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Cardiovascular diseases make up 32% of global mortality, most of which

are detectable through monitoring of physiological signals, such as Electro-

cardiograms (ECG). Through the use of an Anomaly Detection algorithm,

deployed on a device that is continuously monitoring, such diseases can be

detected before onset. The requirements for such a device are to be power

efficient and small. Existing research covers models that are too large for

a wearable device, or reduce the input size. The later allows for smaller

models and hardware but leads to a loss of information. Herein, an adapted

Multi Layer Perceptron is used taking a whole heart beat as an input, whose

architecture is then developed using a Field Programmable Gate Array. From

here existing techniques under the paradigm of Approximate Computing

are applied, to further reduce hardware and power consumption. This proof

of principle paper demonstrates the feasibility of achieving a potential diag-

nosis while reducing the hardware and power resources.

1 INTRODUCTION
Cardiovascular diseases (CVD) including strokes and other circula-

tory diseases make up for 32% of the global mortality each year [1].

On top of this, the yearly cost in the European Union due to CVD

is estimated to be €169 billion [2]. Such diseases can be detected

through physiological signals, such as an ECG before onset [3]. One

approach could be to use a wearable device that monitors ECG sig-

nals in real-time for the detection of cardiac events like arrhythmias.

The device would have to be sustainable, implying energy and

resource efficient, which is achieved by considering the complexity

of the model as a bottleneck to hardware implementation. Previ-

ous research for an arrhythmia detection task using convolutional

neural networks, had the last convolutional layer with 512 filters

and a total of 2, 097, 152 multiplicative operations [4]. Herein, a

Multi-Layer Perceptron (MLP) from [5] is considered, which for 5

arrhythmia classes, had a model size under 4.5KB and consisted

solely of dense layers. Development of the architecture was done

on a Field Programmable Gate Array (FPGA). When compared to

a General Purpose Processor, FPGA’s have the potential to per-

form arithmetic operations in parallel, while being energy and area

efficient. FPGA’s offer the ability to change the architecture free

of charge, enabling the prototyping of Application Specific Inte-

grated Circuits (ASIC), which has well establish power reduction

techniques. This process can be combined with the Approximate

Computing methodology for FPGA’s. Approximations will reduce

the range of possible outputs, reducing hardware and power usage,

at the cost of potentially reducing the model performance. There-

fore a balance between hardware reduction and error introduction
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should be achieved, while ensuring that performance remains above

the specified threshold.
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Fig. 1. The final Multi-Layer Perceptron model has an input layer of 256,
two hidden layers with 16 neurons each using ReLU activation, and an
output layer of 7 classes with a softmax activation.

Section 2 discusses arrhythmia characterization and reviews exist-

ing models for arrhythmia detection, approximate computing, and

protyping FPGA for ASIC. Section 3 defines the paper’s scope, focus-

ing on the model, hardware, and approximate computing. Section 4

provides an overview of the tools, datasets, and preprocessing for

the model. Section 5 and Section 6 answer how an MLP is adapted

for the task. Section 7 focuses on simulating and implementing the

hardware for an FPGA, while Section 8 covers the different types

of approximations used. Section 9 presents an overview of the re-

source, power, and error impacts of the approximations. Finally this

paper concludes with Section 10, 11 and 12, where the limitations

of the methodology are described, future works are laid out and a

summary of the results is made.

2 BACKGROUND
Arrhythmia is characterized as an irregular heart rate or rhythm.

This would be either the speed at which the heart beats, or an incon-

sistent pattern. An ECG records the electrical activity of the heart,

which consists of three waves (P, QRS, T) as shown in Fig.2a. Any

irregularities with regards to the strength or rhythm of these waves

fall under an arrhythmia, which can be fatal. Fig.2b is a type of

arrhythmia: notice that while the QRS complex seems normal, the P

and T wave are irregular which would warant further investigation.

Three papers were identified among others, which had an objec-

tive similar to that of this paper. Namely, developing a hardware

architecture for arrhythmia detection in ECG signals, through the

use of machine learning, while considering and optimizing for power

and resources.

