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In the fast-paced world of Formula 1, drivers’ skills, technological advance-
ments, and, most importantly, the strategic use of data are all used to gain a
competitive edge. This research paper aims to determine how to accurately
extract the most influential features of race outcomes that are publicly avail-
able. The analysis is conducted using two methods, feature importance and
feature selection. One approach explores the division of the features into
weather, car, and driver categories to develop specific predictive models,
assessing the importance of top features within each category. A final model
with each model’s set of features that give the lowest root-mean-square
is created and compared to the other approach, which is applying feature
selection from the beginning to a new model. Additional features are devel-
oped based on the existing ones and used in both approaches. To improve
prediction model accuracy, the lowest root mean square error (RMSE) possi-
ble is targeted, and to evaluate the features, feature importance scores are
used. The following set of features was discovered to be the most outcome-
significant in all models: the grid position, the average breaking points, and
the variance of the breaking points. The importance-based model presented
the lowest RMSE, 0.005 and 0.006 when using Random Forest Regression and
a Gradient Boosting Regression respectively. The model that used feature
selection had a deviation of 0.93 when using Random Forest Regression
and 2.23 Gradient Boosting Regression. The RMSE values decreased for all
models when new features were added.

Additional KeyWords and Phrases: Deep Learning, Formula 1 Racing, Feature
Importance, Feature Selection, Predictive Modelling, Machine Learning,
Sports Analytics.

1 INTRODUCTION
In Formula 1, success depends not just on technical ability but also on
strategic intelligence, which involves interpreting data and making
sound decisions. Each race generates a vast amount of data, both
in complexity and volume, summing up to more than 1 terabyte
[1], which makes them great sources for research and insights that
can have a big impact on the results. This will provide teams with
data-driven tactics to maximize their performance by exposing the
features that are the most important for the final standings. The
potential of machine learning to improve racing strategy has also
been shown in recent research (e.g. [25]), for predicting the fastest
lap time in qualifying.
In the world of racing, success is dictated by a delicate balance

between human and machine. Drivers must navigate circuits with
unparalleled skill, but their performance is heavily influenced by the
capabilities of their cars. Advanced technologies and engineering
innovations play a crucial role in car performance, which include
aspects such as aerodynamics, engine power, tyre management,
and fuel efficiency. Additionally, team strategies around pit stops,
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tyre choices, and race-day decisions can significantly impact race
outcomes.

Racecraft, consistency, and qualifying performance are the main
factors that determine a driver’s success. Furthermore, the driver-
team dynamic is critical since racing tactics, including tyre selection
and pit stop scheduling, frequently determine the outcome of close
races.
The situation gets even more complex when outside variables

including weather, track features, and racing events are taken into
consideration. Unfavorable weather may significantly change the
dynamics of a race by affecting tyre performance and visibility.

This paper aims to explore the key features that impact the final
standings in Formula 1 races the most. By using data-driven anal-
ysis and exploring the interactions between various performance
indicators, this paper seeks to dive into the complexities of race
dynamics. This exploration should provide the teams, engineers,
and enthusiasts alike with valuable insights. In order to find under-
lying trends that influence race outcomes, this research suggests a
systematic analysis on past race data. Nevertheless, the method of
creating a model based on the best feature-importance combination
of others seems quite novel, as no straight-forward research papers
were found in this direction. This might be the case as it could take
a lot of time computationally and might not be very accurate com-
pared to other techniques. This matter will be studied throughout
the paper.

2 RELATED WORKS
This section examines the body of research on feature importance,
feature selection methods, feature, and its use in Formula 1 racing
and other sports-related predictive modeling.

One metric for determining which variables in a predictive model
have themost influence is feature importance. Breiman [4] presented
Random Forests, a machine learning technique that determines the
relative relevance of features by assessing how each feature af-
fects the correctness of the model. Sports analytics is one of the
many fields in which this approach has found widespread adoption.
Bunker and Thabtah [22], for example, used machine learning ap-
proaches to forecast the results of sporting events, highlighting the
significance of features in improving prediction accuracy.

