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In the realm of machine learning, ensuring the robustness of models against

adversarial attacks is critical, particularly in applications such as health-

care, autonomous systems and security. This paper investigates the efficacy

of Auxiliary Fourier-basis Augmentation (AFA) as a defense mechanism

against adversarial perturbations in computer vision models. AFA introduces

additive Fourier-basis noise to enhance model resilience, complementing

traditional visual augmentation methods. We evaluate the performance of

AFA across the CIFAR-10 dataset using a variety of adversarial attacks in-

cluding Auto-PGD, FAB and the Square Attack under different 𝐿∞ norms.

Experimental results demonstrate that AFA consistently enhances model

robustness against adversarial attacks, mitigating accuracy degradation un-

der adversarial attacks compared to models without AFA augmentation.

We analyze perturbation patterns in the frequency domain to understand

how AFA alters the perturbations, showing significant defense against low

and high-frequency perturbations while highlighting vulnerabilities in the

medium frequency ranges.

Additional Key Words and Phrases: adversarial attacks, robustness, image

classification, frequency-basis, augmentation

1 INTRODUCTION
In a world where machine learning systems are becoming increas-

ingly intertwined with our daily lives, the importance of their ro-

bustness increases. Every day, more computer vision models are

being used in the everyday lives of millions of people. People start

to rely on these models more and more in vital sectors of our society

such as healthcare, autonomous transportation, surveillance and

security, industry automation, etc. Human evaluation is factored

out of more and more processes in this rapidly changing world.

However, these human-replacing models can often be broken by

attacks where even humans can’t see what changed between two

images. This is a cause of worry and the reason that robustness of

computer vision models is incredibly important.

In previous work [23], Auxiliary Fourier-basis Augmentation

(AFA) was proposed; A technique to augment the images of a dataset

in the frequency domain to fill the robustness gap left by visual

augmentation. Additive noise generated by Fourier basis function

was added on each of the features (RGB) independently.

The primary objective of this research is to assess the robustness

of Auxiliary Fourier-basis Augmentation (AFA) under adversarial

attacks. Adversarial attacks change the input image minimally, such

that the change is imperceptible for a human, while causing a mis-

classification. For example, an adversarial attack can make a model

classify a an image of a dog as a cat, while a human can only see

the original dog.
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Fig. 1. An iteratively perturbed image to classify an image as all digits 0-9 in
order. The yellow bordered images is where the model confidently classifies
the digit incorrectly. (Goodfellow, 2016) [26]

In addition to evaluating the robustness of AFA, another objec-

tive is to explore characteristics of adversarial examples using the

frequency domain. By examining the frequency ranges of the per-

turbations, we aim to understand the underlying mechanisms that

contribute to the enhanced robustness of AFA models.

This all concludes to the main question to be answered: How
does the robustness of AFA models change under different types of
adversarial attacks?

To answer this we will analyse patterns in the attacks and models.

For this we will define some subquestions:

RQ1 How does the accuracy of AFA models change under increas-

ing perturbation norms in comparison to non-AFA models?

RQ2 Is there a general range in the frequency domain where suc-

cessful adversarial examples are situated?

RQ3 Is there a difference in adversarial examples between AFA

models and non-AFA models in the frequency domain?

2 RELATED WORKS

2.1 Adversarial attacks
Adversarial attacks involve making small changes to input data,

which are often imperceptible to humans but can cause the model

to make misclassified predictions, first demonstrated by Szegedy

et al. (2013) [21] and Goodfellow et al. (2015) [10]. An adversarial

example can be generated to make the model predict a target class,

which are called targeted attacks. An adversarial example can also

be generated to simply misclassify a prediction, called untargeted

attacks.