The first paper developed a Time Convolutional Network (TCN)

for Arrhythmia diagnosis, of 34 different classes, to be deployed on
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a smartphone [6]. This model also made use of a denoising auto-

encoder, which would down sample and recreate the denoised signal.

The noise consisted of motion artifacts, power line interference’s or

muscle artefacts. For the TCN model, multiple time convolutional

layers were placed in parallel. Each layer had different filters of vary-

ing kernel sizes, extracting different time/scale-dependent features.

By using time convolutional layers, it was able to detect features

that manifest over time, such as the interval or differences between

heart beats. The model exhibited an overall sensitivity of 96.6%, and

used 22.77MB for storage.

The second paper aimed it’s architecture for an ASIC. The devel-

oped pipeline consisted of a Finite Impulse Response (FIR) to remove

noise, followed by an R-peak detection algorithm to segment the

signal into the QRS complex and an MLP with 5 classes of Arrhyth-

mia. The MLP consisted of 3 layers: an input with 100 neurons, a

hidden layer with 8 neurons and an output layer of 5 neurons. The

paper reports an overall sensitivity of 96.66%. While no mention of

the final model size is made, the FIR, R-peak detection algorithm

and the model were in total 4.5KB.

For the third paper, the model involves binary classification, into

categorizes of normal rhythms or Atrial Fibrillation [7]. In this

model, a wavelet transform was used to reduce the dimension of

the input ECG to only certain features, which allowed the model to

only take as an input the most relevant data. The model consisted

of 3 parts; an input of 64 neurons, three hidden layers with 45, 30

and 15 neurons and an output of two classes. The model achieved

a sensitivity of 91.84% for normal rhythms and 82.06% for Atrial

Fibrillation. The paper did not report the model size, however it

consumed 11.098 uW at 25kHz.

All three papers introduce a denoising method, reducing the input

to the most relevant information. Although this adds delay, it allows

for a smaller model and improved classification in the prescence of

noise. Two papers further reduce features to the QRS peak, minimiz-

ing model size but losing information about the P and T complexes.

Fig. 2b shows that considering only the QRS complex would fail to

recognize any irregularity of the P and T complex.

With regards to Approximate Computing on FPGA’s, various

techniques already exist. By it’s definition, the methodology can be

introduced in any aspect of the architecture that involves computa-

tions. Internal Self Healing (ISH), introduces the idea of canceling out

errors, by using errors and their corresponding inverses at different

stages [8]. This reduces the area as well as the power consumption

of the overall architecture. ISH has been used in the literature, for ex-

ample to optimize 8-bit multipliers by using sets of 4-bit multipliers

[9]. Other techniques not considered by the previously mentioned

papers, such ash Loop Perforation, Reduced Precision Computation

and Relaxed Synchronization are also used in various fields with

resource reduction improvements [10].

A literature review concluded that FPGAs are better suited for pro-

totyping ASIC architectures due to their reconfigurability, despite

their higher power consumption from dynamic components [11].

ASIC’s have well establish techniques to lower power consumption,

while the reconfigurable aspect of FPGA’s allow for development of

low power hardware [11]. Since ASIC’s are hardwired, future FPGA-

developed architectures can be transferred to ASICs once optimized,

followed by applying ASIC’s power reduction techniques to further

decrease overall power consumption.

(a) (b)
Fig. 2. Figure 2a is a normal annotated heart beat, while Figure 2b is a heart
beat classified as Atrial Flutter

3 PROBLEM STATEMENT
This research paper aims to address the lack of studies regarding

the use of complex models running on FPGA’s for constrained use.

The implemented model should consider the entire spectrum of the

ECG waveform, while functioning as a catch all model, where it

appropriately classifies inputs outside of the trained arrhythmia’s.

