation algorithms must be evaluated to measure their performance and determine the algorithm's 

effectiveness and its parameters (Zhang et al., 2015). Segmentation accuracy is essential in image analysis 

because it serves as a starting point for following classification and vegetation mapping processes (Zhang et 

al., 2015). Accurate segmentation ensures that objects of interest are precisely delineated, allowing for 

reliable feature extraction and further analysis. The primary challenges with segmentation accuracy are based 

on the resolution of the remotely sensed images. Low- to medium-resolution images produce results of low 

segmentation accuracy because of their large and mixed pixels. Reducing pixel size improves segmentation 

accuracy, indicating that higher spatial resolution leads to better segmentation accuracy (Lin, 2008). This 

kind of analysis is essential to improving the segmentation accuracy of image processing using different 

algorithms (Prabu & Gnanasekar, 2021).  

Segmentation accuracy metrics are essential for evaluating and improving segmentation algorithm 

performance. Over-segmentation (OS) occurs when an object is split into multiple segments, whereas under-

segmentation (US) occurs when multiple objects are combined into one segment. Both cases may affect an 

accurate representation of the landscape, influencing the following steps (Clinton et al., 2010; Kavzoglu & 

Tonbul, 2017) Quality Rate (QR) and Area Fit Index (AFI) are critical metrics for segmentation accuracy. 

QR assesses the overall quality of segmentation by considering both over-segmentation and under-
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segmentation of the segmented regions (El-naggar, 2018). AFI, on the other hand, assesses the geometric 

accuracy of the segmented areas, ensuring that the segments overlap the actual boundaries of the objects 

(Kavzoglu & Tonbul, 2017).High segmentation accuracy ensures precise classification of vegetation classes, 

which is essential for ecological studies, land use planning, and environmental monitoring (Guirado et al., 

2021). 

1.8. Classification Accuracy 

Classification accuracy is essential in remote sensing applications, especially for vegetation and land cover 

mapping (Rwanga & Ndambuki, 2017). Classification accuracy is closely related to segmentation accuracy. 

Segmentation inaccuracy affects the classification process, which decreases the accuracy of land cover maps 

(Xie et al., 2008). The optimal segmentation resulted in the highest classification accuracy (Gao et al., 2012). 

High classification accuracy is necessary for making effective choices in environmental management and 

land use planning. Accurate classification allows policymakers and researchers to identify subtle changes in 

land cover, resulting in better conservation strategies and resource use (Rwanga & Ndambuki, 2017). Thus, 

improving classification accuracy is critical for effective biodiversity conservation and ecosystem 

management. 

1.9. Landscape Heterogeneity Indices (LHI) 

Landscape heterogeneity Indices (LHI) help to analyse the interaction between landscape structure and plant 

diversity, and they are also used for habitat assessment and modelling for species groups (Ndao et al., 2021). 

These metrics are becoming a popular topic in contemporary research on ecological landscapes (Uuemaa et 

al., 2009). The change in long-term patterns in fragmented areas is due to the increasing possibility of 

organism extinction (Tonetti et al., 2023). Using these metrics as an equal for fragmentation is significant 

even in human-dominated areas with frequently fragmented landscapes (Tonetti et al., 2023). Measuring 

landscape heterogeneity involves various methods requiring metrics of the effects of ecological processes 

(Ndao et al., 2021).Understanding these metrics using GIS analysis is essential for effective biodiversity 

conservation in the context of global change (Morelli et al., 2013). These metrics help to focus on estimating 

landscape changes in biodiversity and habitat analysis. The different relationships between landscape 

heterogeneity and species richness at various spatial scales are essential to understanding biodiversity 

(Katayama et al., 2014). Multiple studies indicate a positive relationship between biodiversity and landscape 

heterogeneity, particularly in historically diverse landscapes such as parts of Europe, North America, and 

East Asia (Katayama et al., 2014). Over the past three decades, landscape heterogeneity metrics have 

contributed to advancing both ecological theory and practical applications (Frazier & Kedron, 2017).  

1.10. Research Gap 

Several studies have been carried out to explore the effect of image resolution on classification accuracy and 

to evaluate various segmentation methods, including the methods developed by (Lu & He, (2018) and (Reyes 

et al., (2017). The study of (Mas et al., (2010) Specifically, it addressed the performance of classification 

methods on landscape heterogeneity metrics. On the other hand, studies including (Fynn & Campbell, 

(2019), (Sertel et al., (2018), and (Saura, (2004) Have focused on exploring the sensitivity of fragmentation 

indices (i.e., Landscape heterogeneity Indices) at various image spatial resolutions using satellite images. 

Furthermore, some studies compared segmentation methods and their accuracy (Kavzoglu & Tonbul, 2017). 

However, the sensitivity of LHI and segmentation accuracy influenced by segmentation parameterisation 

using different resolutions of UAV images is mainly unexplored. A study carried out by (Garcia & Saura, 

2004) Found that LHI is sensitive to image resolution when using satellite images. However, as high-
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resolution UAV images become more widely available, it is essential to investigate the relationship between 

the segmentation algorithm, its accuracy, and LHI at different UAV image resolutions. This study aims to 

provide valuable insights into the optimal use of UAV imagery and segmentation methods with their 

parameterisation for enhanced sensitivity analysis in LHI. 

1.11. Research Objective and Questions 

This study aims to evaluate the impact of various parameters on segmentation and classification accuracy 

and compare LHI using UAV imagery at different resolutions. The specific research objectives and 

questions are outlined as follows: 

 

R.O.1: To Identify the impact of shape and compactness on segmentation accuracy at different 

spatial resolutions using the Multiresolution segmentation algorithm. 

R.Q.1.1: How do the shape and compactness parameters in the multiresolution algorithm influence 

the segmentation accuracy at different spatial resolutions? 

 

R.O.2: To assess the effect of different spatial resolutions of UAV images on classification accuracy 

and Landscape heterogeneity indices. 

R.Q.2.1: How do different UAV image resolutions affect Land cover classification accuracy? 

R.Q.2.2: What is the effect of different resolutions of UAV images on LHI? 

2. STUDY AREA AND METHODS 

2.1. Overview of the Study Area 

The study area (Figure 2) for this research is the Pastos Solanillos, situated near the village of Mazarete in 

Guadalajara province, Spain. It is located at 40.957° N and 2.192° W and lies 5 km west of Anquela del 

Ducado. This area is in the Iberian Highlands, a significant part of the Iberian Chain in Spain. The region is 

known for its diverse ecosystems, including pine, oak, juniper forests, river canyons, and arid open spaces. 

The rewilding area of Pastos Sollanillos covers 1,515 hectares. It is an open forest containing pine trees 

(Pinus Sylvestris, Pinus Nigra), oak trees (Quercus pyrenaica), shrubs, grasslands, and other herbaceous vegetation. 

This area has its own ecological and environmental significance. It is connected to the region's historical 

heritage, highlighting its sustainable land use practices that have evolved over centuries. For this study, a 

specific area in the northeast, covering about 6.44 hectares, was chosen for detailed analysis.  

 

Guadalajara has a diverse region divided into three main zones: The Castilian Plateau in the north and east 

consists of flat plains and isolated mountain ranges; the Central System Mountain range runs through the 

centre, with peaks exceeding 2,000 metres; and The Tagus River basin in the south includes fertile valleys 

and steeper terrain (Inicio - Instituto Geográfico Nacional, 2024). The study area lies within the Central System 

Mountain range. This region has a continental Mediterranean climate, with hot, dry summers, with an 

average temperature exceeding 25° C in July, and cold winters, with an average temperature below 5° C in 

January. Rainfall is usually scarce year-round, with the highest concentration in spring and autumn (Agencia 

Estatal de Meteorología - AEMET. Gobierno de España, 2024). The study area is dominated by 

Mediterranean forests that grow in the lower and middle altitudes, with Pinus sylvestris, Pinus nigra, and Quercus 

Pyrenaica. Scrubland vegetation in drier regions includes aromatic plants like thyme and lavender. Deciduous 
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forests dominated by beeches (Fagus Sylvatica) and oaks (Quercus Pyrenaica) thrive at higher elevations in the 

more humid areas of the Central System mountains (Ministerio Para La Transición Ecológica y El Reto 

Demográfico, 2024). 

 

 
Figure 2: Location of Pastos Sollinillos and study area 

Rewilding Europe chose the Pastos Sollinillos area, part of the Iberian Highlands, Spain, as a project site to 

rejuvenate through natural grazing. Over half of the Rewilding Landscape's 850,000 hectares are protected, 

most of which are Natura 2000 sites. The sparsely populated Iberian Highlands, located at an interface of 

diverse climates and habitats, has emerged as a protection for a diverse range of species, including thriving 

populations of raptors such as Bonelli's eagle, peregrine falcon, and eagle owl. While livestock farming and 

hunting remain important, Nature tourism is also growing, providing an opportunity to strengthen and 

diversify local economies. With high biodiversity and low impact from humans, the conditions are ideal for 

nature tourism to begin taking a significant role. 

 

 
Figure 3: Horses introduced in Pastos Sollinillos  

Source: (https://rewildingeurope.com/landscapes/iberian-highlands/) 
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A portion of the study area was also affected by the forest fire in 2005, which destroyed 11,900 hectares of 

Pinus sylvestris, Pinus nigra, and Quercus Pyrenaica in the Iberian highlands. Burned trees were removed to help 

natural regeneration. However, after regeneration, it resulted in overly dense forests that lacked complexity, 

limiting acorn production. Horses were introduced (Figure 3) to help maintain the landscape. Their natural 

grazing behaviours have begun providing areas to light, encouraging structural diversity, and resulting in a 

mosaic landscape beneficial to long-term natural regeneration (Iberian Highlands | Rewilding Europe, 2024). 

This is part of Rewilding Europe's mission to provide more space for wildlife and natural processes, 

enhancing biodiversity and resilience to fire. The non-governmental organisation Rewilding took measures 

to protect this landscape and its biodiversity. 

2.2. Data 

The data used for this study includes primary data acquired by UAVs and field data collected on-site for 

training and validation purposes. 

2.2.1. UAV data 

The UAV-acquired data for this study was collected using the DJI Mavic 3M (Figure 3), a Quadcopter drone 

designed and equipped with advanced aerial imaging and mapping technology. This drone has a high-

resolution RGB camera and a multispectral sensor (MS), which includes bands such as Green, Red, Red 

Edge, and Near-Infrared (NIR). For detailed specifications regarding the drone and its sensor capabilities, 

refer to the link (https://ag.dji.com/mavic-3-m/specs). The RGB camera operates as a panchromatic sensor 

with a resolution of 3.5cm per pixel at a flying altitude of 120 meters. Similarly, the MS sensor provides a 

resolution of 12cm per pixel at the same altitude. The dedicated bands in the NIR region are particularly 

useful for discriminating vegetation and monitoring its condition through vegetation indices (VIs). The flight 

operations were planned and executed with the DJI Pilot software, which integrates with the Android 

controller to ensure accurate navigation and data capture. The flights were conducted at a constant height 

of 120 meters above ground level, using the UAV system's onboard terrain-following feature, demonstrating 

the efficiency and reliability of the process. Real-time kinematic corrections ensure accuracy in the 

coordinates of every image, achieving a root mean square error (RMSE) of less than 2 cm in the X and Y 

dimensions and less than 3 cm in the Z dimensions. Furthermore, the data was collected on June 24, 2023, 

between 12:00 and 16:00, which introduced challenges such as a varying shadow affecting the interpretability 

of the images due to the sun’s position. The data was managed and stored to maintain its integrity and 

security while organising it for easy access and analysis. Despite the high-resolution data and advanced 

technology, limitations were identified caused by environmental factors such as shadows during the data 

collection phase. These factors were carefully considered during the later data processing and analysis phases 

to reduce their impact on the study's findings. 