In order to enhance model performance and minimize overfitting,
feature selection is used for selecting a subset of useful characteris-
tics. A thorough analysis of feature selection strategies was given
by Guyon and Elisseeff [7], who highlighted approaches including
filter, wrapper, and embedding strategies. These methods have been
applied to sports analytics to improve model performance and sim-
plify datasets. Liu et al. [2], for instance, used feature selection to
forecast the results of NBA games, demonstrating how reducing the
feature space may result in more effective and precise models.
The prediction ability of models can be improved by extracting

additional characteristics from already-existing datasets.
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Feature engineering is the practice of developing new variables to
identify underlying patterns in the data. Predictive model errors
have been demonstrated to decrease mistakes in Formula 1 racing
when derived characteristics like tyre degradation rates, pit stop
efficiency, and sector-specific performance measures are included.
In data science, Katya [10], for instance, studied data scaling, one-
hot encoding, and handling missing values, together with feature
selection, dimensionality reduction, and interaction term creation.
Applying similar strategies to Formula 1 race data can lead to the
development of new features, such as tyre wear rates or pit stop
efficiency, potentially reducing RMSE and improving the accuracy
of race outcome predictions.
Research comparing different feature selection strategies and

their effects on model performance in the context of Formula 1
racing is scarce. Studies conducted in similar domains, however, offer
insightful information. Shaikhina and Khovanova [19] conducted a
comparison of feature selection techniques in biomedical datasets,
demonstrating the potential to enhance model accuracy by using
feature importance. Similar approaches used for Formula 1 datasets
may show how feature importance differs between models and
time periods. Moreover, using feature importance to select only
the relevant features could improve the accuracy of the models,
although it is more time-costly.

3 RESEARCH QUESTIONS
The problem statement leads to the following research question:

How can the publicly available features that have the highest
influence on the final standings in a Formula 1 race be efficiently
extracted?

This can be answeredwith the help of the following sub-questions:
RQ1:What new relevant features can be derived from the existing

ones in a Formula 1 race dataset?
RQ2:What is the impact of the newly added features on the root

mean square error (RMSE) of the predictive models?
RQ3: How does the performance (accuracy-wise) of a predictive

model in Formula 1 racing change when using feature importance
repetitively, in comparison with feature selection application?

4 METHODS AND APPROACH
For the methodology of this project, the cross-industry process for
data mining (CRISP-DM) is used.

4.1 Business Understanding
The goal of the paper is to utilize historical race data to spot trends in
performance and decision-making. For this, the Formula 1 databases
[12] and APIs, such as the Ergast Developer API [3], which include
historical race statistics, driver performance metrics, timing data,
weather data, car telemetry, and position data over the last five
years (2018–2023), will be used. Prior seasons will not be taken into
account as the historical data up until 2018 is not entirely made
public by the Formula 1 teams. Moreover, the library FastF1 [18],
created by a German engineer [17], uses the data from Ergast to
access the previously mentioned data with the addition of custom
functions to the Pandas objects to make the data access and work

process fast and simple. All data is provided in the form of extended
Pandas DataFrames [13], and it can be visualized through Matplotlib
[9]. Due to the API being experimental, instability causes data to be
occasionally unavailable, resulting in difficulty in extracting data.

4.2 Data Understanding
There are around 22 races per year (season), in which 20 drivers, 2
from the same team, are competing against each other. Each race has
different track outlines and weather conditions, which also require
certain car adjustments and strategies. An exception to this number
of races is the 2020 season, in which only 17 races took place due to
the COVID-19 pandemic.
The data is obtained through the following data objects from

the FastF1 Python library: ’Session’, ’Laps’, ’Lap’, ’Telemetry’, ’Ses-
sionResults’, each object having object attributes and methods. A
’Session’ object contains information about an event; the ’Laps’ ob-
ject specifies information about multiple laps; the laps are looked at
one-by-one with the ’Lap’ object; ’Telemetry’ contains information
about the car; and ’SessionResults’ provides information mainly
about the final standings. The full details can be accessed on the
FastF1 library’s page [18].
As with any data set, the above-mentioned ones also have irrel-

evant features, which include identifiers or personal information
about the driver or the team, which do not have a direct influence
on race outcomes. (e.g.’IsAccurate’, ’BroadcastName’). These will
be deleted to prevent overfitting, accuracy reduction, and efficiency
loss. Moreover, each feature is more or less characteristic of one of
the following categories: car, driver, weather, or track.