The developed model should then be streamlined, such that it’s size

and depth are pruned to only what is required, allowing for devel-

opment of a sustainable and efficient architecture. Subsequently,

hardware and power usage should be reduced by implementing ap-

proximate computing techniques. The developed architecture will

function as a prototype for an ASIC, thus improving the adaptability

to a constrained/wearable device. All the while a cardiologist level

of sensitivity will have to be maintained. With this in mind, the

research hypothesis can be structured as follows:

What is the structure of an ECG anomaly detection algorithm with
a cardiologist level sensitivity, which can then be developed into an
efficient architecture for a FPGA, followed by using Approximate Com-
puting to further reduce hardware and power requirements for a con-
strained edge device?

This research hypothesis is investigated by exploring these sub

questions:

(1) What is the sensitivity, accuracy and latency required for the

final prototype to be used in a medical setting?

(2) How can the layers that make up the model be deployed onto

a FPGA?

(3) What Approximate Computing technique(s) can be used on

the architecture to reduce hardware and power requirements?

4 METHODOLOGY

4.1 Toolflow and Experimental Setup
The model was developed in Python using Keras and Tensorflow.

When transitioning to implementation, the fxpmath library was
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used to convert model parameters and inputs into fixed-point rep-

resentation. The model’s weights and inputs were extracted into

a MAT file for use in MATLAB. Multipliers and adders from [12]

were implemented in MATLAB to replicate the model structure.

For hardware implementation, Quartus served as the programming

environment and ModelSim as the testing environment, using a

board from the Cyclone IV E family (specifically the EP4CE40U1917 ).
Quartus was used to retrieve resource utilization and power data,

with ModelSim simulating realistic switching rates to provide accu-

rate power readings. To get accurate and realistic power readings,

ECG data was used as input. For the accurate neuron, 50 instances

of the architectures were made in the testbench, while 500 for the

approximated architectures, this was due to the fact that in test-

ing the accurate architecture took longer to process data. The test

benches were then ran for 101210 and 214660 ns for the accurate

and approximate respectively. The VHD files generated were then

used in the power analysis tool of Quartus. All processing was done

using a 13th Gen Intel(R) Core(TM) i7-13700H.

4.2 Dataset
For developing the model used in this paper, as well as testing the

hardware, two datasets were used. Taken from Physiobank, the first
dataset was the MIT-BIH Arrhythmia Database [4][13], consisting
of 48 hours of ambulatory ECG signals. The dataset had 16 different

/beats types, which acted as the main training set. An additional

dataset was used, (A large scale 12-lead electrocardiogram database)
which is made up of 63 different types of /beats. Since most of these

are uncommon, the catch all class for the final model made use

of these uncommon arrhythmias [14][15]. Both dataset used were

resampled to 200 samples per second (200Hz).

For training, an R-peak detection algorithm was used, this would

index an R-peak for an ECG given a threshold. The ECG is then

segmented into an array of 256 values, where the R-peak is at the

center. By sampling at 200Hz, it takes 1.27 seconds to sample to 256

values, which is enough time for a whole heartbeat. The overall

dataset was divided into training, validation, and testing sets, with

splits of 60%, 20%, and 20% respectively. In Appendix B, an overview

of all the classes and the representations used in the paper is given.

5 METRIC DEFINITION
To evaluate the model’s performance, twometrics are used: accuracy

and sensitivity. Accuracy is defined as the rate of overall correctly

predicted cases, while sensitivity focuses on only one class, being

the rate of correctly predicted cases out of all predication’s for that

class. Eq.1 and Eq.2 are the formulas to calculate these metrics, with

TP and TN being true positive and negative, while FP and FN being

false positive and negatives. The minimum sensitivity will follow

the previously published average sensitivity of a cardiologist, that

is 78.0% [4]. This will result in an overall accuracy above 78.0%.

Accuracy =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(1)

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

During training, a loss function is used to evaluate the model

predictions against the actual classes. This implies that a small loss,

close to 0, indicates the model is a good predictor. For the MLP in

this paper, a categorical cross entropy is used, whose function is Eq.3,

where 𝑦 is the true label, 𝑦 is the predicted label and N is the total

number of classes.