In figure 1, an image was iteratively perturbed to make the model

classify all possible digits 0-9 in order. While for a human, the

changes are barely perceptible, for the model it classifies it as a

whole different digit.
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Projected Gradient Descent (PGD), introduced by Madry et

al. (2017) [14], iteratively applies FGSM to generate more powerful

adversarial examples. DeepFool, presented by Moosavi-Dezfooli et

al. (2016) [16], aims to find the minimal perturbation required to

misclassify an input sample by iteratively computing the distance

from the sample to the decision boundary of the neural network.

APGD [5] is a parameter-free PGD attack.

Fast Adaptive Boundary attach (FAB), is introduced by Croce

and Hein in 2020 [FAB-croce]. FAB is a white-box attack that finds

the minimum perturbation necessary to change the class of a given

image.

The Square Attack (Andriushchenko et al., 2020) [2] is a black

box attack that randomly searches for adversarial examples that

cause for a misclassification. It does it in a structured way to make

it computationally feasible.

One common norm used in adversarial attacks is 𝐿𝑝 norm, where

p can be any positive real number. The 𝐿𝑝 norm of a vector x is

calculated as:

∥𝑥 ∥𝑝 =

(
𝑛∑︁
𝑖=1

|𝑥𝑖 |𝑝
)
1/𝑝

Here, 𝑥𝑖 represents the pixels of the image 𝑥 , and 𝑛 is the dimen-

sionality of 𝑥 . For example, when 𝑝 = 1, it’s the sum of absolute

values of elements (Manhattan distance). When 𝑝 = 2, it’s the Eu-

clidean distance and when 𝑝 = ∞, it determines the maximum

absolute difference. In some attacks, the goal is often to minimize

the perturbation under a given perturbation normwhile still causing

misclassification [10]. Later research has explored various strategies

for defending against adversarial attacks, including robust optimiza-

tion [14] and adversarial training [10][27].

2.2 Data augmentation
Data augmentation is a technique to increase the accuracy of models

by generating more data variety from existing data points. This

method can also be used to increase robustness by adding variation

in the dataset. In computer vision, data augmentation techniques

include image transformations (e.g., rotation, translation, scaling),

color and brightness adjustments, cropping, flipping, and noise

addition.

Research by Krizhevsky et al. (2012) [12] and Simonyan et al.

(2014) [19] demonstrated the effectiveness of such augmentation

techniques in convolutional neural networks (CNNs). Recent re-

search in data augmentation led to techniques like AutoAugment

(Cubuk et al., 2019) [7] and RandAugment (Cubuk et al., 2020) [8],

which automatically search optimal augmentation policies based on

the dataset.

This paper will investigate two augmentation techniques. The

first one, PRIME [15], is a general data augmentation method that

enhances robustness to common corruptions through the use of

simple yet diverse max-entropy image transformations. The second

one, TrivialAugment (TA) [17], is a automatic augmentation method

that applies a single random visual augmentation to each image.

Fig. 2. Fourier-basis additive noise augmentation is a complement to visual
augmentation techniques. (Vaish et al., 2024) [23]

2.3 Auxiliary Fourier-basis Augmentation (AFA)
Research by Gilmer et al. (2018) [9] and Tsuzuku et al. (2019) [22]

showed that models often encounter a high error rate when intro-

duced with adversarial examples containing Fourier-basis additive

noise. Dong et al. (2019) [29] further explored this issue, demonstrat-

ing that augmentation causes an increase of robustness in against

high-frequency corruptions at the cost of a decrease in accuracy

against low-frequency corruptions. Vaish et al. (2024) [23] identi-

fied this augmentation gap and proposed AFA – an augmentation

technique which utilizes Fourier-basis functions as additive noise.

Random frequencies and directions are sampled from uniform dis-

tributions which are added channel wise over the original image.

The frequency sampling is defined as 𝑓 ∼ U[1,𝑀 ] where 𝑓 is the

frequency and𝑀 is the image size. Figure 2 shows the augmentation

method.