  
Figure 4: Mavic 3 Multispectral drone and its specifications 

 (source: https://ag.dji.com/mavic-3-m?site=ag&from=nav) 

https://ag.dji.com/mavic-3-m/specs
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2.2.2. Field samples   

The Rewilding Spain team collected field data to train the model and validate the classification results. The 

process involved direct observation within the study area and systematic ground sampling techniques to 

collect data on land cover types. The typology classes were chosen based on the dominant land cover types 

found in the landscape. The rewilding team performed a preliminary survey of the region's existing land 

cover classes. This analysis identified six key land cover classes: Trees, Shrubs, Herbaceous vegetation, 

Grass, Bare soil, and Rock. Additionally, extra class Shadows were included to ensure the precise 

classification derived from the visual interpretation of UAV images.  

 

The sample points (Figure 5) were distributed across the study area and within each land cover class to 

ensure a balanced representation. This approach captures the heterogeneity in land cover distribution and 

minimizes sample biases. Furthermore, ultra-high-resolution UAV imagery complemented field observation 

sample points. A total of 310 samples were collected and evenly distributed across the study area and land 

cover classes. Within these, 210 were assigned for training, which was used to train the model and classify 

land covers. At the same time, the remaining 100 were chosen for validation, which was used to evaluate 

classification accuracy. These ground samples are a reference point for classifying various classes and 

validating the classification results of UAV imagery analysis in this study. 

 

 
Figure 5: Training and Validation Samples 
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2.3. Methods    

The proposed methodology uses UAV images to assess the landscape of Pastos Solanillos in Spain. The 

study includes segmentation, classification, and the computation of LHI. This workflow can help analyse 

the impact of segmentation parameters using a multiresolution segmentation algorithm and understand 

landscape structure through land cover classification and LHI. High-resolution images, combined with 

advanced methods and software, improve analysis reliability. The flowchart of the proposed methodology 

is shown below (Figure 6). 

 

 
Figure 6: Methodology flowchart 
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2.3.1. UAV Data Processing  

Data processing is required to convert raw aerial imagery into useful continuous data. This process consists 

of several steps, each intended to address a specific aspect of the data to ensure accuracy and efficiency of 

use. The key steps discussed here include UAV data processing, orthomosaic generation, and generating a 

canopy height model. Photogrammetry is the initial step in processing UAV imagery before proceeding to 

other processes. The process includes the generation of orthomosaics, Point clouds, a Digital Terrain model 

(DTM), a Digital Surface Model (DSM), reflectance orthomosaics and vegetation Indices. The images were 

processed in batches, which helped create orthomosaics and point clouds.  

 

The data was processed using Pix4D mapper, a fully automated and highly accurate photogrammetric 

processing software. It converts large numbers of images into georeferenced point clouds, DEMs, and 

orthophoto mosaics (Chaudhry et al., 2020). Pix 4D data processing consists of three steps: initial 

processing, point cloud and mesh, DSM, orthomosaic, and index, all of which implement the Structure from 

Motion (SFM) algorithm (Processing Steps - PIX4Dmapper, 2024). 

2.3.1.1. Orthomosaic Generation 

SFM is a photogrammetric technique that generates 3D structures from overlapping 2D images (Westoby 

et al., 2012). The technique involves identifying matching characteristics between images to form an identical 

contiguous pattern (Gherga et al., 2020). This approach allows an accurate representation of the terrain 

being studied. Feature extraction is performed on each image during the initial processing step to identify 

unique features. These distinct features can be recognized across multiple images. The key matching points 

were identified and matched from one image to another. The tie points, which are the points visible in 

multiple images, serve as a reference for aligning the image in 3D space. An optimization process called 

bundle adjustments refines the image position by minimizing the re-projection error. This process helps 

create a sparse point cloud, a rough 3D representation of matched key points between the images 

(Processing Steps - PIX4Dmapper, 2024). 

 

Furthermore, the dense 3D point cloud was generated, which helped to create a detailed 3D representation 

of the scanned area. From this dense point cloud, a DSM and DTM were generated using the inverse 

distance weighting algorithm, providing elevation data for both the surface and terrain. The images were 

then merged into a single tile and orthorectified to produce an orthomosaic.   Reflectance maps were used 

to calculate vegetation indices (VIs). To ensure accurate measurements, reflectance data was corrected with 

an incoming radiation sensor and a radiometric correction panel. Using these corrected reflectance maps, 

vegetation indices such as NDVI, NDRE, SAVI, and GRVI (derived from the green and red bands of RGB 

imagery) were calculated to help classify the study area (Table 1).  

 

Vegetation Indices Equation Reference 

NDVI (Normalized Difference 

Vegetation Index) 

(NIR-R) / (NIR-R) (Rouse et al., n.d.) 

NDRE (Normalized Difference 

Red Edge Index) 

(NIR-RE) / (NIR-RE) (Macintyre et al., 2020) 

SAVI (Soil-Adjusted Vegetation 

Index) 

((NIR-R) / (NIR+R+L)) * (1+L) (Huete, 1988) 

GRVI (Green-Red Vegetation 

Index) 

(G-R) / (G+R) (Tucker, 1979) 

Table 1: Equations to calculate the vegetation indices and their references 
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After processing the data, Pix 4D generated a quality assessment report for reliability and accuracy. The 

original spatial resolution of UAV RGB is 3.5 cm, and UAV MS is 12 cm resolution. To address the study 

objectives and for further analysis, UAV RGB was resampled to 12 cm and 25 cm, and UAV MS was 

resampled to 25 cm. 

2.3.1.2. Generation Canopy Height Model (CHM) 

During UAV data processing, the 3D point clouds were used to generate DSM, representing vegetation 

elevation, and DTM, representing terrain elevation. The CHM is generated by subtracting the DTM from 

the DSM (Prins & Van Niekerk, 2020). The CHM helps estimate the vertical vegetation structure, including 

tree height, canopy cover, and biomass estimation. Its resolution is 12 cm, and it was resampled to 25 cm. 

CHM is essential in classification, providing detailed landscape and vegetation analyses. 

2.3.2. Object-Based Image Analysis (OBIA) 

OBIA consists of structured steps for processing, interpreting, and extracting meaningful spatial (land cover) 

information from data sources. This section outlines the key aspects of data analysis relevant to this research. 

The main steps in OBIA are image segmentation, image classification, segmentation, and classification 

accuracy assessment. 

2.3.2.1. Image Segmentation 

In this study, OBIA was used for image segmentation, which has proven to outperform pixel-based 

classification based on various studies (Liu et al., 2020; Makinde et al., 2016; Sibaruddin et al., 2018; K. Yang 

et al., 2022). OBIA is effective for high spatial resolution images. It involves segmenting meaningful 

homogenous pixels into objects. Then, these objects are classified based on their spectral, spatial, and 

contextual features (Ventura et al., 2018; K. Yang et al., 2022). The OBIA process involves two essential 

steps: image segmentation and image classification (Johnson & Ma, 2020; Ventura et al., 2018). In this study, 

these processes are performed using eCognition software. Image segmentation divides an image into 

meaningful objects or regions based on homogeneity (Ez-Zahouani et al., 2023). This process significantly 

impacts the quality of feature extraction and classification accuracy (Hossain & Chen, 2019). Over- and 

under-segmentation of objects causes misclassification, which reduces classification accuracy. The objects 

were delineated using a multi-resolution segmentation algorithm, which is the most used and effective in 

remote sensing applications (Chen et al., 2021). This segmentation algorithm depends on homogeneity 

criteria, using parameters such as scale, shape, and compactness.  

 

The scale parameter directly affects the segmented objects' level of detail and size. A lower scale parameter 

value produces smaller objects and more detailed segments, with less spectral variation within each object, 

and vice versa. The shape parameter balances the importance of an object's spectral properties, whereas the 

compactness parameter influences the object's geometric properties, particularly how compact the 

segmented object is (Rejaur & Saha, 2008). The values of these optimal parameters are determined through 

an iterative process of trial and error (Liu et al., 2020). Optimizing these segmentation parameters is essential 

for improving the accuracy of segmentation and classification results (Ez-Zahouani et al., 2023). 

Segmentation used RGB, Multispectral (Green, Red, Red Edge, and NIR), CHM, and VIs layers like NDVI, 

NDRE, SAVI, and GRVI. Using trial and error, the scale parameters were determined to be 50, 20, and 10 

for 3.5 cm, 12 cm, and 25 cm spatial resolutions, respectively. To identify the influence of shape and 

compactness on segmentation accuracy and to select the optimal parameter for each resolution for further 

analysis, six shapes (0.05, 0.1, 0.3, 0.5, 0.7, 0.9) and five compactness (0.1, 0.3, 0.5,0.7, 0.9), i.e. 35 parameter 

combinations were examined. This was repeated for the resolutions of 3.5 cm, 12cm and 25cm. At the 3.5 
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cm resolution, the RGB imagery and multispectral and VIs were maintained at their original resolutions of 

3.5 cm and 12 cm, respectively. For the 12 cm resolution, the RGB imagery was resampled to match the 

resolution of 12 cm, while the multispectral data and VIs remained at their native 12 cm resolution. At the 

25 cm resolution, all datasets, including RGB, multispectral, and VIs, were resampled to the target resolution 

of 25 cm before analysis. 

2.3.2.2. Segmentation Accuracy  

After generating the segments for each parameter combination using eCognition software, segmentation 

accuracy metrics, such as OS, US, QR, and AFI, were calculated using R studio with the built-in R function 

“Segmetric” (Costa et al., 2018). To calculate these segmentation accuracy metrics, the manually digitized 70 

reference object polygons (Figure 7) were used to determine segmentation accuracy by comparing them 

with segmented image objects. To ensure the reference objects for computing segmentation accuracy, the 

objects selected are regular-shaped objects, such as Trees, Shrubs, and Shadows, avoiding objects of Bare 

soil and Rock. 

 

 
Figure 7: Reference object polygons for segmentation 
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OS occurs when segmented objects are smaller than reference objects, ranging from 0 (optimal) to 1. US 

occurs when the reference object is contained within the segmented results, also ranging from 0 (optimal) 

to 1 (Clinton et al., 2010; Kavzoglu & Tonbul, 2017)combines information about over-segmentation and 

under-segmentation, with values ranging from 0 (optimal) to 1 (El-naggar, 2018; Winter, 2000). AFI 

calculates the overlap percentage of the largest segments inside the objects, with an optimal value of 0. A 

reference object is over-segmented if the overlap is less than 100% and AFI > 0:0, and a reference object is 

under-segmented if the overlap is 100% and AFI < 0:0 (El-naggar, 2018; Lucieer & Stein, 2002). 

 

The metrics are calculated based on the following equations: 

OS = 1 - (A (reference object) ∩ A (segmented object) / A (reference object)) 

US = 1 - (A (reference object) ∩ A (segmented object) / A (segmented object)) 

QR = 1 - (A (reference object) ∪ A (segmented object) / A (reference object) ∩ A (segmented object)) 

AFI = A (reference object) - A (largest object) / A (reference object) 

(Clinton et al., 2010; El-naggar, 2018; Kavzoglu & Tonbul, 2017; Lucieer & Stein, 2002; Winter, 2000) 

 

After evaluating the segmentation accuracy at each resolution, optimal shape and compactness parameters 

were selected for further analysis. 