𝐿(𝑦,𝑦) = −
𝑁∑︁
𝑖=1

𝑦𝑖 log(𝑦𝑖 ) (3)

The latency is defined as the time taken to process one input of

an ECG signals. The maximum admissible latency follows the idea

introduced in a previous paper [5]. Consider that at 220 beats per

minute, there are 3.67 beats every second, with one beat every 0.272

seconds. If the maximum admissible latency is of 0.272 seconds, it

would imply that at most only one heart beat is lost in the worst

case scenario, which is acceptable.

6 MODEL

6.1 Multi Layer Perceptron
Selecting and developing the model architecture should take into

account the requirements of the end use case, particularly for wear-

able devices. In [5] an arrhythmia detection task for an ASIC was

developed using a MLP, with the final model size below 4.5KB. In

a similar manner this paper will adapt an MLP for arrhythmia de-

tection task, while considering the specific classes and subsequent

hardware requirements.

The starting MLP had a total of 76, 040 parameters (76K), with a

shortcut that went from the input to the output layer. The model

design was further reduced in size by changing the number of neu-

rons for the first dense layer, going from 256 to 16. This decreased

the number of parameters to 6, 016 (6K), a total reduction of 92.1%.

As can be seen in Fig.3, there is very small difference in sensitivity

per class, with an average difference among classes of 1.1%. The

final design consisted of removing the shortcut, which reduced the

number of parameters to 4.480 (4K). When compared to the previous

model with shortcut, on average the sensitivity per class was 1.55%

higher without the shortcut layer and 0.98% higher when compared

to the 76K model (Fig.3).

The number of classes is then changed for the model with 4K

parameters, adding more samples as well as adding a new class

called Other. An additional dataset was used for this as described in

Section 4.2, with the final classes being in Appendix.B. The usage

of another dataset implied that the model would be trained on data

sampled with different instruments. Hence the data that is used

in training and testing is normalized. Normalization occurs at the

input layer and follows Eq.4.

new input =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
(4)

Normalizing the input for both training and inference resulted in

an increased accuracy per class of 3.28%, except for the Other class
whose accuracy decreased. Further, by normalizing the inputs to

a range between 0 and 1, this ensures the number is representable
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when a different/smaller binary representation system is used.

The resulting model consisted of using bias for only the first two

layers. As can be seen in Fig.1, two dense layers with 16 neurons

each were used, with a ReLU activation function. For the last layer,

a softmax function was used for classification. The kernel and bias

regulizer for all dense function were L2, with the loss function being

Categorical Cross Entropy and an Adam optimizer. The epochs and

batch size were 256 and 64 respectively, however early stopping

was used during training. The final loss and accuracy of the model

can be seen in Fig.6.
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Fig. 3. Various MLP architectures described in Section 6.1, with their re-
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malized input.

7 HARDWARE

7.1 Fixed Point Representation
The MLP developed in Section 6.1 is only made up of dense layers

followed by activation functions. While the activation functions

will be covered in Section 7.2, using only dense layers limits the

operations to only multiplication and addition. To represent inputs

and parameters in hardware, a fixed point binary representation is

used.

In a fixed point system, a number is split into three parts: sign,

integer and fraction. The decimal point is fixed into position, X
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Fig. 6. Training metrics, loss and overall accuracy, for the final MLP archi-
tecture.

amount of bits are assigned to the integer part and Y amount to the

fraction part and the most significant bit (MSB) is taken as the sign.

Using a python script and the fxpmath module, the weights, biases

and inputs are recalculated into their fixed point representation.

Starting from 32 and going down to 3 bits, every combination of

integer to fraction was calculated. A sample of 100 ECG’s was used

with each combination and the total accuracy excluding the Other

class was recorded. This is because the Other class functions as the

catch all, meaning it will have a high sensitivity.

Fig.7 shows the results of the average accuracy per combination.