Techniques have been researched to increase robustness making

use of the frequency domain [4][25][24][28][13]. However, Vaish et

al. (2024) [23] argues that these methods are computationally infeasi-

ble for large-scale datasets. Additive noise as Fourier-basis functions

however can be applied as a feasible Fourier-basis augmentation

technique for large-scale datasets.

Using AFA in combination with existing visual augmentation

techniques shows a significant increase in model accuracy com-

pared with just using these visual augmentations [23]. These im-

provements were done on robustness benchmarks with common

corruptions and perturbations (Hendrycks and Dietterich, 2019) [11]

and not on more advanced adversarial attacks.

Robustness evaluation in the frequency domain has been done

with PGD and FGSM on CIFAR-10 [20]. This lead to results which

are promising, but have only been evaluated on a small-scale dataset

with only 2 attacks. Standard evaluation on AFA under adversarial

attacks is still necessary to comprehensively assess its robustness

in real-world scenario’s.

2.4 Standards for evaluating robustness
In recent years, research in adversarial examples has increased mas-

sively. Currently, over 9,000 papers on this subject have been written.

Athalye et al. (2018) [3] state that most of these papers overestimate
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the robustness of their findings. To be able to compare robustness

of models between papers, Croce et al. (2021) [6] proposed a stan-

dardized benchmark using AutoAttack. AutoAttack, introduced by

Croce et al. (2020) [5] is an ensemble of multiple attacks aiming to be

a parameter-free, computationally affordable and user-independent

benchmark.

AutoAttack comprises four distinct attacks. Initially, they intro-

duced Auto-PGD (APGD), an extension of PGD [14], wherein the

step-size parameter adjusts automatically based on input data and

the model. Additionally, AutoAttack employs two variants of APGD

with different loss functions: Cross-entropy loss (APGD-CE) and

Difference of Logits Ratio loss (APGD-DLR). Alongside these, the

existing attacks FAB [FAB-croce] and Square Attack [2] are inte-

grated into AutoAttack.

AutoAttack operates in two modes: standard and individual. In

the standard mode, it sequentially applies all attacks, while in the

individual mode, each attack is applied separately.

3 METHODOLOGY
This project aims to evaluate models trained by Vaish et al. (2024)

[23] on CIFAR-10 using a standard benchmark to analyse their

accuracy under various attacks. Different levels of perturbations

under the 𝐿∞ norm will be applied for all models and attacks to

assess how well AFA ranks against existing techniques.

In our analysis, we will omit attacks for specific reasons. Individ-

ual analysis will not be performed with FGSM since it is a weaker

version of PGD [5]. DeepFool will not be analysed since it is alike in

spirit as FAB, but it finds the minimal perturbation disregarding the

indistinguishability to original image [5]. Carlini-Wagner is outper-

formed by FAB and PGD, just like other attacks notmentioned before

(SparseFool, Linear Region, Distributionally Adversarial, ElasticNet,

etc.) and thus will not be evaluated [5]. The four attacks included in

AutoAttack offer completeness, encompassing both blackbox and

whitebox, targeted and untargeted approaches.

Only ResNet models will be analyzed because its architecture has

been extensively studied and optimized, making it a reliable bench-

mark for evaluating adversarial attacks. Usually ResNet models are

used in benchmarks, so we use this to be able to compare it to other

methods.

In this study, we focus on CIFAR-10 models for our experiments.

Due to practical constraints including time limitations and GPU

memory capacity, a study on ImageNet was not possible.

4 EXPERIMENT
This section introduced two experiments. The first experiment aims

to analyze the robustness of various models under different adver-

sarial attacks across a range of 𝜖 values. The second experiment

focuses on assessing the influence of AFA when examining adver-

sarial examples in the frequency domain

4.1 Experiment 1: Evaluating robustness under adversarial
attacks

In this experiment, we will compare the success rates of different

AutoAttack methods to understand which attacks are more effective

against different models. The attacks (APGD cross-entropy, APGD

targeted, FAB targeted, and the Square Attack) will be applied to

each model. Using the 𝐿∞ perturbation norm, we will test 𝜖 values

ranging from 0 to 8/255 to see how model accuracy changes with

increasing perturbation levels. Robust models show a slow decrease

in accuracy as the perturbation increases, while non-robust models

drop in accuracy more quickly. By comparing models with Adver-

sarial Frequency Augmentation (AFA) to those without, we will

assess the impact of AFA on the robustness of each model against

these attacks.