In this paper, the features will be divided among the first three
categories, although in Formula One Racing, the car’s construc-
tion is the most crucial element for the final standings. Bell et al.
[15] analyzed whether driver skill or car construction affected the
performance (as shown by points scored) the most using a multi-
level (random coefficients) linear model. It was shown that the car’s
construction accounted for 86% of the variation in points awarded,
with driver skill accounting for just 14% of the total. Kesteren and
Bergkamp [20] distinguished between constructor advantage and
driving competence using a Bayesian Multilevel Beta regression
technique and concluded that approximately 88% of the variance in
race results is explained by the constructor.

Telemetry in Formula 1 refers to the system of wireless data trans-
mission from the race car to the team’s engineers in real time. This
technology captures and sends a wide array of data points, including
vehicle speed, tyre pressure, engine performance, and more, during
a race [5]. Unfortunately, it can have server or upload issues, leaving
quite a number of missing or undefined values. Moreover, when
looking at the telemetry data, the most relevant car-related features
are not publicly available. Those features include tyre pressure, en-
gine temperatures, fuel levels, and brake pressure [5].
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4.3 Data Preparation
This analysis is conducted in Python. Because each session provides
big data sets and they require a lot of time and memory when reload-
ing, the Pickle Python module [21] and caching are used to speed up
the process. Pickle is essentially serializing and deserializing Python
objects into or from a file of binary strings. After the data extraction
for a model is completed, it is saved in a data frame and then loaded
into a Pickle file.
Non-numeric data (e.g., ’Compound’, which represents the tyre

type, can take the following values: SOFT, MEDIUM, HARD, IN-
TERMEDIATE, WET) will be converted to categorical values, thus a
feature for each possible value. This method, suggested in [10], is
called hot encoding, and it provides structured information and can
improve the performance and accuracy of the model, as the values
of the newly-added features are of type boolean (e.g., if a compound
is soft, only the ’Compound_SOFT’ parameter will take value 1, and
the rest, 0).
Data pruning and normalization techniques are applied to han-

dle missing values and outliers and ensure data integrity. In case
of a missing value, the numeric data is replaced with an appropri-
ate value, either the mean of the category (lap times, sector times,
speeds, etc.) or 0 (tyre life, non-numeric classification position - “R”
(retired), “D” (disqualified), “E” (excluded), “W” (withdrawn), “F”
(failed to qualify), “N” (not classified), etc.). Time-related features
are converted to seconds for easier handling.

For each model, at least the calendar of one season is fetched. The
season is specified through a range of years (e.g., 2018–2019), and
the model can be created for more seasons by extending the range
to more years. The next step is to iterate through each included sea-
son’s events and update or add new features based on the existing
ones. In cases where only a couple of features from a data frame are
needed, only the relevant columns are extracted (e.g., the ’Session-
Results’ data object has two features of interest: ’ClassifiedPosition’
(the final position) and ’GridPosition’ (the starting position, based
on the qualifications).
If two or more data frames are used in an iteration, they are

merged together on one or more common features to be able to
create a proper data frame for a model. If no common feature exists,
they will be merged on the ’Event’ feature, which is extracted at
every iteration. However, this is not the best approach, as handling
and processing merged data becomes more complex.