2.3.2.3. Correlation analysis 

Before the classification process, a correlation analysis was conducted to identify the relationship between 

the variables used. This analysis was executed using Python. The variables considered in the analysis 

included:  

Mean values: RGB_1(Red), RGB_2(Green), RGB_3(Blue), CHM, Green, Red, Red Edge, NIR, NDVI, 

NDRE, SAVI, GRVI. 

Maximum pixel value: CHM  

Standard deviation (SD) values: RGB_1, RGB_2, RGB_3, CHM, Green, Red, Red Edge, NIR, NDVI, 

NDRE, SAVI, GRVI.  

 

Groups of variables with correlation coefficients greater than 0.8 were identified as highly correlated. From 

these highly correlated groups, one variable was selected based on the results of a variable importance 

analysis, ensuring that the most significant features were retained for classification. 

2.3.2.4. Variable Importance 

The variable importance analysis was carried out in R Studio to determine and evaluate the importance of 

each input layer in classifying the data. This assessment is essential for determining which variables are 

significant in classification. It includes two main metrics: Mean Decrease Accuracy (MDA), which indicates 

how much accuracy would decrease if the variable were removed from the model, and Mean Decrease Gini 

(MDG), which measures each variable's contribution to the homogeneity of the nodes and leaves in the 

random forests model (Martinez-Taboada & Redondo, 2020).The variable importance plots generated from 

this analysis depict the significance of each variable in descending order. 

2.3.2.5. Image Classification 

 The optimal shape and compactness parameter combinations for different spatial resolutions were selected 

based on the values of AFI and QR for the classification process. Following segmentation using the selected 

optimal shape and compactness combination, the segmented objects were classified using a supervised 
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approach based on training samples. The training samples are in point form (shapefile), representing land 

cover types as a thematic layer added in the eCognition software used to train the classifier model.  

The model was trained using 210 field samples as training data, with 30 samples per class to ensure a 

balanced representation of the Land cover classes, as a random forest classifier is sensitive to the imbalance 

in the number of samples across classes. These land cover classes included Trees, Grass, Shrubs, Herbaceous 

vegetation, Rock, and Bare soil. Also, Shadows are determined as a separate class, which helps achieve better 

classification results. The supervised classification approach is carried out using the Random forests 

algorithm, which outperforms compared to other algorithms. For the source of feature space, the "sample 

statistics-based" method was used in eCognition (Adam et al., 2014; Tutorial-Sample Statistics and Accuracy 

Assessment, 2024). 

2.3.2.6. Classification Accuracy Assessment 

After classification, validation sample points, 100, were added as a thematic layer in eCognition, the same as 

training samples. Using an accuracy assessment tool in eCognition, an error matrix was generated for all 

land cover classes, which helps to see the performance of each class separately. It resulted in the overall 

accuracy (OA), producer accuracy (PA), user accuracy (UA), and Kappa coefficient (K) values of the land 

cover class separately. When calculating OA, the total number of reference classes and the number of 

correctly classified classes. PA is the probability that a pixel belongs to a specific class and is correctly 

classified. UA is the probability that a pixel labelled as a specific class is correctly classified (Foody, 2020). 

The Accuracy assessment results of 3.5cm, 12 cm and 25 cm resolution were compared to analyse the 

difference in accuracies based on the image spatial resolution. This assessment is essential for assessing the 

classifier's performance and ensuring land cover classification accuracy. 

2.3.2.7. Feature Importance in Land Cover Classification 

Following classification, a feature importance analysis was conducted using SHAP (SHapley Additive 

exPlanations) in Python. SHAP is a method developed by (Lundberg et al., n.d.) That assigns an essential 

value to each feature based on its impact on the model’s prediction. SHAP values provide a detailed 

understanding of how each feature influences the model's outcome. From this analysis, individual SHAP 

values for each feature were determined. These values show how each feature contributed to the prediction 

of each land cover class. 

2.3.3. Landscape Heterogeneity Indices (LHI) 

Both class and landscape level LHI were computed using classification results from different spatial 

resolution imagery. These indices were generated using Fragstats software (version 4.2-64) 

(https://fragstats.org/), which helps quantify the landscape's structure. These indices were selected based 

on their relevance to assessing landscape structure, widespread use in landscape ecology research, and ability 

to capture various aspects of landscape heterogeneity (Cushman & Neel, 993). The indices include Total 

(Class) Area, Percentage of Landscape (PLAND), Largest Patch Index (LPI), Edge Density (ED), Total 

Edge (TE), Patch Density (PD), Number of Patches (NP), Patch Richness Density (PRD), Interspersion 

and Juxtaposition Index (IJI), Shannon’s Diversity Index (SHDI), Simpson’s Diversity Index (SIDI), 

Shannon’s Evenness Index (SHEI), Simpson’s Evenness Index (SIEI).  For more information on the indices 

and their description, refer to Appendix 3 (Landscape Heterogeneity Indices). Following the computation 

of these indices, a comparison of the indices produced from different resolutions of UAV images was 

conducted. This analysis will provide comprehensive results on the sensitivity of LHI influenced by imagery 

resolution. These LHI are essential for ecological conservation and management decisions. 

https://fragstats.org/
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3. RESULTS 

This section presents the study's findings, focusing on three main areas: the impact of shape and 

compactness parameters on segmentation accuracy, the accuracy of land cover classification, and the 

estimation of LHI at three different spatial resolutions. 

3.1. Effect of Shape and Compactness on Segmentation Accuracy 

The following sections describe the variations in segmentation accuracy using different shape and 

compactness values. The accuracy metrics used are OS, US, QR, and AFI. These metrics were derived from 

analyzing 35 different combinations of shape (ranging from 0.05 to 0.9) and compactness (ranging from 0.1 

to 0.9) parameters at image resolutions of 3.5 cm, 12 cm, and 25 cm. The analysis was conducted by keeping 

the shape constant while varying the compactness values and vice versa. This approach helps to assess how 

each parameter independently affects the segmentation accuracy metrics. The results provide an 

understanding of how shape and compactness affect segmentation performance, highlighting the best 

combinations for higher accuracy. 

3.1.1. Segmentation Accuracy at 3.5 cm Resolution 

3.1.1.1. Impact of Shape     

The results show the impact of shape values on segmentation accuracy at a 3.5 cm resolution with varying 

levels of compactness. Figures 8 and 9 show the shape values ranging from 0.05 to 0.9 and their influence 

on the segmentation accuracy metrics under different levels of Compactness. At lower shape values (0.05 

and 0.1), the OS ranges from 0.42 to 0.53. As the shape value increases, the OS ranges increase and reach a 

maximum value of 0.80. Like OS, US ranges from 0.18 to 0.21 when the shape value is low and increases 

with increasing shape value. The same pattern seems in the QR, with the highest value of 0.85 at a shape 

value of 0.9 and compactness of 0.9. The highest observed values for OS, US, and QR were recorded at 

shape 0.9, indicating that the highest shape values are not ideal for the segmentation. According to the AFI 

metric (Figure 9), the AFI is close to the optimal value when the shape value falls between 0.05 and 0.3. 

When the shape exceeded 0.3, the AFI showed significant fluctuation and increased value. 
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Figure 8: Impact of shape (OS, US & QR) at 3.5 cm resolution 

 
Figure 9: Impact of shape (AFI) at 3.5 cm resolution 
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3.1.1.2. Impact of Compactness    

The following results show the impact of compactness values on segmentation accuracy at a 3.5 cm 

resolution with varying ranges of shapes (Figures 10 and 11). Results show that when the compactness is 

0.1, OS starts at 0.53 and increases with the rising shape value. A similar pattern is observed across the 

compactness range of 0.3 to 0.9, with the OS reaching a maximum value of 0.80. Based on the US values, 

there are no significant variations in the values; they are stable across the compactness levels and slightly 

increase as compactness increases. This variation indicates that compactness has a less significant impact on 

under-segmentation. QR follows a pattern like OS at all compactness levels. Noticed that in all levels of 

compactness in shape values of 0.1 and 0.3, there is a sudden increase in the values of OS and QR compared 

to other shape values. In contrast to the impact of shape on AFI (Figure 11), the compactness shows 

minimal fluctuations in the higher value (0.7 and 0.9). The AFI range decreases as compactness increases. 

For compactness 0.1, AFI ranges from 0.58 to -0.72, while for compactness 0.9, it ranges from 0.06 to 0.03. 

This suggests that higher compactness results in near to optimal value. 

 

 
Figure 10: Impact of compactness (OS, US, & QR) at 3.5 cm resolution 
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Figure 11: Impact of Compactness (AFI) at 3.5 cm resolution 

3.1.2. Segmentation Accuracy at 12 cm Resolution 

3.1.2.1. Impact of Shape    

The analysis of the impact of shape on segmentation accuracy at 12cm spatial resolution (Figures 12 and 13) 

shows that when the shape parameter increases from 0.05 to 0.9, the OS value generally rises, indicating that 

higher shape values lead to more over-segmentation. Specifically, for a shape parameter of 0.05 (Figure 12 

(A)), OS ranges from 0.27 to 0.36, whereas for a shape parameter of 0.9 (Figure 12 (F)), OS ranges from 

0.34 to 0.67. This trend suggests that lower shape values result in higher segmentation accuracy based on 

OS. Similarly, US values significantly increase with the shape parameter up to 0.56. This pattern indicates 

that higher shape parameters negatively impact the US. Consequently, the QR value, which calculates 

accuracy based on over-segmentation and under-segmentation, shows consistently lower values for shape 

parameters of 0.05 and 0.1. At a shape value of 0.9, the QR value reaches 0.80, suggesting that the lower 

shape values produce higher accuracy segmentation. Furthermore, according to the trends shown in the AFI 

metric (Figure 13), the value of AFI is near the optimal level when the shape value is between 0.05 and 0.3, 

with some variation between compactness values. From shape 0.5 to 0.9, it is observed that the AFI values 

fluctuate drastically, and that indicates shape values ranging from 0.05 to 0.3 are preferable for achieving 

better accuracy.  
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Figure 12: Impact of shape (OS, US & QR) at 12 cm resolution 

 
Figure 13: Impact of shape (AFI) at 12 cm resolution 
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3.1.2.2. Impact of Compactness   

The following results show the impact of compactness values on segmentation accuracy at a 12 cm 

resolution with varying ranges of shapes (Figures 14 and 15). Figure 14 shows the trends of OS, US, and 

QR segmentation metrics when keeping the compactness constant. Results show a decreasing pattern with 

increasing compactness values ranging from 0.1 to 0.9. It is observed from Figure 14 A to E that with the 

increasing shape values in each compactness from 0.1 to 0.9, the metric value of OS, US and QR rises. 

Figure 14 E shows that with a compactness value of 0.9 and increasing shape values, the OS, US, and QR 

metrics are significantly higher. This observation shows that higher compactness values combined with 

lower shape values provide metrics values that are more favourable for achieving better segmentation 

accuracy. Figure 15 depicts that the AFI values decrease (near the optimal value), with the compactness 

increasing from 0.1 to 0.9. It is observed that the range of the values fluctuates more and suddenly decreases 

and increases within the compactness range of 0.1 to 0.7 compared to the compactness of 0.9. However, in 

the compactness value of 0.5 with the shape value 0.05 to 0.5, the AFI values are near the optimal. This 

trend in the graph indicates that higher compactness produces good segmentation results. 