From it various conclusions can be made; 9 bits for the fraction is

the minimum amount to keep the accuracy above 92%, whereas 3

bits for the integer part will have an average accuracy above 92%,

overall 12 bits are required to satisfy these two conditions.

The final implementation aims to ensure that the model can be

generalized to other datasets while maintaining the same accuracy

and sensitivity, and also serving as a preliminary implementation.

Therefore, a fixed-point representation of 16 bits, with 5 bits for the

integer part, 10 bits for the fractional part, and 1 bit for the sign

were taken forward.

7.1.1 Arithmetic Operations. Multiplication is implemented as fol-

lows; multiplying two 16-bit numbers will result in a 32 bit number.

Initially, the decimal point is at the 10th bit for both numbers, the

32bit number will have it’s decimal point at the 20th bit. The 10 bits

before the decimal point are taken as the fraction part and the 5 bits

after the decimal point, as the integer with the 32nd bit acting as

the sign. Hardware implementation can be recursive by splitting
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Fig. 7. Average accuracy excluding Other class, with varying the number of integer or fraction bits. Each color indicates the total number of bits excluding the
sign bit.

and multiplying parts, then summing the shifted results [9][8]. This

paper uses an existing accurate 16x16 bit multiplier [12].

On paper adding two 16-bit numbers can return at most a 17 bit

number. Using 16 bits in two’s complement, the representable range

goes from -32768 to 32767. When the 17th bit is present, it indicates

that the result is out of the 16 bit range, depending on the sign of

the starting operands, the maximum or minimum value is set. An

existing addition implementation is used [12].

7.2 Neuron
The neurons are the blocks that make up a dense layer, as seen in

Fig.1 there are a total of 16, 16 and 7 neurons per layer. In total there

are four parts to each neuron, a multiplication between the input

and the weight, addition between the multiplication result and the

previous multiplications and an addition of the bias. The final part,

as seen in Fig.8 is the activation function, where the hidden layers

make use of ReLU and the output layer uses SoftMax. ReLU is a

simple comparison, if the input is greater than 0 then the result is

passed. For a SoftMax function Eq.5 is used, where the output is the

probability of class 𝑖 and 𝑥𝑖 is the result of neuron 𝑖 .

𝑜𝑖 =
𝑒𝑥𝑖∑
7

𝑗=1 𝑒
𝑥 𝑗

(5)

Ii //

Wi //
Oj//Activation 

Function
Control
signal

Bi //

i = 
0 to 256
0 to 16
0 to 7 // indicates a bus 

Fig. 8. Neuron architecture for the Multi Layer Perceptron used in this
paper

With in mind the goal of reducing hardware resources, the most

computationally intensive operations are implemented, where ap-

proximations can then be applied. Existing papers and implementa-

tion such as [16] and [17], present a way to reduce SoftMax into a

precomputed look up table and a series of adders and dividers. In

MLP Total Operations
Multiplication Addition

Dense 1 4096 4096

Dense 2 256 256

Dense 3 112 105

Table 1. Number of operations per dense layer in MLP

the end, 6 additions and 7 division take place. For the dense layers,

when the numbers of SoftMax operation are take into account with

Table 1, overall dense layers make up 99.9% of all the operations in

the MLP model.

7.3 Hardware Simulation
Using the code developed in [12] for the 16x16 bit multipliers and

adders, Fig.8 is replicated in MATLAB. For the activation functions

(ReLU and SoftMax) standard MATLAB code is used. The aim is to

ensure that the simulation of the hardware returns the correct pre-

dictions for a 16 bit architecture. Once the simulated architecture is

found to return good results, it will be implemented into hardware,

with the subsequent step of applying approximations.

During implementation, the architecture was compared with the

64 bit implementation in python as it is more precise. For the 64 bit

implementation the initial weights and inputs are set to 16 bit, multi-

plication and addition operations happened at 64 bits floating point.