4.4 Modelling
A purpose of the paper is to analyze the approach that most accu-
rately selects the most important features for standings prediction.
Moreover, the models can be analyzed in two ways based on the
target, which can either be the final position (’ClassifiedPosition’
from ’SessionResults’), which is ideal for predictive modeling, or the
lap-by-lap position (’Position’), which provides insights into real-
time race strategy and helps with quick decision-making. However,
the later one presents a higher risk of overfitting. In this scope, the
problem will be tackled in two ways:

Repetitive Application of Feature Importance
For this approach, three separate models are created. The avail-

able data is split into three categories: driver performance, weather
conditions and telemetry data. A model is created for each cate-
gory. such that the most important features of each of them will
be known. By splitting the features into smaller sets, the strengths
of each model become evident. Ultimately, the set of features that
create the lowest RMSE is taken from each model and used to create
a new one. The final model should only have the most significant
characteristics of each category, thus enhancing the prediction ac-
curacy and preventing overfitting with irrelevant features.

Application of Feature Selection
This approach is quite straight-forward. All the newly-thought-out
features are added to the existing ones, creating a model with 61
features. The same data preparation steps are applied here. Finally,
a list of the most important features is provided, with no category
restriction. This model is more complex and, thus, computation-
ally and time-costly. Here, feature selection uses two techniques:
SelectKBest and Recursive Feature Elimination (RFE). SelectKBest, a
filter-based feature selection method that relies on statistical mea-
sures to score and rank the features, together with the f_regression
score function, selects the top k features based on the correlation
with the target variable [6]. The latter technique improves feature
selection progress by recursively removing the least important fea-
tures. Thus, the model performs better and prevents overfitting by
using fewer features. This is needed because this model has all the
original relevant values plus the newly created ones, which are the
same as in the previous approach.

As mentioned in the previous sections, the target will differ based
on the purpose. The features will be assessed on both lap-by-lap and
final positioning. As ’Position’ is highly correlated with the target
variable ’ClassifiedPosition’, the last values of ’Position’ being iden-
tical, this feature will not be taken into consideration. Moreover,
as different algorithms have their strengths and weaknesses, the
datasets are tested on multiple forest models (Random Forest Regres-
sion and Gradient Boosting Machines). Random Forest Regression
is used as it is effective in handling large datasets that have many
features and missing values or outliers. The Gradient Boosting Tree
method. refers to strategically combining additional trees by correct-
ing mistakes made by its previous base models. Hence, it potentially
improves prediction accuracy, as it can also be seen in travel time
prediction [24]. The models for both algorithms are computed with
100 decision trees and a random number generator seed of 42.

4.5 Evaluation
The evaluation of the models’ performance will be assessed through
the Root Mean Squared Error (RMSE). This is advised in [8], as the
errors are Gaussian (measured with the same instrument under sea-
sonal constant conditions). Regression projects often use the RMSE
statistic to determine the average size of the mistake. The square
root of the average squared discrepancies between the expected and
actual values is used to compute it. Based on its value, new features
will be added or removed, such that the RMSE becomes as low as
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possible.

The features will be evaluated by the in-built feature importance
list. SHAP values were also taken into consideration. However, they
can be computationally expensive and time-consuming for large
data sets. In [23], it is also stated that opting for the model’s built-
in feature importance list can offer a more efficient and practical
approach for larger datasets and more intricate models.

4.6 Deployment
The goal of the deployment phase is to use the built-in predictive
models to extract useful information from Formula 1 race data. To
enable smooth data processing and retrieval, this entails integrating
the models into the current data pipeline. Additionally, a retrospec-
tive about what went well, what could have been better, and how
to improve in the future will be included.

5 RESULTS
For this analysis, the 2018 season was arbitrarily picked.

All the available features are listed in the figures below (Figure 1,
Figure 2, Figure 3 and Figure 4).