4.2 Experiment 2: A Fourier perspective on robustness
We will perform the calculations in this section to analyze the fre-

quency ranges of adversarial attacks for ResNet18 models without

AFA and with AFA. All calculations are done channel-wise when

relevant. The image is made grayscale before visualization.

Let 𝑂 denote the original image of height 𝐻 and width𝑊 . Let𝑚

be a model, and let𝑋𝑚,𝑎,𝑂 denote the successful adversarial example

generated for model𝑚 using attack 𝑎 on image 𝑂 .

Both 𝑂 and 𝑋𝑚,𝑎,𝑂 can then be transformed using the Fourier

transform. Let 𝐴(𝑥,𝑦) be such image with coordinates 𝑥,𝑦. Before

transforming the image to the frequency domain, we will apply a

Hann window function 𝐻 {𝐴(𝑥,𝑦)} to reduce spectral leakage [18].

𝐹 (𝑢, 𝑣) = F {𝐴(𝑥,𝑦)} =
𝑀−1∑︁
𝑥=0

𝑁−1∑︁
𝑦=0

𝐻 {𝐴(𝑥,𝑦)}𝑒− 𝑗2𝜋 ( 𝑢𝑥𝑀 + 𝑣𝑦

𝑁 )

The zero-frequency component of the Fourier transform 𝐹 (𝑢, 𝑣)
is then shifted to the center and the absolute is taken to be left with

only the magnitude values.

𝐹 ′ (𝑢, 𝑣) = |F
shift

{𝐹 (𝑢, 𝑣)}|
. Next, the difference between 𝑋𝑚,𝑎,𝑂 and 𝑂 can then be taken,

which represents the perturbation. With this perturbation we can

analyze where the perturbation lies in the frequency domain. This

gives us the formula

𝑃𝑚,𝑎,𝑂 (𝑢, 𝑣) = 𝐹 ′ (𝑋𝑚,𝑎,𝑂 (𝑢, 𝑣) −𝑂 (𝑢, 𝑣))
𝑃𝑚,𝑎,𝑂 denotes the adversarial perturbation in the frequency do-

main.

To find a general trend, wewill aggregate all successful adversarial

examples on images 𝑡 ∈ 𝑇 , where 𝑇 is the set of the images in the

test set that are successfully perturbed. The failed perturbations, i.e.

the perturbations which could not lead to a misclassification under

a given 𝜖 , will not be aggregated. This will lead to the following

formula:

𝑃𝑚,𝑎 (𝑢, 𝑣) =
1

|𝑇 |
∑︁
𝑡 ∈𝑇

𝑃𝑚,𝑎,𝑡 (𝑢, 𝑣)

Where 𝑇 is the test set, 𝑃𝑚,𝑎 denotes the mean perturbation of

all successful adversarial examples under the Fourier transform

for model𝑚 and attack 𝑎. So, 𝑃𝑚,𝑎 (𝑢, 𝑣) denotes the energy of the

frequency (𝑢, 𝑣) of the average successful perturbation on the test

set.