This implied that the result was a 32 bit number during multiplica-

tion, when compared to the 16 bit architecture which would result

in 16 bit number. This 16 bit difference would affect the summation

operations, as results between the two architecture could initially

differ by a factor of one, then increasing in the following summa-

tions. The carry in, is an optional input to adders, which would add

one the result when it is set to ’1’. It was found that alternating the

carry for each consecutive summation operations between 0 and 1

would reduce this difference. It is important to note that, when 1000

random ECG samples were used on the architecture that used carry

and the architecture that had no carry, both architectures resulted

in an overall accuracy above 92%.
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Fig. 9. Comparing the difference in average class error between using a
carry and no carry architecture. 1000 random samples were used, where
both architectures resulted in an average accuracy above 92%

7.4 Hardware Implementation
To implement the operations described in Fig.8, the designs takes 6

different signals: input, weight, bias and the remaining are control

signals. The control signals are made up of the reset, clock and start,
whose functions are to reset all the registers, provide a reference

signal and start the arithmetic operations. The design involves using

a state machine made up of two states, the first one is to set the

carry, while the second sets the new summed value for the following

summation. While the addition and multiplication will occur inde-

pendently, from here the inputs have to be synchronized with the

clock. In hardware overflow could only occur when the operands

of an addition operation have the same sign. The result would be a

number of the opposite sign, in which case the result is set to the

maximum value for the operands’ sign.

To test the final architecture, a test bench is written in VHDL.

The algorithm used for testing is provided in Appendix C. Using

only one neuron the inputs are fed in a consecutive manner. The

output for each neuron is stored in the appropriate file for the

layer. The output of one layer is then used as the input for the

next layer. A comparison between hardware and software version

is made. This is done by comparing the neuron outputs before the

SoftMax activation function. Doing so ensures that the implemented

hardware is as accurate as the software simulation. For ten random

inputs it was found that the average discrepancy between hardware

and software implementation was of 8.12% (265).

8 APPROXIMATIONS
As dense layers account for 99.9% of operations, approximating

multiplications and additions will lead to the best results. From

Table 1, layer one makes up 91.7% of multiplications and 91.9% of

additions. Following [9], the most power-efficient 4x4 multiplier is

used recursively in layer one, which introduces the most error. For

layers two and three, a less efficient 4x4 multiplier is used to balance

this introduction of error. Specifications for these multipliers, 𝑅1311
and 𝑅433𝐴 , are found in [9]. For addition, the most area-efficient

1x1 adders are used, varying the number of bits approximated to

minimize error. Summation in layer one approximates 2 bits, while

layers two and three approximate 4 bits. Bias additions approximate

8 bits in all layers.

This architecture was first tested in MATLAB, to ensure that

the approximations do not lower the sensitivity per class below

the defined threshold. Subsequently it was implemented in VHDL.

Using the same process as described in Section 7.4, the hardware

was tested. Using ModelSim and Quartus, resource utilization and

power consumption was recorded. The mentioned design was then

tested with 1000 random samples.

9 RESULTS
On average the approximated implementation scored lower than the

accurate version, with an average decrease of 2.14%, whilst for the

Other class an increase of 3% occurred. Further approximations were

not done as the A class, would fall beneath the set threshold. From

here, the error introduced by the approximations was calculated

by taking the difference for each neuron output before the softmax

function. Tab.2 shows the average error for 1000 samples.
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Class Difference Average STD Percentage

N 818.85 4464 1919 42.67

L 1035.821 5421 2138 48.44

R 1719.786 8696 2543 67.63

V 859.552 5955 2015 42.64

/ 1653.759 11621 1482 111.61

A 613.997 3427 1161 52.90

Other 1357.8 6767 2852 47.60

Table 2. Per class, the difference indicates the average introduced error from
the approximated architecture. The Average is the mean value of when a
class is the correct prediction. The standard deviation (STD) indicates the
amount that correct prediction varies from their mean class. The percentage
is the relative introduced error between the Difference and STD column.

Table 2 shows increased variability per class due to the intro-

duced error. For classes R and /, while the variability introduced was
larger, the mean value per correct prediction was on average large

compared to their standard deviation. This explains why there was

a smaller decrease in their sensitivity compared to the other classes.