Fig. 1. The publicly available features in laps data

Fig. 2. The publicly available features in telemetry data

Fig. 3. The publicly available features in race results data

Fig. 4. The publicly available features in weather data

Separating the contribution of each feature was made difficult due
to the complex interaction between the driver and the car, as also
stated in [16]. After careful consideration, according to the relations

mentioned in Data Preparation and the actual significance of the
features (see [18]), the feature division and selection of relevant
features can be found in the list below:

• Driver Model: Driver Number, Times of the Sectors (1, 2 and
3), Times of the Sessions of the Sectors (1, 2 and 3), Lap Times,
Position, SpeedFL, SpeedST, Speed1, Speed2, Stint, Throttle,
Grid Position, Classified Position

• Car Model: Team, Revolutions per Minute (RPM), Speed,
Stint, Compound, Tyre Life, Freshness of the Tyre

• Weather Model: Air Temperature, Humidity, Pressure, Rain-
fall, Track Temperature, Wind Direction, Wind Speed

The only strictly car and team-related features are ’RPM’ and
’Speed’ from the telemetry data, and ’Stint’, ’Compound’, ’TyreLife’,
’FreshTyre’ from laps data. The throttle and braking characteristics
were included in the additional features, as they do not provide
any useful insight in the initial raw form. The pit stop times and
other possible related features are highly team-dependent as well.
However, as they could not be extracted correctly or are mostly
missing, they did not represent noise-free data. The weather model
would use all of its features, except for ’Time’. Lastly, the driver
model had all the other significant features.

By creating a model for each category only using the enlisted
features, the RMSEs looked as in Table 1, where ’P’ represents the
’Position’ as target, and ’C’, the ’ClassifiedPosition’.

Random Forest Gradient Boosting Regressor
Driver P 1.28 2.34
Driver C 1.53 2.81
Weather P 5.21 5.21
Weather C 5.08 5.08
Car P 2.2 2.6
Car C 1.95 2.35

Table 1. RMSE values of the original features

In order to reduce the deviation of each model, new features based
on the existent ones were added. For the driver model, the following
features were included:

• Cumulative lap time (the sum of all lap times) - It gives insight
into the trend of a driver. If it constantly increases, it may
indicate a decline in performance, which is usually because
of tyre wear or driver fatigue.

• Lap time variance - It measures the consistency of a driver’s
lap times over a series of laps. The higher the variance, the
greater the inconsistency. In correlation to consistent lap
times comes the driver’s skill, car setup and stable track con-
ditions.

• Fastest lap time - It provides a benchmark for a driver’s per-
formance.

• The number of braking points - Speed and throttle position
are analyzed to identify how and where a driver decelerates.
This feature is directly dependent on the driver’s skill, being
the only one who chooses when to break, which is crucial in
context. A higher number of braking points can indicate a
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more aggressive driving style, which can lead to higher tyre
wear, which might necessitate a pit stop for a tyre change,
or, in extreme cases, a crash. Additionally, the mean and the
variance for the breaking points will be analyzed.

• Gear shift smoothness - Gear shifts are handled by the driver
solely as well. Based on them, the gear shift smoothness, or
more explicitly, the variability in gear changes, the average
number of gear shifts per lap, and the gear shift variance can
be computed. The mean and variance will be determined for
this feature as well.

• The averages of all speed- and time-related features from the
driver model are shown in the afore-mentioned list. They
show the general performance trends, which are the interest
points, rather than inconsistencies in performance.

When analyzing the difference between the feature standings
from the original model (Figure 5) and the additional-features model
(Figure 6), it could be seen that the first position was still occupied
by ’GridPosition’, while the following features were taken by some
feature related to drivers skill. Some examples are the variance of
the braking points and the average of gear shifts. As the fastest lap
represents the best time obtained by a driver during a race while
doing a lap, it was only logical to have a big impact on the final
standings and take second place as the most important feature in
the reevaluated driver model. In these plots, RFR stands for Random
Forest Regression. The plots for the Gradient Boosting Regression
are listed in the appendix (Figure 15 and Figure 16).

Fig. 5. Driver Model Original Feature Importances - RFR

For the weather model, for each of the eight characteristics, the
mean and standard deviation, together with the rolling mean and
variance for a window of 5 were calculated. The maximum and
minimum values, plus the change between the values from the
start of the session and the end of the session were added as well.
Additionally, the interaction between the air temperature-humidity
and wind speed-wind direction pairs was studied.
For the remaining telemetry features (engine revolutions per

minute (rpm) and speed), the mean and the variance were addition-
ally determined.