 

 
Figure 14: Impact of Compactness (OS, US & QR) at 12 cm resolution 
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Figure 15: Impact of Compactness (AFI) at 12 cm resolution 

3.1.3. Segmentation Accuracy at 25 cm Resolution 

3.1.3.1. Impact of Shape     

The following results show the impact of shape values on segmentation accuracy at a 25 cm resolution with 

varying levels of compactness (Figures 16 and 17). Results show that OS and US show similar trends with 

shape values of 0.05 to 0.5 (Figure 15). However, for the shape value of 0.7 (Figure 16 E), OS increases with 

increasing compactness, while US decreases. A similar pattern is noted for a shape value of 0.9 (Figure 16 

F), where OS gradually increases with higher compactness and US slightly decreases. Overall, with an 

increasing shape value up to 0.9, the OS and US values reach 0.56 and 0.58, respectively. This trend suggests 

that the lower shape value ranges between 0.05 and 0.3 might be good for minimizing over-segmentation 

and under-segmentation. The values of QR also share trends similar to those of OS and the US. For a lower 

shape of 0.05, the value of QR is lower, ranging from 0.5 to 0.55. In contrast, with a shape value of 0.9, the 

QR value increases to 0.77. Therefore, to achieve better segmentation accuracy for 25 cm resolution imagery, 

the preferable shape range is between 0.05 and 0.3. This finding aligns with the AFI results for 3.5 and 12cm 

resolutions, where the shape values from 0.05 to 0.3 indicate values near the optimal AFI. It is also noted 

that the shape value of 0.5 with compactness values of 0.7 and 0.9 shows AFI values near the optimal range, 

while this is not the case for compactness values of 0.1, 0.3, and 0.5 (Figure 17). Then, the AFI values of 

shapes 0.7 and 0.9 show drastic changes and increase the AFI value, suggesting the shape range (0.05 to 0.3) 

is preferably a good option to have better segmentation. 
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Figure 16: Impact of Shape (OS, US & QR) at 25 cm resolution 

 
Figure 17: Impact of Shape (AFI) at 25 cm resolution 
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3.1.3.2. Impact of Compactness  

The following results show the impact of compactness values on segmentation accuracy at a 25 cm 

resolution with varying ranges of shapes (Figures 18 and 19). Results show a trend like that observed at a 12 

cm resolution; metrics such as OS, US, and QR decrease as compactness values increase from 0.1 to 0.9 

(which means closer to optimal value). It is important to note that for each compactness value, an increase 

in shape values increases the metrics values, like in the 12 cm compactness results. Also, with the 

compactness values of 0.1 and 0.3 (Figure 18 (A & B)), it is observed that there is a sudden interchange with 

OS and US values in the shape values of 0.7 and 0.9. A similar pattern is also observed in the compactness 

value of 0.5 with a shape of 0.9. These observations suggest that lower shape values combined with the AFI 

values are closer to the optimal at a compactness value 0.7. Additionally, shape values of 0.05 to 0.5 provide 

preferable metrics values of OS, US and QR for segmentation. AFI values decrease (near the optimal value), 

with the highest compactness value of 0.9 (Figure 19). Compared to the AFI of 3.5 and 12 cm, AFI values 

at 25 cm show significant changes with sudden decreases and increases within the compactness range of 0.1 

to 0.7. However, the AFI values are closer to the optimal at a compactness value of 0.7 and shape value of 

0.05 to 0.5. This pattern suggests that higher compactness values produce suitable segmentation results. 

 

 
Figure 18: Impact of Compactness (OS, US, & QR) at 25 cm resolution 
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Figure 19: Impact of Compactness (AFI) at 25 cm resolution 

3.2. Land Cover Classification Accuracy on Different UAV Image Spatial Resolutions 

3.2.1. Selection of optimal shape and compactness parameter combinations at different spatial resolutions 

Based on the segmentation accuracy metrics results (Figures 8-19), the best combinations of shape and 

compactness at each spatial resolution were selected based on the AFI and QR metric scores (Table 2). As 

mentioned in the methods section (3.3.2.2), QR is a metric that considers both OS and US. Therefore, only 

the AFI and QR metrics were considered when selecting the shape and compactness combinations. These 

selected combinations were subsequently used for classification. 

 

Resolution 
&  

scale factor 

Best Performing  
Shape/compactness 

combination based on the  
AFI score 

Best Performing  
Shape/compactness 

combination based on the  
QR score 

3.5 cm (Scale 50) 0.05 / 0.7 0.05 / 0.5 

12 cm (Scale 20) 0.3 / 0.9 0.05 / 0.9 

25 cm (Scale 10) 0.3 / 0.7 0.05 / 0.7 

Table 2: Best performing shape and compactness combinations 
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3.2.2. Correlation analysis    

This section discusses the correlation analysis of the selected variables for the classification to identify highly 

correlated groups and optimize the classification process. Figure 20 presents the variable correlation matrix 

for resolutions of 3.5 cm, 12 cm, and 25 cm. These matrices illustrate how the variables are correlated with 

one another. The heat maps were used to identify pairs or groups of variables with correlation values above 

0.8, which were considered highly correlated. Since the highly correlated group of variables contribute 

similarly to the classification, only one variable from each highly correlated group was selected for 

classification. The variable importance results were used as a reference for selecting which variable to use 

from each highly correlated pair. 

 

Several variables show strong correlations based on the correlation matrix at 3.5 cm spatial resolution (Figure 

20 A). For example, the mean values of indices such as NDVI, NDRE, and SAVI strongly correlate with 

one another and other mean reflectance values. This suggests that these variables contain redundant 

information, and selecting one from each highly correlated group simplifies the classification process while 

keeping significant information. The 12 cm resolution correlation matrix (Figure 20 B) shows similar 

patterns, with mean reflectance values of Green, Red, NIR and Red edge and vegetation indices showing 

strong correlations. However, the values differ slightly from those at 3.5 cm resolution, indicating the 

resolution's impact on the data. However, the overall trend of high inter-correlation between certain groups 

of variables remains constant. The pattern of high correlations continues in the 25 cm resolution correlation 

matrix (Figure 20 C). The mean reflectance values remain strongly intercorrelated, particularly in the 

multispectral bands of green, red, red edge, and NIR. Furthermore, vegetation indices such as NDVI and 

NDRE show strong correlations with each other and mean reflectance values of Green, Red, NIR and Red 

edge. 

 

 
 

A 
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Figure 20: Correlation Matrix Heatmap A)3.5cm resolution B)12cm resolution C)25cm resolution 

B 

C 
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3.2.3. Variable Importance    

Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG) metrics were used to assess the variable's 

importance and select the most appropriate variable among the highly correlated variables. These results 

highlight the significance of each variable in the classification and help identify how each variable contributes 

to the model’s accuracy. MDA (Figure 21 A) results show that variables such as Mean SAVI, Mean 

RGB_3(Blue), and Mean GRVI have the highest importance values across all resolutions, indicating a 

significant contribution to classification. Results from the MDG metric (Figure 21 B) highlight the 

significance of these variables, with Mean SAVI and Mean RGB_3 showing high importance values. It also 

highlights the significance of Mean RGB 1 and RGB 2, among others. These variables have consistently 

high importance across different resolutions (3.5 cm, 12 cm, and 25 cm), indicating their importance for 

classification. The correlation analysis results and insights of variable importance were combined to select 

the most relevant variables for classification. Specifically, between highly correlated pairs identified in the 

correlation matrix heat maps, the variable with the highest importance in the MDA and MDG graphs was 

selected for classification. This approach ensures that the selected variables provide unique information and 

significantly contribute to the model's performance. 

 
Figure 21: A) Mean Decrease Accuracy (MDA) B) Mean Decrease Gini (MDG) 
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3.2.4. Selected Variables for the classification 

After analyzing correlation and variable importance, the variables for classification were selected based on 

their high importance. Additionally, variables that were not highly correlated with others were considered, 

even if they showed a lower importance value. The variables selected for each resolution include mean values 

and standard deviations of specific bands and vegetation indices. Table 3 shows the list of selected variables 

for each resolution. 

 

3.5 cm resolution 12 cm resolution 12 cm resolution 

Mean RGB_1(Red) Mean RGB_1(Red) Mean RGB_1(Red) 

Mean RGB_2(Green) Mean RGB_2(Green) Mean RGB_2(Green) 

Mean RGB_3(Blue) Mean RGB_3(Blue) Mean RGB_3(Blue) 

Mean CHM 
Mean CHM Mean CHM 

Mean Green Mean Green Mean Red 

Mean GRVI Mean NDVI Mean SAVI 

Mean SAVI Mean SAVI Mean GRVI 

Max pixel value CHM Max pixel value CHM Max pixel value CHM 

Standard deviation 
RGB_1(Red) 

Standard deviation  
RGB_1(Red) 

Standard deviation  
RGB_1(Red) 

Standard deviation  
RGB_3(Blue) 

Standard deviation  
RGB_2(Green) 

Standard deviation  
RGB_2(Green) 

Standard deviation CHM 
Standard deviation  
RGB_3(Blue) 

Standard deviation  
RGB_3(Blue) 

Standard deviation Green 
Standard deviation CHM Standard deviation CHM 

Standard deviation Red Edge 
Standard deviation Green Standard deviation Green 

Standard deviation NDVI Standard deviation NIR Standard deviation NDVI 

Standard deviation NDRE Standard deviation NDVI Standard deviation NDRE 

Standard deviation GRVI Standard deviation NDRE Standard deviation SAVI 
Table 3: Selected variables for the classification at different Resolution 
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3.2.5. Land Cover Classification Map    

Figures 22 - 24 show Land cover classification maps for each resolution (i.e. 3.5 cm, 12 cm, and 25 cm) 

using two different combinations of shape and compactness determined by the segmentation accuracy 

metric AFI and QR score. The land cover classes used for classification included Bare soil, Herbaceous 

vegetation, Grass, Rock, Shadow, Shrubs, and Trees. The results using the combination of shape and 

compactness based on AFI and QR metrics at 3.5 spatial resolution show a detailed land cover classification 

(Figure 22). This classification map derived from the highest spatial resolution imagery distinguishes 

between closely related vegetation types, such as Herbaceous vegetation and Grass. This high resolution 

enables the precise identification of small features and fine spatial patterns, particularly in heterogeneous 

landscapes. The high spatial resolution captures more detail and smaller features, allowing for more accurate 

and detailed classification of land cover types. The increased number of pixels per unit area ensures the 

model differentiates between closely related land cover classes. 

 

 

 
Figure 22: Land cover Classification Map 3.5cm A) AFI - 0.05/0.7 B) 0.05/0.5 
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The classifications at 12 cm resolution (Figure 23) were slightly less detailed than the 3.5 cm maps. While 

major land cover types remain identifiable, smaller features and finer distinctions between similar classes, 

such as Herbaceous vegetation and Grass, become less prominent. As resolution decreases with larger pixels, 

the classification becomes more generalized. While spatial resolution decreases, it is important to note that 

lower spatial resolution often comes with higher spectral resolution, which includes the NIR bands. Even 

though the boundaries between land cover types were less precise with the mixed pixels, affecting the overall 

classification accuracy.   

 

 

 
Figure 23: Land cover Classification Map 12cm A) AFI - 0.3/0.9 B) 0.05/0.9 
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At a 25 cm resolution (Figure 24), the maps show a smoothing effect between the land cover classes. Larger 

patches of land cover types, such as Trees and Shrubs, are identified, but finer details and small-scale 

variations are difficult to distinguish. The classification at this resolution is suitable for homogenous 

landscapes with broader land cover classes and larger landscape features, but it lacks the granularity observed 

in higher resolutions. Because of the larger pixel size at lower resolution, small features are frequently merged 

into larger homogeneous areas, reducing the ability to distinguish between closely related land cover types. 