Both approximated architectures made use of fewer Look Up

Table (LUT), due to the multipliers which reduce the output range

[9]. This is evident by layer 1 making use of the least amount of

arithmetic LUT, which reflects the usage of the most power efficient

multiplier. The total reduction in pins for both architectures can be
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Resource Accurate Layer 1 Layer 2 and 3

Combinational LUT 838 727 766

Arhitmetic LUT 377 352 377

Normal LUT 460 374 389

Total Register 35 35 35

I/O pin 89 83 83

Table 3. The total resources, the approximated components of layer 1, 2 and
3 are defined in Section 8.

Component Total Power Block Dyn. Routing Dyn.

Multiplier 0.46 0.27 0.19

Adder Bias 0.03 0.02 0.01

Adder Sum 0.10 0.05 0.05

Table 4. Power readings (mW) for the accurate neuron, these readings
include the power per component plus the power for subcomponents.
Recorded at a clock frequency of 100 MHz, with the ECG as input where 50
instances were generated in the testbench.

Component Total Power Block Dyn. Routing Dyn.

Multiplier 0.09 0.04 0.05

Adder Bias 0.00 0.00 0.00

Adder Sum 0.01 0.01 0.00

Table 5. Power readings (mW) for the approximated neuron in layer 1,
these readings include the power per component plus the power for sub-
components. The multiplier would be a 16x16 made up of multiple 𝑅1311

multipliers. A reading of 0.00 indicates the power for that component is
below the threshold forQuartus. Recorded at a clock frequency of 100 MHz,
with the ECG as input where 500 instances were generated in the testbench.

Component Total Power Block Dyn. Routing Dyn.

Multiplier 0.10 0.04 0.06

Adder Bias 0.00 0.00 0.00

Adder Sum 0.01 0.01 0.00

Table 6. Power readings (mW) for the approximated neuron in layer 2/3,
these readings include the power per component plus the power for sub-
components. The multiplier would be a 16x16 made up of multiple 𝑅433𝐴

multipliers. A reading of 0.00 indicates the power for that component is
below the threshold forQuartus. Recorded at a clock frequency of 100 MHz,
with the ECG as input where 500 instances were generated in the testbench.

attributed to the approximated adder, which was picked due to it’s

area reduction.

Dynamic power indicates consumption when active, which con-

sists of: routing power from the interconnection of logic blocks and

block power from active components. The readings in Table 4, 5 and

6 are the various dynamic readings for each of the neuron, recorded

at a clock frequency of 100 MHz. These readings include the power

for each component plus sub components, which can consist of

registers, logic gates, memory elements and so on. Readings for

individual components could return a value of 0.00 mW, that is a

recorded value being below a certain threshold. This does not imply

that said components have no energy consumption. By comparing

the accurate against the approximated architectures it can be seen

that the energy consumption for the multipliers decreased by 0.27

mW, while for the adders there was as decrease of 0.11 mW. The

biggest change was in block power for the multipliers of 0.19 mW,

while a difference of 0.08 mW for routing power was observed. This

is to be expected as both approximated multipliers were chosen due

to their power efficiency. The difference in power readings for the

adders is seen to be 0.05 mW for block power and 0.06 mW for rout-

ing power. As 16x16 recursive multipliers are used, which are made

up of four different 8x8 multipliers, during analysis it was seen that

the 8x8 multiplier which took the lower end of the operands had a

higher power consumption than the other three. For the accurate

multiplier this was recorded at 0.28 mW, while for the approxi-

mated neurons it was at 0.06 and 0.07 mW. The reason for a higher

power reading at this specific multiplier, is that it took as input the

lower end of the operands, which had the highest concentration of 1.