Based on the work of Abello et. al. (2021) [1], we can measure

the energy intensity for each frequency based on the distance to

the center. With the Fourier Transform, 𝑃 is shifted to the center

of the image. The "distance" is hence defined as the L1 norm from

pixel (k,l) to the center since the L1 norm is the best method to

3



TScIT 41, July 5, 2024, Enschede, The Netherlands Daniël Kuiper

dataset arch. base AFA standard APGD-ce APGD-t FAB-t square autoattack

CIFAR-10 ResNet18

none

n 95.15 0.00 0.02 0.07 59.19 0.00

y 94.69 0.50 0.39 1.13 76.92 0.27

PRIME

n 94.37 0.76 0.56 1.02 70.37 0.27

y 94.54 0.92 1.01 1.21 72.18 0.46

TA

n 96.20 0.01 0.04 0.00 59.30 0.00

y 96.10 0.06 0.04 0.00 72.80 0.00

Table 1. Accuracies of CIFAR-10 ResNet models on different attacks under 𝐿∞ = 8/255 in %. AutoAttack does the attacks APGD-ce, APGD-t, FAB-t and square
subsequently. If an image x cannot be perturbed by APGD-ce, AutoAttack tries APGD-t, then FAB-t and lastly square.

measure distances in discrete spaces like images. We will define

𝐸{𝑃𝑚,𝑎} to be the energy distribution of the permutation. From this

distribution, we can learn the attack strategies of the attacks.

𝐸{𝑃𝑚,𝑎}(𝑓 ) =
1

|𝑆 (𝑓 ) |
∑︁

(𝑢,𝑣) ∈𝑆 (𝑓 )
𝑃𝑚,𝑎 (𝑢, 𝑣)

𝑆 (𝑓 ) is the set of pixel coordinates (𝑢, 𝑣) such that the L1 distance

from (𝑢, 𝑣) to the center is equal to 𝑓 . This can be defined as:

𝑆 (𝑓 ) = {(𝑢, 𝑣) | |𝑢 − 𝑊

2

| + |𝑣 − 𝐻

2

| = 𝑓 }

We can evaluate the difference between a model and its AFA-

enhanced counterpart by computing

𝐷𝑚′,𝑚,𝑎 = 𝑃𝑚′,𝑎 − 𝑃𝑚,𝑎

, where𝑚′
represents the AFA equivalent of the model𝑚 and 𝐷𝑚,𝑎

denotes the frequency domain delta between the base model𝑚 and

its AFA model𝑚′
under attack 𝑎. 𝐸{𝐷𝑚′,𝑚,𝑎} gives us the energy

distribution difference that AFA makes. We can analyze this attack

strategy difference between a model and its AFA counterpart to see

the frequency ranges against which AFA defends.

5 RESULTS

5.1 Experiment 1
5.1.1 Attack differences. In table 1, the accuracies of ResNet models

are presented under different attacks with 𝐿∞, 𝜖 = 8/255.
First of all, by looking at table 1, we notice that all models are

not robust against the APGD and FAB attacks. APGD and FAB have

access to the model’s gradient, allowing it to precisely calculate

which pixels to tweak to maximize the adversarial attack success.

APGD Targeted, although similar to APGD-CE in using the model’s

gradient, imposes an additional constraint of targeting a specific

class. The variability of the values in the table between attacks is a

result of the accuracy deficit described in Appendix B.

The Square Attack, being a black-box attack, operates based on

randomness and iterative adaptation. It does not rely on model

gradients, making it inherently less effective, resulting in higher

model robustness, as can be seen in figure 4. However, its black-box

approach makes it more representative of real-life scenarios, where

access to model gradients is typically unavailable.

5.1.2 Impact of AFA on model robustness. To discern trends in

model robustness, it is needed to examine performance across vary-

ing levels of perturbation. In Fig 4, a clear decreasing trend can be

seen as the perturbation increases. For each attack, the baseline AFA

Fig. 3. The accuracy difference between a base model and its AFA enhanced
model.

model shows the highest robustness against adversarial attacks for

𝜖 lower than 5. For larger perturbations, PRIME enhanced with AFA

is marginally more robust.