Lower resolution is less sensitive to fine variations in the landscape, making it better suited for identifying 

major land cover classes than detailed mapping. It is observed in the maps that closely related classes, such 

as Bare soil and Rock, as well as Herbaceous vegetation and Grass, are not captured in detail. This results 

in a loss of detail and precision in land cover classification. 

 

 
Figure 24: Land cover Classification Map 25cm A) AFI - 0.3/0.7 B) 0.05/0.7 

3.2.6. Land Cover Classification Accuracy  

The accuracy assessment of land cover classification shows significant differences between the performance 

of each land cover class at different spatial resolutions. The influence of image resolution on classification 

performance was assessed by comparing the results of confusion matrices for each resolution and within 

each resolution using two different shape and compactness combinations based on AFI and QR 

segmentation accuracy metric scores. The detailed confusion matrix on each resolution and AFI and QR 

score-based classification are provided in Annex (1) for reference. Table 4 shows the Producer, user, overall 

accuracy, and kappa values at different resolutions.  
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At 3.5 cm resolution, the classification performance is comparatively high, with slight variations between 

the AFI and QR-based classification confusion matrix. Comparing the AFI and QR-based confusion matrix 

in 3.5 cm resolution, the QR-based confusion matrix shows better accuracy in classes such as Bare soil and 

Rock. In both the accuracy results, Shadows and Tree classes show high producer and user accuracy, 

indicating the precise classification due to higher spatial resolution. At 12 cm resolution, the overall accuracy 

is slightly lower than at 3.5 cm, with no huge difference in the accuracies. Similarly, to 3.5 cm, the QR-based 

classification shows slight improvement compared to the AFI-based classification. It is observed that due 

to the coarser resolution, the accuracy of classes such as Grass and Rock decreases, leading to some 

misclassification. At 25 cm resolution, each class's overall accuracy, producer, and user accuracy drop 

compared to higher resolution. Both AFI and QR-based classifications yield the same overall accuracy. The 

performance of the closely related classes like Grass and Herbaceous vegetation decreases due to the impact 

of spatial resolution, which merges the smaller features into larger homogeneous areas due to the larger 

pixels.  

 

When comparing the accuracy in all land cover classes at different resolutions, we can highlight the key 

observation (Table 4): The accuracy for Herbaceous vegetation reduces at the 25 cm resolution. Similarly, 

the same pattern can be observed in each land cover class. In the case of Rock, the AFI-based classification 

shows lower accuracy than the QR-based classification at different resolutions. For Grass, the classification 

at 12 cm resolution produced lower accuracy compared to both 3.5 cm and 25 cm resolutions. Additionally, 

results indicate that major land cover classes like Trees and Shrubs are often misclassified at lower 

resolutions. Results show no huge difference between the overall accuracy of AFI and QR-based 

classification. However, when examining the accuracy of individual classes, the QR-based classification 

generally performs better. At the 25 cm resolution, there is no difference in overall accuracy between AFI 

and QR-based classifications. In general terms, Results indicate that QR-based classification is generally 

more effective, and higher spatial resolutions significantly improve the accuracy of land cover classifications, 

particularly in heterogeneous landscapes. 

 

Class 

3.5cm 

 (AFI 0.05 / 

0.7) 

3.5cm 

 (QR 0.05 

/0.5) 

12cmc  

(AFI 0.3 / 

0.9) 

12cm 

 (QR 0.05 

/0.9) 

25cmc 

 (AFI 0.3 

/0.7) 

25cm 

(QR 0.05/ 

0.7) 

PA UA PA UA PA UA PA UA PA UA PA UA 

Bare soil 0.87 0.62 0.93 0.78 0.80 0.75 1 0.71 0.71 0.65 0.87 0.81 

Herbaceous 

vegetation 
0.80 0.86 0.80 0.71 0.80 0.75 0.60 0.75 0.73 0.69 0.67 0.63 

Grass 0.83 0.83 0.75 0.90 0.67 0.62 0.67 0.62 0.75 0.75 0.67 0.80 

Rock 0.33 0.67 0.67 0.89 0.58 0.70 0.50 1 0.58 0.74 0.75 0.75 

Shadows 1 1 1 1 1 1 1 1 0.86 0.93 0.77 0.80 

Shrubs 0.94 0.84 0.82 0.82 0.94 0.89 1 0.85 0.79 0.80 0.76 0.8 

Trees 0.94 1 0.94 0.94 0.88 0.94 0.94 1 0.71 0.83 0.82 0.93 

 Totals 

Overall 

Accuracy 
0.83 0.85 0.82 0.83 0.79 0.79 

Kappa 0.80 0.82 0.79 0.80 0.75 0.75 

Table 4: Land cover classification accuracy at different spatial Resolution 
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3.2.7. Impact of the feature on each land cover class at different resolution   

The SHAP analysis was performed to understand better the impact of various features on land cover 

classification at different spatial resolutions (3.5 cm, 12 cm, and 25 cm). Figure 25 (A) shows the impact of 

features on each land cover class in the classification model. Mean Green, at 3.5 cm resolution, is important 

for classifying Rock, Bare soil, and Trees. Mean NDVI is important in distinguishing Shrubs from 

Herbaceous vegetation. Standard deviation features, particularly the standard deviation of CHM, are also 

essential in detecting texture differences. This high resolution allows these features to capture fine details in 

the landscape, leading to better differentiation between classes. Similarly, at 12 cm resolution (Figure 25 B), 

Mean Green and Mean NDVI features remain highly significant for the Grass and dwarf shrub classes. It is 

also observed that Mean NIR becomes more significant in this resolution for distinguishing Grass and 

Shrubs. Mean CHM is an important factor in classifying Trees and Shrubs. Standard deviation features such 

as the NIR, NDRE, and Green are also significant, highlighting the importance of texture within classes. 

While features such as Mean Green and Mean NDVI are still important, their overall impact is slightly 

reduced compared to 3.5 cm resolution, reflecting the coarser resolution. At 25 cm resolution (Figure 25 C), 

the features with the greatest impact are Mean GRVI, which is important for classifying Grass and Shrubs, 

and Mean Red and Mean SAVI, which are important for distinguishing these classes. Mean CHM and Mean 

RGB_3(Blue) play a significant role in identifying Bare soil and Trees. Comparing feature importance across 

resolutions, Mean Green remains important across all resolutions, with its impact highest at 3.5 cm and 

decreasing slightly at lower resolutions. Mean NDVI is highly important at 3.5 cm and 12 cm but less so at 

25 cm, where other features such as Mean GRVI and Mean Red take the lead. Mean CHM is significant at 

all resolutions but has the greatest impact at higher resolutions, capturing finer structural details. The SHAP 

analysis shows that higher-resolution data allows for greater dependence on detailed spectral and structural 

properties. 

 
 

A 
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Figure 25: Feature Impact on land cover classes A)3.5cm resolution B)12cm resolution C)25cm resolution 

B 

C 
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The impact of different combinations of shape and compactness on classification accuracy was evaluated 

across three different resolutions: 3.5 cm, 12 cm, and 25 cm. Table 5 summarizes the results: 

 

Resolution 

& 

scale factor 

Best combination of 

Shape/compactness 

based on the AFI score 

Classification 

overall 

accuracy 

Best combination of 

Shape/ compactness 

based on QR score 

Classification 

overall 

accuracy 

3.5 cm 

(Scale 50) 
0.05 / 0.7 0.83 0.05 / 0.5 0.85 

12 cm 

(Scale 20) 
0.3 / 0.9 0.82 0.05 / 0.9 0.83 

25 cm 

(Scale 10) 
0.3 / 0.7 0.79 0.05 / 0.7 0.79 

Table 5: Shape and compactness combinations and classification accuracy 

For further analysis of landscape heterogeneity metrics, classifications based on the QR were selected for all 

resolutions because results show that the QR metric is more comprehensive for assessing segmentation 

accuracy than the AFI metric. QR is a metric that combines over-segmentation and under-segmentation 

information to evaluate segmentation accuracy comprehensively. The study (Winter, 2000) highlights the 

limitations of metric AFI, which focuses primarily on the overlap percentage without considering over- and 

under-segmentation. It is also noted that single-focus metrics may miss important aspects of segmentation 

quality captured by more comprehensive metrics such as QR. Thus, QR-based classification results were 

preferable for computing landscape heterogeneity metrics, offering a balanced measure of segmentation 

quality and making it a preferable choice for further analysis. 

3.3. Effect of different resolutions of UAV images on Landscape Heterogeneity Indices 

3.3.1. Class level Indices 

The analysis of LHI across different resolutions reveals significant variations in landscape structure. Tables 

6-8 show the class-level LHI at three resolutions: 3.5 cm, 12 cm, and 25 cm. These indices help to understand 

the landscape structure and show how landscape features change based on classification at different spatial 

resolutions. The Indices include CA, PLAND, LPI, TE, and ED. CA and PLAND metrics, at a higher 

resolution of 3.5 cm, show that Herbaceous vegetation dominates the landscape with values of 3.25 and 

50.42 for CA and PLAND, respectively, which remains consistent but with slightly decreased values at lower 

spatial resolution. A similar trend was observed in other classes, such as Bare soil, Grass, and Trees, but 

with slight variations in their values. The LPI values decrease at higher resolution (43.68 for Herbaceous 

vegetation), indicating more fragmented patches. The values of LPI reduced at lower resolutions (8.02 (12 

cm) and 10.91 (25cm) for Herbaceous vegetation). This trend is consistent in other land cover classes, 

indicating that higher resolution captures finer patches, whereas lower resolution merges into larger, more 

dominant patches. The values of TE and ED are higher at higher spatial resolution, indicating more detailed 

and complex landscape structures. For instance, at 3.5 cm resolution, Shrubs have a TE value of 62262.66 

and an ED value of 9666.71, which decreases with lower resolution. The edge complexity was reduced at 

12 cm (TE: 36281.28, ED: 5631.62) and further at 25 cm (TE: 18986.75, ED: 2949.29), suggesting that 

lower resolution simplifies the landscape by reducing the delineation of edges and boundaries.  
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The results show that higher-resolution UAV images (3.5 cm) provide a better understanding of the 

landscape by capturing finer spatial heterogeneity and edge complexities. This is particularly significant for 

understanding landscape composition and structure because higher-resolution imagery can detect smaller 

patches and more complex boundaries. Lower-resolution images (12 cm and 25 cm) combine these finer 

details into larger patches, reducing landscape fragmentation and edge complexity. 