After adding the above-mentioned features and then playing with
the features to see which combination reduces the root-mean-square
deviation the most, some values dropped to half of the original ones.

Fig. 6. Driver Model Added Feature Importances - RFR

When looking at the weather data frame, it was quite hard to
connect it to the final standings, as there were no common features.
For this purpose, the connection has been made to the new ‘Event’
feature. For the initial six values, the following order has been seen
when looking at lap-by-lap positioning: air temperature, humidity,
pressure, track temperature, wind direction, wind speed. Curiously,
when the target value changes, the first three interchange positions,
with humidity going on in the first place, followed by pressure and
air temperature. As rain is generally highly correlated with high
pressure before it starts and high humidity before and during it, this
could be considered a highly reasonable order, as also suggested by
the Red Bull team [11]. The plots for both algorithms can be seen
in Figure 7 and Figure 8. The other plots of the algorithms on the
original-features and additional-features plots can be seen in the
appendix (Figure 17 and Figure 18). However, the weather deviation
slightly changed when new features were added. Therefore, a set of
the three most target-relevant features was extracted.

Fig. 7. Weather Model Original Feature Importances - GBR

When using hot-encoding for the team names in the car model,
the RMSE decreased significantly, dropping from 3.56 to 1.72. The
according plot can be seen in Figure 9. In comparison to the initial
car model, when hot-encoding was used for team names and tyre
compounds in the model with the additional features, the RMSE
increased from 1.75 to 3.26. However, when it was applied only to
the ’Compound’ feature, the RMSE decreased again to 1.62. As there
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Fig. 8. Weather Model Added Feature Importances - RFR

were only five types of tyres, but ten teams, the complexity could
have risen too much with the additional encoding of the team names.
Moreover, the importance of the top features changed according to
Figure 10.

Fig. 9. Original Car Model Feature Importances with Team and Compound
Encoding

Fig. 10. Car Model Added Feature Importances - RFR

After applying the adjustments, the final values for RMSE changed
according to Table 2.
Below, the importance-ordered feature sets that determined the

above-mentioned RMSE values can be seen:

Table 2. RMSE values with the added features

Random Forest Gradient Boosting Regressor
Driver P 0.81 2.14
Driver C 0.24 2.10
Weather P 5.08 5.20
Weather C 5.08 5.08
Car P 1.62 3.82
Car C 1.91 1.91

• Driver model: { GridPosition, LapTime_fastest, BrakingPoints-
Variance, Avg-GearShifts, AvgSector3Time, GearShiftsVari-
ance, AvgSector2-Time, AvgSector1Time, LapTimeVariance,
AvgBrakingPoints }

• Weather model: { Humidity_gradient, Humidity_change, Hu-
midity_mean }

• Car model: { Team, Speed_mean, RPM_var, Speed_var, Aver-
age_Stint, Average_TyreLife, RPM_mean, FreshTyre, PitStop-
Count, TyreLife, Compound_SOFT, Compound_SUPERSOFT,
Compound_MEDIUM, Compound_ULTRASOFT,
Compound_HYPERSOFT }

When the feature sets mentioned above were combined for the
final model and had ’ClassifiedPosition’ as the target, they resulted
in a root-mean-squared deviation of 0.005 for the Random Forest Re-
gression model and 0.006 for the Gradient Boosting Machine model.
This indicates that the average difference between the predicted
values and the actual values is very small. As it can be seen in Figure
11, the most important features for the final race standings are the
starting position (’GridPosition’) and the fastest lap time obtained
by the driver. Interestingly, the following two places were taken
by certain weather features, and only then the driver’s skill-related
features followed (’BrakingPointsVariance’, ’GearShiftsVariance’,
’AvgGearShifts’, ’AvgBrakingPoints’). On the Gradient Boosting Ma-
chine, the order was not the same, as it can be seen in Figure 12.