The TrivialAugment model, while having the highest standard

accuracy, is actually the least robust against adversarial perturba-

tions. For all other methods, they are more robust than the baseline

model, this indicates that augmentation is a good method to improve

robustness if done right, confirming Dong et. al.’s findings [29].

Figure 3 shows that AFA provides a consistent improvement

in robustness whether it is auxiliary to another technique or not.

The PRIME model without AFA already shows higher robustness

against all attacks, closely matched by the baseline model with AFA.

However, models trained with TrivialAugment demonstrate the

highest standard accuracy, but their accuracy significantly deterio-

rates when subjected to attacks, indicating low robustness. In this

case, AFA does increase the robustness.

Vaish et. al. (2024) [23] showed that AFA brings a consistent

improvement on robustness against common corruptions. Interest-

ingly, figure 3 shows that this improvement does also extend to

adversarial attacks.
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Fig. 4. The accuracy of different models against (a) APGD-ce, (b) APGD-t, (c) FAB-t and (d) Square attack. Using the 𝐿∞ norm.

5.2 Experiment 2
First of all, let’s define modelM1 to be the baseline ResNet18 CIFAR-
10 model without AFA. Then,M1A is thatM1 model and trained

with AFA. Let M2 be the ResNet18 CIFAR-10 model trained with

PRIME, and then consequently M2A is that model but enhanced

with AFA. ThenM3 is the ResNet18 CIFAR-10 model trained with

TrivialAugment, andM3A is that model enhanced with AFA.

5.2.1 Attack perturbation strategy. In figure 5, the energy distribu-

tion of the mean perturbation of all successful adversarial examples

for model M1 can be seen. Here, the perturbation distribution indi-

cates an attack strategy. If the energy is high, the perturbation is

active in this region. If the energy is low, the frequency is not a lot

present in the perturbation.

First of all, APGD-ce and APGD-t have the same attack strategy.

This makes sense since it is the same attack. Secondly, the Square

attack perturbs mainly in the low frequencies. This can be explained

by the fact that it is black box and based on iterative addition of

square noise. Because of its structure, and on the low number of

queries used (App. B), it is statistically less likely to create high-

frequency perturbations. Lastly, the FAB-t attack has structurally

Fig. 5. Perturbation energy distributions for different attacks on M1 for
𝐿∞, 𝜖 = 8/255. The energy-axis is scaled logarithmic to improve readability.

less perturbations in all frequencies. Further observations will con-

tinue with APGD-ce only due to its strength, AFA robustness and

to keep the research scoped.
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Fig. 6. The energy distribution of the mean perturbation of all successful
adversarial examples under the Fourier transform for model M1 and APGD-
ce.

Fig. 7. The energy distribution difference between the mean perturbations
on the models M1A and M1.

5.2.2 Perturbation strategies for different norms. The attack strategy
we found in previous section was based on 𝜖 = 8/255, since it is a
common bench marking value. However, it is important to know

if the strategy differs for other values. Figure 6 shows that as 𝜖

increases, a change in attack strategy can indeed be seen. Once 𝜖

increases, an increase in overall energy can be seen. This is due

to the fact that if the attack gets more freedom in perturbing an

image, it will perturb the image in all frequencies. Interestingly,

the perturbation is not increased uniformly over all frequencies.

Overall, the perturbation is skewed to the high-frequencies. Also,

increased perturbation energy can be seen for frequencies 3 to

10 and frequencies 27 to 32. This suggests that APGD focuses its

perturbation primarily on the low and high-frequencies.

5.2.3 Impact of AFA on the perturbation strategy. Now, we can com-

pare the impact AFA has on the perturbation strategy by comparing

M1 and M1A. Figure 7 shows the attack strategy difference between

Fig. 8. Perturbation energy distribution for different models on the APGD-
ce attack for 𝐿∞, 𝜖 = 8/255

the AFA model M1A and the baseline model M1. We can see two

distinct cases for which the perturbation strategy differs when you

look at the general trend of 𝜖 = 8.