 

CLASS CA PLAND LPI TE ED 

Bare soil 0.65 10.10 0.22 40484 6285 

Herbaceous 

vegetation 

3.25 50.42 43.68 107439 16680 

Grass 0.64 9.98 2.97 32094 4982 

Rock 0.18 2.67 0.03 12646 1963 

Shadow 0.38 5.95 0.05 19896 3089 

Shrubs 0.91 14.11 0.09 62262 9666 

Trees 0.44 6.77 0.11 17018 2642 

Table 6: Class-level LHI - 3.5 cm resolution 

CLASS CA PLAND LPI TE ED 

Bare soil 0.80 12.46 0.22 31407 4875 

Herbaceous 

vegetation 

2.65 41.12 8.02 69507 10788 

Grass 1.16 18.07 4.53 35821 5560 

Rock 0.05 0.77 0.03 2522 391 

Shadow 0.47 7.24 0.04 17457 2709 

Shrubs 0.83 12.91 0.26 36281 5631 

Trees 0.48 7.44 0.12 13041 2024 

Table 7: Class-level LHI - 12 cm resolution 

CLASS CA PLAND LPI TE ED 

Bare soil 0.60 9.34 0.15 17841 2771 

Herbaceous 

vegetation 

2.50 38.82 10.91 38383 5962 

Grass 1.25 19.41 5.06 24250 3766 

Rock 0.33 5.20 0.22 9549 1483 

Shadow 0.61 9.46 0.04 19302 2998 

Shrubs 0.62 9.64 0.14 18986 2949 

Trees 0.52 8.14 0.15 12262 1904 

Table 8: Class-level LHI - 25 cm resolution 

3.3.2. Landscape-level Indices 

Tables 9-11 show the Landscape-level LHI at three resolutions: 3.5 cm, 12 cm, and 25 cm. The Indices 

include Total Area (TA), Number of Patches (NP), Patch Density (PD), Largest Patch Index (LPI), Total 

Edge (TE), Edge Density (ED), Interspersion and Juxtaposition Index (IJI), Patch Richness (PR), Patch 

Richness Density (PRD), Shannon's Diversity Index (SHDI), Simpson's Diversity Index (SIDI), Shannon's 

Evenness Index (SHEI), and Simpson's Evenness Index (SIEI). At the highest spatial resolution (3.5 cm), 

the results show more patches (NP: 10913) and a higher patch density (PD: 169431.97). This suggests that 

higher resolution can detect smaller patches, resulting in a more fragmented landscape. As the resolution 

(12 cm and 25 cm) decreased, larger patches were identified due to coarser resolution. This trend is 

consistent with other indices such as LPI, TE, and ED. The value of IJI increases with lower resolution 
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(72.82 at 3.5 cm to 90.89 at 25 cm), indicating an even distribution of different patch types. Higher IJI values 

at lower resolutions indicate that the landscape appears distributed when the image resolution is coarser, as 

smaller patches are combined into larger ones. The value of diversity indices (SHDI and SIDI) and evenness 

indices (SHEI and SIEI) show increasing values with decreasing resolution. This trend reflects a more even 

distribution of patch types. The increase in value of SHDI (1.53 to 1.71), SIDI (0.70 to 0.78), SHEI (0.79 

to 0.88), and SIEI (0.81 to 0.90) from 3.5 cm to 25 cm resolution indicates that coarser resolutions present 

a more balanced landscape structure.  

 

The results clearly show that the spatial resolution significantly impacts LHI. Higher-resolution images (i.e. 

3.5 cm) show a more detailed and fragmented landscape with greater patches, edge complexity, and a larger 

dominant patch. As the resolution (12 cm and 25 cm) decreases, the landscape becomes less fragmented 

and more homogenized. Thus, we can conclude that the resolution of the classification map plays a crucial 

role in determining LHI. Higher resolutions provide detailed insights into landscape structure and 

composition, while lower resolutions lower resolutions provide a broader perspective. 

 

TA NP PD LPI TE ED 

6.44 10913 169431 43.68 145921 22655 

IJI PR PRD SHDI SIDI SHEI 

72.82 7 108.68 1.53 0.70 0.79 

Table 9: Landscape-level LHI - 3.5 cm resolution 

 

TA NP PD LPI TE ED 

6.44 8839 137199 8.02 103019 15990 

IJI PR PRD SHDI SIDI SHEI 

76.99 7 108.65 1.62 0.76 0.83 

Table 10: Landscape-level LHI - 12 cm resolution 

 

TA NP PD LPI TE ED 

6.44 5434 84408 10.91 70288 10918 

IJI PR PRD SHDI SIDI SHEI 

90.89 7 108.73 1.71 0.78 0.88 

Table 11: Landscape-level LHI - 25 cm resolution 

4. DISCUSSION 

4.1. Importance of Segmentation Accuracy 

Segmentation accuracy is essential in object-based image analysis, mainly when calculating landscape 

heterogeneity indices using UAV imagery. Accurate segmentation ensures the precise delineation of objects, 

which influences the reliability and quality of feature extraction(Blaschke, 2010). The findings of this study 

show that the best combination of shape and compactness parameters for achieving high segmentation 

accuracy is shape values ranging from 0.05 to 0.3 and compactness values ranging from 0.7 to 0.9. For 

instance, at a 3.5 cm resolution, the combination of shape 0.05 and compactness 0.7 yielded the highest 

segmentation accuracy metrics values. In contrast, the study (Akcay et al., 2018) found that moderate shape 

and compactness values were more consistent than lower and higher values. These findings highlight the 
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importance of fine-tuning segmentation parameters to achieve optimal accuracy. The outcomes of this 

research show that high segmentation accuracy captures fine landscape features, which are critical for 

ecological monitoring, vegetation, and land cover mapping. This is consistent with (Foody, (2020), who 

highlighted the importance of accurate vegetation type identification for effective biodiversity conservation 

and ecosystem management. Additionally, the findings highlight that segmentation accuracy is important in 

heterogeneous landscapes because of its spatial complexity and diversity of land cover types, as noted in the 

study of (Blaschke, (2010). One of the difficulties in achieving high segmentation accuracy is choosing 

appropriate segmentation parameters. The research observed that the optimal parameters vary with image 

resolution. At a 12 cm resolution, a shape value of 0.3 and compactness of 0.9 was optimal, whereas, at a 

25 cm resolution, the best results were obtained with a shape value of 0.3 and compactness of 0.7. While 

these variations are relatively small, they highlight the need for careful parameter selection and refinement 

(Costa et al., (2018) state that this variability necessitates continuous evaluation and refinement of 

segmentation parameters to maintain high accuracy. Compared to (Chen et al., (2021) study, which also 

assessed segmentation parameter optimization for very high-resolution remote sensing images, our findings 

indicate a similar trend in the need for specific parameter settings to achieve high accuracy. Similarly, 

(Munyati, (2018) proved that the sensitivity of segmentation parameters to image resolution is essential for 

optimal feature extraction, which supports the findings of this study that parameter refinement is required 

at different resolutions. 

 
According to the findings, shape and compactness play a significant role in segmentation accuracy, affecting 

classification accuracy. In contrast, the study (Torres-Sánchez et al., 2015) says that the parameters, such as 

shape and compactness, showed minimal influence on the classification accuracy compared to the scale 

parameter. The findings of this study underscore the necessity for a continuous process of refinement and 

optimization of shape and compactness parameters on segmentation. This effort is crucial to adapting to 

various landscapes' diverse requirements and ensuring the accuracy of the segmentation results. The 

practical implications of segmentation accuracy are significant, particularly in precision agriculture, which 

enables precise mapping of crop types, monitoring crop health, and urban planning for detailed land use 

mapping and infrastructure. The study shows that the high segmentation accuracy obtained in UAV imagery 

can enhance the decision-making processes in these fields by providing reliable and detailed spatial data. 

This aligns with the study by (Manfreda et al., (2018), which showed significant improvements in spatial 

data reliability due to high segmentation accuracy in UAV imagery. 

4.2. Comparison of segmentation accuracy on different UAV image resolutions    

The resolution of UAV imagery is a crucial factor that significantly impacts the segmentation. This study 

provides a comprehensive analysis of segmentation accuracy at three different resolutions, highlighting the 

variations in the segmentation accuracies. These findings align with the study (You et al., 2023), 

demonstrating that spatial resolution affected the segmentation results. This study’s findings help to 

understand how image resolution influences and affects segmentation accuracy, the changes in segmentation 

parameterization, and the practical implications of UAV imagery. This study examined the impact of 

parameter selection on segmentation accuracy at different resolutions. It is also important to note that 

segmentation accuracy is influenced by the choice of segmentation algorithm. Based on previous research 

findings (Chen et al., 2021; Haralick & Shapiro, 1985), multi-resolution segmentation, which has shown 

better performance, was used in this study. However, many other options for land cover classification are 

present, so selecting the segmentation algorithm needs to be considered during the analysis. Higher 

resolutions enhance the delineation of intricate landscape features, which are particularly useful for 

applications requiring fine-scale analysis, such as vegetation mapping. Similar results were observed by 
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(Dandois & Ellis, (2013), who found that high-resolution imagery significantly improves the identification 

of small-scale landscape features. 

 

This study found that this higher resolution results in a lower value of over-segmentation and under-

segmentation, suggesting improved segmentation accuracy. It is observed that higher-resolution 

segmentation accuracy is achieved by fitting smaller pixels better to reference polygons, reducing errors in 

delineating objects. Segmentation accuracy metrics, such as QR and AFI values, indicate better segmentation 

results at higher resolutions. It is clear from this study that higher spatial resolution helps to delineate 

landscape features precisely, providing accurate spatial information useful for applying ecological 

monitoring and conservation initiatives. However, the improved accuracy at this higher resolution might 

also be due to the reference objects being digitized using the same high-resolution images, which introduces 

a potential bias. Despite the accuracy benefits, the higher resolution needs significant data storage, 

processing power, and time, which is a practical limitation for large-scale studies and real-time applications, 

as noted by (Manfreda et al., 2018). Medium resolutions balance the need for detailed spatial data and the 

practical aspects of data processing and storage. While less detailed, these images provide sufficient accuracy 

for urban planning, land use classification, forestry management, and disaster monitoring applications. 

Lower resolution causes a significant loss of landscape detail as smaller features are merged into larger, 

homogeneous segments. This results in higher over-segmentation and under-segmentation values, which 

indicate lower segmentation accuracy. The reduced accuracy at this resolution influences the reliability of 

classification results, which can have significant implications for applications requiring detailed spatial 

differentiation, such as ecological monitoring and habitat mapping. Lower resolution may be sufficient for 

broad-scale landscape analysis, but it is inadequate for detailed studies requiring high precision. The study 

by (Foody, (2020) Suggests that lower-resolution imagery requires less data storage and processing, and the 

trade-off in segmentation accuracy may not be justified for applications requiring fine-scale detail. This 

highlights the importance of conducting a cost-benefit analysis when determining the best image resolution 

for a specific study objective. 

 

Thus, the study highlights the effect of segmentation parameters on segmentation accuracy at different 

image resolutions. The cause-and-effect relationship is clear from this study, as adjusting segmentation 

parameters directly impacted accuracy metrics. Lower shape values consistently reduced OS and US at all 

resolutions, improving segmentation accuracy. Likewise, increasing compactness values improved 

segmentation accuracy, as shown by lower OS and US values. These findings highlight the importance of 

fine-tuning segmentation parameters to achieve optimal accuracy. Additionally, it highlights the importance 

of improving segmentation accuracy to maintain high classification accuracy and for further analysis of the 

generation of LHI under various conditions, such as various spatial resolutions and different landscape 

structures. This helps to ensure the consistent performance of segmentation processes, enhancing UAV 

image analysis's reliability (Munyati, 2018).  

4.3. Variable  Importance  

Variable selection is an important aspect of classification. Determining which features are most relevant for 

classification and improving the model's accuracy is essential. In this study, 26 variables were initially 

considered, and 16 were chosen based on correlation analysis and variable importance. This selection 

process involved keeping one variable from highly correlated groups while including all other features with 

low correlation. These criteria are specific to this study, but classification can also be performed using fewer 

variables. However, this would necessitate a more detailed analysis, such as determining the most important 
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variables using conditional variable importance. It provides a more in-depth discussion of the importance 

of uncorrelated variables (Akcay et al., 2018). In this case, the highly correlated variables were reduced to 

one representative variable, while all other low-correlated variables were retained. Choosing which variables 

to use for training is essential because variable importance analysis indicates their contribution to 

classification. This study identified several key variables that influenced the model's performance. 