Fig. 11. Combined Model Feature Importances - RFR

The values of the root-mean-square deviation differed when mak-
ing the lap-by-lap analysis, the values being 0.77 and 2.26 for the
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Fig. 12. Combined Model Feature Importances - GBR

Random Forest Regression and Gradient Boosting Machine, respec-
tively. The values with regard to real-time analysis were higher.
However, this paper focused on the model prediction parameter as
target value (’ClassifiedPosition’), computing the other one purely
for comparison and future work possibilities.

For the feature selection approach, all the previously mentioned
new features were added to a data frame, together with the exist-
ing ones. The total number of features rose to 112. The same data
preparation was performed as in the other case. Compared to the
other model, the feature list differed in order and RMSE. The lowest
deviation was obtained on the Random Forest Regressor Tree, with a
value of 0.93, whereas on the other model, the RMSE value was 2.23.
The top-most important features are shown in Figure 13, modeled
on the Random Forest Regressor, and in Figure 14, modeled on the
Gradient Boosting Machine.

Fig. 13. Final Feature Importances - Selection - RFR

6 DISCUSSION AND CONCLUSIONS
Ankur Patit et al. [14] conducted a study on the correlation be-
tween the features and came to the conclusion that variables such
as average pole position, number of laps led, and tyre types show
significant correlations with race results and driver performance.
The following are the key insights from the correlation plot in their
paper:

Fig. 14. Final Feature Importances - Selection - GBR

• The average pit stop shows a moderately positive correlation
with the use of medium tyres and a negative correlation with
the use of super-soft and ultra-soft tyres.

• The tyres have seven types (hard, medium, soft, super soft,
ultra soft, wet, and intermediate). Soft and super-soft tyres
have a slight positive correlation with the first, second, and
third positions. Ultra-soft tyres are negatively correlated with
higher finishing positions, as they are more prone to causing
accidents.

As it can be noticed, the previously obtained driver feature set is
supported by Ankur’s findings.
Based on the points reached in the paper, the best performance

was achieved by applying the first strategy, which is dividing the
large data frame into smaller data frames. Using feature impor-
tance in combination with feature importance permutation, the
best feature-set was formed by the characteristics that provided
the lowest root-mean-square deviation from all categories. Feature
importance was used once again to determine the right order of
the ultimate set of features. The most significant features for the
final standings were the grid position, the average breaking points,
and the variance of the breaking points with a root-mean-square
deviation of 0.005. This result was obtained using the Random Forest
Regressor, while the other algorithm provided a deviation of 0.006
for the same set of features. The low root-mean-square deviation
shows that the difference between the predictions and the actual
values is extremely low, thus the accuracy of the model scores high.

However, the grid position, the average breaking points, and the
variance of the breaking points appeared in all final models, making
them the most relevant features when it comes to predicting the
final standings.
Although the values should have been smaller for the Gradient

Boosting Machine, they seemed to be greater than the ones given
by the other algorithm. It might be that it takes longer to work
with the Boosting algorithm, as the trees are trained sequentially
in comparison with the parallel training from the Random Forest
algorithm.
The Jupyter notebooks, together with extra plots, including the

real-time telemetry plots concerning the development of the models,
are available through a public GitLab repository. 1.
1https://gitlab.com/o.cheteles /feature-importance-project.git
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7 FUTURE WORK
As future work, it would be wise to ensure a system like Ergast
that can be hosted locally so that this project does not rely on an
external server, especially as the Ergast Motor Racing Database API
will be shutting down at the end of 2024. Moreover, dimensionality
reduction techniques could be used instead of feature importance,
resulting in faster computational speed and higher model accu-
racy while preserving more information about feature relationships.
Moreover, the change in the feature order over the years could be
analyzed, as it could also reflect the changes commanded by the
Fédération Internationale de l’Automobile, the governing body of
motor sport, and promote safe, sustainable, and accessible mobility
for all road users across the world.
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A APPENDIX

Fig. 15. Driver Model Original Feature Importances - GBR
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