The first case is where the energy difference is positive. Here, AFA

perturbs more information. This is the case in the frequency ranges

0 to 4 and 10 to 22. The first range are the extremely low frequencies,

perturbations in this region are so large that they surpass the subject

in the image. The second positive range are the medium frequencies.

Here, details in the image are present. Increasing perturbations in

these ranges increases robustness.

For all other frequencies - the ranges 4 to 10 and 22 to 32 - the

energy difference is negative, suggesting that the average perturba-

tion on the AFA model is lower. The information in these frequency

ranges are broad details (4 to 10) and the fine details (22 to 32).

Decreasing perturbations in these areas increase robustness.

The trend described above also holds generally for the FAB-t

attack. In Appendix C, these figures are shown for FAB-t. There

are notable differences between the attacks. The overall energy is

lower, and the difference between AFA and the baseline is positive

until 𝑓 = 25. Since it is a different attack, it yields different defense

strategies. However, the general shape is equal, meaning that the

impact of different frequency ranges does stay the same.

A theory that explains this phenomenon is that the AFAmodel has

been trained with augmentation that adds random frequency-basis

noise for all frequencies 0-32 uniformly. Because of this augmen-

tation, it is more robust against perturbations that rely on these

frequency alterations.

5.2.4 Correlation perturbation strategy and robustness. Figure 8

shows the perturbation energy distribution on different models

for 𝜖 = 8/255. The baseline models are compared against the AFA

models, just like in figure 7. Here an interesting observation can be

made. For the low to medium frequencies, all models show the same

behavior. This indicates that the strategy described in 5.2.3 holds

for other models for the low frequencies. For the high frequencies,

AFA does not perturb less for models M2 and M3. This indicates

that the base augmentation of PRIME and TA already show some
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high-frequency defense, since AFA shows no difference. AFA does

however lead to increased robustness for all models M1-M3, as we

have seen in Experiment 1. As such, we can create an outlook that

AFA provides an extra defense for the low-frequencies.

6 CONCLUSION
In this paper, we presented two experiments to evaluate the ro-

bustness of different models under adversarial attacks, with and

without Adversarial Frequency Augmentation (AFA). The primary

objective was to assess the effectiveness of Adversarial Frequency

Augmentation in enhancing model robustness against adversarial

attacks.

The results from Experiment 1 demonstrate that AFA significantly

improves the robustness of models against adversarial attacks, par-

ticularly for lower perturbation levels. Models augmented with AFA

exhibit a slower decrease in accuracy as the perturbation level in-

creases, compared to their non-AFA counterparts. This trend was

consistent across various attack types, including both white-box

attacks like APGD and FAB, and the black-box Square Attack.

Experiment 2 took a Fourier perspective to analyze the frequency

characteristics of adversarial perturbations. By transforming images

into the frequency domain, the study revealed distinctive attack

strategies employed by different adversarial attacks, APGD-ce and

FAB-t. It was observed that these attacks often target specific fre-

quency ranges, with AFA models showing altered perturbation

strategies leading to increased robustness, particularly in low and

medium frequencies. This shift in attack patterns suggest that AFA-

induced defences change how adversarial perturbations affect differ-

ent frequency bands, thereby enhancing model robustness against

7 DISCUSSION AND FUTURE WORK
As we discussed in section 5.2.3, there are multiple frequency bands

that show different perturbation strategies. Figure 7 shows that is

beneficial to prevent low- and high-frequency perturbations and

not so much to prevent medium frequency perturbations. A the-

ory is that AFA is inherently beneficial in preventing low- and

high-frequency perturbations, but that it does not work for the

medium frequencies. In future research it might be insightful to un-

derstand what differences are introduced if in the AFA augmentation

process, 𝑓 is not uniformly distributed overU[1,𝑀 ] . Observations
about the difference of an AFA model distributed over only the

low-frequencies (𝑓 ∼ U[1,25] ) and an AFA model over only the

high-frequencies (𝑓 ∼ U[25,𝑀 ] ) will lead to insights over optimal

defense against adversarial attacks. Also, a non-uniform distribu-

tion can be chosen where low- or high-frequency augmentation are

more present than medium frequencies, for example a Log-Normal

distribution. This will lead to observations over where in the fre-

quency domain the successful adversarial perturbations lie and what

defense works.