Specifically, the Mean SAVI, Mean RGB_3(Blue), and Mean GRVI were identified as the most important 

variables across all resolutions, as indicated by high Mean Decrease Accuracy (MDA) and Mean Decrease 

Gini (MDG) values.  This aligns with (Akcay et al., 2018), Mean RGB_3(Blue) was the most effective 

variable in the landcover classification. Additionally, mean CHM also plays a role, but not as much as the 

variables like mean SAVI, RGVI, and RGB_3(Blue). This is similar to the study (Z. Xie et al., 2019), which 

found that height features in multiple source data had no or minimal effects on improving land cover 

classification. However, classification accuracy was improved for tree species. In this study, CHM mainly 

contributes to identifying specific land cover classes like trees and shrubs. This is consistent with the 

understanding that CHM provides information on vertical vegetation structure, which helps to classify these 

classes accurately.  

 

These findings align with the previous studies, highlighting the importance of vegetation and spectral 

features in land cover classification. For instance, (Kang et al., (2021) found the importance of vegetation 

indices such as NDVI and NDRE in improving the classification accuracy in crop mapping. Although 

NDVI and NDRE were among the selected variables in this study, they were not as important as SAVI and 

GRVI. Additionally, the study aligns with (Z. Xie et al., (2019), who emphasized the importance of 

combining spectral bands, vegetation indices, and textures to improve land cover and forest classification 

accuracy. It is important to note that the random forests algorithm generates each tree from a random subset 

of variables, avoiding dependency on any single feature. This improves model reliability and applicability 

(Breiman, 2001; Liaw & Wiener, 2002). Additionally, it improves the efficiency as fewer variables are 

considered, which saves computational time and resources. The algorithm effectively manages variable 

importance by averaging variable contributions across multiple trees, thereby reducing potential bias toward 

specific variables (Gao et al., 2011).), improving classification accuracy. 

4.4. Importance of Classification Accuracy 

Classification accuracy affects the reliability of the results derived from the data and influences the decision-

making processes in environmental management. It determines how well the algorithm can differentiate 

between different land cover types. Higher accuracy ensures that classifications reflect the landscape 

structure, essential to producing precise maps.  This study illustrates that different UAV image resolutions 

impact classification accuracy. Higher-resolution images provide more detailed and accurate classifications, 

which are critical for detecting fine-scale heterogeneity in landscapes. For example, high-resolution imagery 

enabled more precise detection of small landscape features missed in lower-resolution images, aligning with 

similar findings (Anderson & Gaston, (2013). The choice of classifier significantly impacts classification 

accuracy. In this study, the Random Forest classifier was used, which is known for its high precision and 

reliability when working with large datasets. Several studies have supported the effectiveness of the RF 

classifier. For example,  (Adam et al., (2014) showed that RF classifiers performed better in achieving high 

accuracy in heterogeneous coastal landscapes. The effectiveness could be due to the Random Forest 

improving prediction accuracy by combining results from multiple decision trees. However, it is important 

to note that this study does not compare RF with other classifiers; thus, the choice was based on existing 

research findings. This study observes that high accuracy in the classification results is also likely due to the 

use of multiple data sources, including RGB, MS, and CHM, which are important for distinguishing land 
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cover types. This is supported by a study (Z. Xie et al., 2019) that showed the use of multi-source data – 

spectral bands, vegetation indices, textures and topographic factors significantly improved land cover 

classification accuracy compared to relying simply on spectral bands. Furthermore, a study by (Sharma, 

2022) found that using multispectral sensors when combined with RGB imagery significantly improved 

classification accuracy since Multispectral data provides additional spectral information, which allows better 

differentiation between vegetation types, particularly in heterogeneous landscapes. 

 

Accurate vegetation maps are essential for biodiversity monitoring and conservation. In this regard, 

(Navarro & Pereira, (2012) Indicate how precise land cover maps can help with habitat conservation by 

identifying areas that need to be conserved or restored. These accurate maps help conservation initiatives 

by organizations like Rewilding Spain, which aims to make Europe wilder by creating more space for wild 

nature, wildlife, and natural processes. This study identifies some sensitivities and potential inaccuracies. 

The heterogeneity of the landscape can affect the classification accuracy, which classifiers deal with 

difficulties distinguishing between diverse land cover. This difficulty arises from the variations in spectral 

signatures and structural differences within the heterogeneous landscapes. Studies showed that areas 

with higher structural and compositional differences in vegetation have higher species diversity, making 

accurate classification more difficult (Stein et al., 2014). To produce more accurate classification results, the 

study   (Sharma, 2022)examined and found that combining data from multiple seasons improves 

classification accuracy. Seasonal variations in vegetation phenology can provide critical information to 

improve the differentiation between land cover types. While finer spatial resolutions generally improve 

classification accuracy, they remain challenged in highly fragmented landscapes (Matyukira & Mhangara, 

2023). Therefore, Understanding and addressing these challenges is essential for improving classification 

reliability and producing accurate mapping results in complex landscapes.   

4.5. Comparison of Landscape Heterogeneity Indices on different UAV image resolutions 

Our research shows how UAV image resolution influences the estimation of LHI. This study's findings 

indicate that resolution impacts these indices' level of detail and precision, which are necessary for 

understanding ecological complexity. High-resolution UAV imagery provides detailed representations of 

landscape heterogeneity. The Shannon Diversity Index (SHDI) and Simpson's Diversity Index (SIDI) values 

observed in high-resolution images indicate a detailed depiction of the landscape, including fine-scale 

variations and small patches of different land covers. This precision is essential for detailed ecological studies 

like habitat assessments and species distribution modelling, which require fine spatial details (Liu et al., 2020; 

Lu & He, 2018). While high-resolution images capture fine details, they can also reduce within-class variance 

by accurately representing each land cover class (Blaschke, 2010). This level of detail may result in over-

segmentation, in which the landscape is divided into small patches, complicating the analysis (Kim et al., 

2011). On the other hand, lower resolution provides a broader perspective by merging fine details into 

larger, more homogeneous patches, which can be helpful in large-scale ecological studies. This generalization 

is valuable for landscape planning and management, where broader patterns are more important than fine-

scale details. It enables the detection of large-scale ecological processes and patterns without being 

complicated by excessive information (Wu, 2004). In this study, higher resolution increased the NP and PD, 

indicating a more fragmented landscape. This aligns with the research (States, (1995), which has shown that 

high-resolution images show more fragmentation and edge complexity. As resolution decreases, these 

indices show fewer patches and less edge complexity, indicating a more generalized landscape structure. 

These differences can enhance the effectiveness of UAV-based ecological monitoring and landscape 

management efforts. 
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4.6. Applications of results 

The results of this study provide valuable insights and practical applications for ecological conservation and 

management, especially in rewilding initiatives and habitat restoration efforts. High-resolution UAV imagery 

can help monitor habitat fragmentation and landscape heterogeneity. The ability to capture fine-scale 

landscape features with high spatial resolution is essential for accurate land cover classification and 

conservation planning. However, it is important to understand the limitations of temporal resolution. 

Frequent data acquisition may be limited by logistical and environmental constraints. While this study does 

not focus on temporal aspects, it is important to note that when conducting temporal analysis, maintaining 

a consistent spatial resolution is essential. This consistency ensures that LHI reflects landscape change. 

UAV-derived LHI may significantly benefit the management of protected areas at the landscape scale. For 

instance, monitoring changes due to the introduction of large herbivores is essential for the initiatives taken 

by Rewilding Spain. These indices enable the quantification of landscape changes over time, helping to 

assess the effectiveness of interventions and guide future actions linked to biodiversity and reduced fire risk. 

Low-heterogeneous areas may benefit from reintroducing diverse species to increase habitat complexity and 

ecological resilience. Conservationists can use this information to prioritize restoration activities, ensuring 

that resources are directed to areas where they will have a significant effect. 
 

This study recommends high spatial resolution to monitor habitat structure and composition changes.  For 

this purpose, UAVs flying at low altitudes provide more detail. Although flying at higher altitudes can cover 

larger areas more quickly, there is a trade-off between the data acquisition speed and the level of detail 

captured. The highest possible resolution is preferable for applications requiring detailed spatial data, such 

as identifying small-scale habitat features or assessing the impact of conservation interventions. In contrast, 

for broader landscape assessments requiring extensive area coverage but fine detail is less important, flying 

higher to cover larger areas faster may be more practical. Understanding the application's specific 

requirements will guide the selection of flying altitudes. This approach ensures that the data collected is most 

appropriate for the conservation and monitoring objectives. Therefore, combining high-resolution UAV 

imagery and LHIs provides an effective ecological monitoring and conservation method. It offers detailed 

and up-to-date information on landscape changes, allowing for proactive interventions to protect 

biodiversity and ensure sustainable ecosystem management. 

4.7. Limitations of the research 

• This main study's significant limitation is the reduced size of the study area, which is about 6 

hectares. This constraint was due to the computational resources and processing time required for 

high-resolution UAV imagery. While this limitation helps to manage the data effectively, it also 

limits the potential for generalization of our findings. To validate the reliability of these findings 

across multiple landscapes, it is essential to consider a more diverse study area that can confirm the 

results.  

• The Estimation of Scale Parameter (ESP) tool was not used to select scale parameters in 

segmentation due to the computational processing power required by eCognition software. As a 

result, the scale parameter was determined using the trial-and-error method. 

• The findings are limited to the specific ecosystem studied and do not apply to all types of 

landscapes. Different ecosystems have unique features that depend on variations in UAV image 

resolution. To ensure broader applicability, further research is needed to validate our findings in 

diverse ecological settings. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

This study examined the impact of shape and compactness parameters on segmentation accuracy, the effect 

of UAV image resolutions on land cover classification accuracy, and the Landscape Heterogeneity Indices 

(LHI). The following conclusions address each research question: 

 

R.Q.1.1: How do the shape and compactness parameters in the multiresolution algorithm influence the 

segmentation accuracy at different spatial resolutions? 

 

The study identified that shape and compactness parameters significantly impact segmentation accuracy 

across spatial resolutions. Lower shape values (0.05 to 0.3) and higher compactness values (0.7 to 0.9) 

consistently produced better segmentation results, resulting in fewer over-segmentation and under-

segmentation, which is determined by the results of the segmentation accuracy metrics. In between the range 

of shape and compactness, there are no huge variations, but higher values in shape and lower values in 

compactness affect the segmentation accuracy. The optimal shape and compactness parameters resulted in 

a more precise delineation of landscape features, which improved segmentation accuracy. 

 

R.Q.2.1: How do different UAV image resolutions affect Land cover classification accuracy? 

 

The spatial resolution of UAV images influences land cover classification accuracy. At 3.5 cm resolution, 

overall classification accuracy was 85%, compared to 83% at 12 cm and 79% at 25 cm resolution. Producer 

accuracy and user accuracy also varied with resolution. Higher-resolution images provide more detailed and 

accurate classifications, which are required for detecting fine-scale heterogeneity in landscapes. As resolution 

decreased, smaller features merged into larger homogeneous areas, resulting in lower classification accuracy. 

This highlights the importance of high-resolution imagery in capturing detailed spatial patterns required for 

accurate land cover classifications. 

 

R.Q.2.2: What is the effect of different resolutions of UAV images on LHI? 

 

The study found significant variations in LHI across different spatial resolutions. Higher-resolution images 

(3.5 cm) provided a more detailed understanding of landscape structure by capturing finer spatial 

heterogeneity and edge complexities. On the other hand, lower resolution (12 cm and 25 cm) resulted in a 

generalized landscape structure with fewer patches and less edge complexity. LHI, such as Patch Density 

(PD) and Edge Density (ED), was higher at 3.5 cm resolution, indicating that it captures a more fragmented 

and complex landscape. Indices like PD, LPI, TE and ED are also highly sensitive to changes in image 

resolution. Other indices like SHDI, SIDI, and SHEI are less sensitive to image resolution, making them 

more useful for comparative studies on environmental monitoring and conservation management. The 

study confirmed that higher resolutions yield more accurate measurements of landscape heterogeneity, 

which is crucial for detailed habitat analysis and biodiversity conservation. However, lower resolution may 

be appropriate for large-scale ecological studies but less effective for detailed habitat analysis.  

 

 Thus, this study demonstrates the importance of optimizing segmentation parameters and utilizing high-

resolution UAV imagery in improving the accuracy of land cover classification and landscape heterogeneity 

assessments. These insights are essential for environmental monitoring, conservation planning, and effective 
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natural resource management. Implementing these methodologies can lead to more accurate and detailed 

analyses across various ecosystems, ultimately contributing to better-informed biodiversity conservation and 

landscape management decisions. 

5.2. Recommendations for further studies 

• Future research should concentrate on developing automated tools and techniques for tuning shape 

and compactness parameters for segmentation processes. A potential recommendation is to create 

a model that runs multiple parameter combinations and calculates the Quality Rate (QR) and Area 

Fit Index (AFI). This approach would allow users to select optimal values, reducing dependence on 

trial-and-error methods and enhancing the efficiency of these processes.  

• Additionally, machine learning algorithms can predict optimal parameters based on image 

characteristics, thereby automating the selection process. For example, selecting scale parameter 

values automatically using a tool like ESP in eCognition may help improve the segmentation 

process. While current studies employ this tool to select scale parameters, it does not work optimally 

in certain cases. Therefore, future research should understand why these tools may not perform 

optimally in specific scenarios.    

• Also, for further analysis, remove the variables that do not contribute to the classification using 

variable analysis graphs (SHAP values). Focusing only on the most impactful variables would help 

the model, reduce computational load, and potentially increase classification accuracy. 

• Furthermore, applying the study's methodologies and findings to various ecosystems and 

geographical regions would help validate its applicability and identify ecosystem-specific difficulties 

and solutions.  

• Future studies might focus on long-term monitoring and quantification of LHIs. By quantifying 

and analyzing LHIs over time, studies may better understand the impact of conservation initiatives. 

This approach would better understand how conservation efforts affect landscape heterogeneity, 

allowing for more informed decision-making and adaptive management strategies. 

6. ETHICAL CONSIDERATIONS 

The study analyses the impacts of UAV image resolution on segmentation accuracy and landscape 

heterogeneity indices. It contains no human, animal, or private information and avoids ethical issues. 

Rewilding Europe Spain provided field data for the study area. This organization has granted permission 

and rights to use the data in this thesis, ensuring that it was obtained and used ethically and legally. The 
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APPENDICES 

During the preparation of this work, the author used ChatGPT to assist in writing code (Python) for the 

feature Importance analysis in SHAP (SHapley Additive exPlanations). After using this tool, the author 

reviewed and edited the content as needed and took (s) full responsibility for the content of the work. 

 

 
Appendix 1 - Confusion Matrix  

Confusion Matrix – 3.5 cm (AFI 0.05/0.7) 

Class  Bare soil Herbaceous 

vegetation 

Grass Rock Shadow Shrubs Trees Sum 

Bare soil 13 0 0 8 0 0 0 21 

Herbaceous 

vegetation 

0 12 2 0 0 0 0 14 

Grass 0 1 10 0 0 1 0 12 

Rock 2 0 0 4 0 0 0 6 

Shadow 0 0 0 0 12 0 0 12 

Shrubs 0 2 0 0 0 16 1 19 

Trees 0 0 0 0 0 0 16 16 

Sum 15 15 12 12 12 17 17  

Accuracy 

Producer 0.87 0.8 0.83 0.33 1 0.94 0.94  

User 0.62 0.86 0.83 0.67 1 0.84 1  

Totals 

Overall Accuracy  0.83 

Kappa 0.80 

 

Confusion Matrix – 3.5 cm (QR 0.05/0.5) 

Class  Bare soil Herbaceous 

vegetation 

Grass Rock Shadow Shrubs Trees Sum 

Bare soil 14 0 0 4 0 0 0 18 

Herbaceous 

vegetation 

0 12 3 0 0 2 0 17 

Grass 0 0 9 0 0 0 0 10 

Rock 1 0 0 8 0 0 0 9 

Shadow 0 0 0 0 12 0 0 12 

Shrubs 0 2 0 0 0 14 1 17 

Trees 0 0 0 0 0 1 16 17 

Sum 15 14 12 12 12 17 17  

Accuracy 

Producer 0.93 0.8 0.75 0.67 1 0.82 0.94  

User 0.78 0.71 0.9 0.89 1 0.82 0.94  

Totals 

Overall Accuracy  0.85 

Kappa 0.82 
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Confusion Matrix – 12 cm (AFI 0.3/0.9) 

Class  Bare soil Herbaceous 

vegetation 

Grass Rock Shadow Shrubs Trees Sum 

Bare soil 12 0 0 4 0 0 0 16 

Herbaceous 

vegetation 

0 12 4 0 0 0 0 16 

Grass 0 2 8 1 0 1 0 13 

Rock 3 0 0 7 0 0 0 10 

Shadow 0 0 0 0 12 0 0 12 

Shrubs 0 1 1 0 0 16 0 18 

Trees 0 0 0 0 0 0 15 15 

Sum 15 15 13 12 12 17 15  

Accuracy 

Producer 0.8 0.8 0.67 0.58 1 0.94 0.88  

User 0.75 0.75 0.62 0.7 1 0.89 1  

Totals 

Overall Accuracy  0.82 

Kappa 0.79 

 

 

Confusion Matrix – 12 cm (QR 0.05/0.9) 

Class  Bare soil Herbaceous 

vegetation 

Grass Rock Shadow Shrubs Trees Sum 

Bare soil 15 0 0 6 0 0 0 21 

Herbaceous 

vegetation 

0 9 3 0 0 0 0 12 

Grass 0 0 8 0 0 1 0 13 

Rock 0 0 0 6 0 0 0 6 

Shadow 0 0 0 0 12 0 0 12 

Shrubs 0 1 1 0 0 17 1 20 

Trees 0 0 0 0 0 0 16 16 

Sum 15 15 12 12 12 17 17  

Accuracy 

Producer 0.71 0.75 0.67 0.5 1 1 0.94  

User 0.71 0.75 0.62 1 1 0.85 1  

Totals 

Overall Accuracy  0.83 

Kappa 0.80 
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Confusion Matrix – 25 cm (AFI 0.3/0.7) 

Class  Bare soil Herbaceous 

vegetation 

Grass Rock Shadow Shrubs Trees Sum 

Bare soil 12 1 0 4 0 0 0 17 

Herbaceous 

vegetation 

1 11 3 1 0 0 0 17 

Grass 0 2 9 0 0 0 1 12 

Rock 2 0 0 7 0 0 0 9 

Shadow 0 0 0 0 12 0 0 12 

Shrubs 0 1 0 0 0 16 2 19 

Trees 0 0 0 0 0 0 12 12 

Sum 15 15 12 12 12 17 15  

Accuracy 

Producer 0.71 0.73 0.75 0.58 1 0.94 0.71  

User 0.65 0.75 0.75 0.78 1 0.84 1  

Totals 

Overall Accuracy  0.79 

Kappa 0.75 

 

 

Confusion Matrix – 25 cm (QR 0.05/0.7) 

Class  Bare soil Herbaceous 

vegetation 

Grass Rock Shadow Shrubs Trees Sum 

Bare soil 13 0 0 3 0 0 0 16 

Herbaceous 

vegetation 

0   10 4 0 0 2 0 16 

Grass 0 2 8 0 0 0 0 10 

Rock 2 1 0 9 0 0 0 12 

Shadow 0 2 0 1 12 0 0 15 

Shrubs 0 0 0 0 0 13 3 16 

Trees 0 0 0 0 0 1 14 15 

Sum 15 15 12 12 12 16 17  

Accuracy 

Producer 0.87 0.67 0.67 0.75 1 0.76 0.82  

User 0.81 0.63 0.8 0.75 0.8 0.81 0.93  

Totals 

Overall Accuracy  0.79 

Kappa 0.75 
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Appendix 2 – eCognition processing tree for classification 

 
 

Appendix 3 – Landscape Heterogeneity Indices and its Descriptions 

Name of  the 

metrics 

Description 

CA: Total (Class) Area The class area measures landscape composition, precisely, how much of  the 

landscape comprises a particular patch type. 

PLAND: Percentage 

of  Landscape 

PLAND equals the sum of  the areas (m2) of  all patches of  the 

corresponding patch type, divided by total landscape area (m2), multiplied by 

100 (to convert to a percentage); in other words, PLAND equals the 

percentage of  the landscape comprised of  the corresponding patch type. 

Note that total landscape area (A) includes any internal background present. 

LPI: Largest Patch 

Index 

The most extensive patch index at the class level quantifies the percentage of  

the total landscape area comprised by the most significant patch. As such, it 

is a simple measure of  dominance. 

ED: Edge Density Edge density reports edge length per unit area on a basis that facilitates 

comparison among landscapes of  varying sizes. 

TE: Total Edge Total edge is an absolute measure of  the total edge length of  a particular 

patch type. In applications that compare landscapes of  varying sizes, this 

index may not be as helpful as edge density (see below). However, total edge 

and edge density are completely redundant when comparing landscapes of  

identical size. 

PD: Patch Density Patch density is a limited but fundamental aspect of  landscape patterns. Patch 

density has the same essential utility as the number of  patches as an index, 

except that it expresses several patches on a per unit area basis that facilitates 

comparisons among landscapes of  varying sizes. 
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NP: Number of  

Patches 

The number of  patches of  a particular patch type is a simple measure of  its 

extent of  subdivision or fragmentation. 

PRD: Patch Richness 

Density 

Patch richness density standardises richness on a per-area basis, facilitating 

landscape comparison. However, this metric is redundant regarding both 

patch richness and relative patch richness. 

IJI: Interspersion and 

Juxtaposition Index 

The interspersion and juxtaposition index are based on patch adjacencies, not 

cell adjacencies, like the contagion index. IJI approaches 100 when all patch 

types are equally adjacent to each other. It is a good indicator of  isolation 

between habitat patches. 

SHDI: Shannon’s 

Diversity Index 

Shannon’s diversity index is a popular measure of  diversity in community 

ecology. It is applied here to landscapes. Shannon’s index is more sensitive to 

rare patch types than Simpson’s diversity index. 

SIDI: Simpson’s 

Diversity Index 

Simpson’s diversity index is another popular diversity measure borrowed 

from community ecology. It is less sensitive to the presence of  rare types and 

has a much more intuitive interpretation than Shannon’s index. Specifically, 

the value of  Simpson’s index represents the probability that any 2 pixels 

selected randomly would be of  different patch types. 

SHEI: Shannon’s 

Evenness Index 

Shannon’s evenness index expresses that an even area distribution among 

patch types results in maximum evenness. As such, evenness complements 

dominance. Shannon’s Diversity and Evenness Index reflects the relative 

distribution in the area between patch types. Spatial distribution is not 

accounted for. 

SIEI: Simpson’s 

Evenness Index 

Simpson’s evenness index is expressed such that an even area distribution 

among patch types results in maximum evenness. As such, evenness 

complements dominance. 

 

 