Additionally, it is important to state that reducing perturbation

energy does not mean that the model is more robust, as we have

seen in Experiment 2 with the PRIME trained models. Robustness

encompasses factors beyond frequency domain observations alone.

While Fourier analysis provides insights into how perturbations af-

fect different frequency components, it doesn’t capture the entirety

of adversarial attack strategies. For instance, attacks like APGD and

Square Attack target low-frequency components significantly, affect-

ing model predictions despite minimal changes in high-frequency

domains.

While Experiment 2 provided valuable insights using CIFAR-10,

ImageNet offers a broader range of images with more complex

features and higher resolutions. Analyzing models such as ResNet50

or other architectures trained with and without AFA on ImageNet

would allow for a more comprehensive understanding of how AFA

impacts model robustness across diverse image characteristics. This

could verify if trends observed in CIFAR-10 experiments—such as

the defense against high-frequency perturbations—are consistent to

larger datasets.
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Fig. 9. The energy distribution of the mean perturbation of all successful
adversarial examples under the Fourier transform for model M1 and FAB-t.

Fig. 10. The energy distribution difference between the mean perturbations
on the models M1A and M1.

APGD-ce APGD-t FAB-t Square

# restarts 1/5 1/1 1/5 -

# iter 10/100 10/100 10/100 -

# target classes - 2/9 2/9 -

# queries - - - 150/5000
Table 2. The attack configuration of all attacks. Bold values indicate what
was used to run the attack. Regular values indicate the standard AutoAttack
configuration

A USE OF GENERATIVE AI
During the preparation of this work the author(s) used ChatGPT

in order to correct grammar and spelling and to generate python

code for plotting and visualization. After using this tool/service, the

author(s) reviewed and edited the content as needed and take(s) full

responsibility for the content of the work.

B NORMALIZATION ERROR
A technical error throughout the research is the cause for somewhat

inaccurate data. Our models were trained on (mean, std) normalized

data, and as such, expect normalized input data. All attacks function

with all data min-max normalized between 0 and 1. This technical

issue was identified late in the project, resulting in the need to

rerun all attacks on all models. Due to a time constraint, a trade-off

was made to be able to complete in time; Less iterations for each

model were chosen to make the computations feasible. In table 2,

the attack configurations can be seen for each attack together with

its AutoAttack configuration.

Short experiments were run beforehand to indicate if the results

would be accurate. 2 target classes were chosen to increase the

chance of a possible class. 1 was not enough, 3 did gave relatively

less pay out. For the square attack, Andriushchenko et. al. [2] showed

that increasing queries has a logarithmic relation on increasing its

effectiveness. In hindsight, more queries than 150 would have led to

better results, . More restarts and iterations did not yield sufficient

difference for the extra time it would take.

C EXPERIMENT 2: FAB FIGURES
See figures 9 and 10.

9


	Abstract
	1 Introduction
	2 Related works
	2.1 Adversarial attacks
	2.2 Data augmentation
	2.3 Auxiliary Fourier-basis Augmentation (AFA)
	2.4 Standards for evaluating robustness

	3 Methodology
	4 Experiment
	4.1 Experiment 1: Evaluating robustness under adversarial attacks
	4.2 Experiment 2: A Fourier perspective on robustness

	5 Results
	5.1 Experiment 1
	5.2 Experiment 2

	6 Conclusion
	7 Discussion and future work
	A Use of generative AI
	B Normalization error
	C Experiment 2: FAB figures