10 LIMITATIONS
One limitation of the research described in this paper is the method

of multiplication for fixed point numbers. This ignored the most

significant bits of the fraction. Considering the lower 10 bits could

potentially improve rounding error. Also the discrepancy between

hardware and software implementation is of 8.12%, this value is

negligible when compared to the standard deviation of Table 2,

but may affect results when using a larger amount of classes. This

difference seems to be caused by the hardware implementation of

setting the carry to either 0 or 1. Future work should aim to reduce

this discrepancy to 0.0%. Another limitation is the small samples

used for Fig.7 or Fig.10, caused by the limited processing power

available. For instance, Fig.7 required approximately 2000 minutes

to process. Additionally, the types of classes used to train the model

were purely based on the abundance of data for that class.

11 FUTURE WORK
For the task of arrhythmia detection, one area of work could be

implementing a second model in the pipeline with the intentions of

detecting variations in heart beat over time. One approach would be

using a Time Convolutional Network or a Long short-term memory

model. Another approach could be implementing a buffer that stores

the past X recordings or information regarding the past X data, from

which a comparison is made. Overall implementing an additional

model would improve the usability and effectiveness of the device

in a medical setting.

For the model developed in this paper, when considering Table

5, the majority of the weights are found close to zero. This could

indicate that pruning is a viable operation for weights that are

small, which would bring about a further decrease in model size.

Another improvement could be the dataset used in training. Re-

search should be done to develop a method to preprocess ECG from

various datasets, into usable a format for model training. This would

allow for rare arrhythmias with few data samples to be used in the

7
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model. As the approximations used in this paper are for a 4x4 multi-

pliers and the adders consider only one bit addition, greater benefit

could be derived by using a 16x16 approximated multipliers, as well

as considering other methods to approximate adders. Another area

of research could be the use of highly approximated multipliers for

certain parts of the inputs compared to others. This is because the

approximations used in this paper assume a uniform distribution,

when in reality more bits are assigned to the fraction part as these

carry a higher value, compared to 5 bits for integer. This is further

reinforced by Section 9, where the multiplier that takes the lower

end of a number consumed more power than the other multipliers.

12 CONCLUSION
This study began by defining three sub-questions. The first sub-

question was regarded the development of an appropriate model

with a defined threshold for accuracy, sensitivity and latency. The

developed model was a 4 layered Multilayer Perceptron which took

the whole ECG of a heart beat as an input for arrhythmia detection,

achieving a final accuracy of 94%, with per class sensitivity above

the defined threshold of 78% and a model size of 8.75KB. The second

sub-question addressed the implementation of the model onto a

FPGA. As an MLP consisted of solely dense layers and activation

functions, it was found that dense layers made up 99.9% of all op-

erations, therefore implementation focused on dense layers. The

components that make up a dense layer are the neurons, which

consists of one multiplier and two adders, whose architecture are

developed on a FPGA. The last sub-question investigated the usage

of approximate computing to reduced hardware and power usage.

Using energy efficient multipliers and area efficient adders, on aver-

age, the sensitivity per class decreased by 2.14% with class A being

on the minimum threshold of 78%. Two approximated neurons were

made, with the first one being found only in layer 1 and the second

neuron for layer 2 and 3. Overall both architectures made use of

100 less LUT, where the reduction was in either the arithmetic or

normal LUT. The dynamic power of both the multipliers and adders

were recorded at a clock frequency of 100 MHz, the accurate neuron

had a total dynamic power of 0.59 mW, while the summed total of

both the approximated neurons was 0.21 mW. Using the same clock

frequency of 100 MHz, an ECG input would be processed within

0.00021791 seconds. This time however does not include the time

required to fetch intermediate layer output. Even so this time falls

below the latency threshold of 1.27 seconds. Overall the results of

this paper seem to indicate the feasibility of using a simple 4 layer

based MLP for the task of arrhythmia detection in a whole heart

beat ECG, providing a transition of the design in resource and power

efficient manner.
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13 APPENDIX

A AI USAGE
During the preparation of this work the author used ChatGPT in or-

der to preprocess ECG and binary files. After using this tool/service,

the author takes full responsibility for the content of the work.

B CLASSES

Class Name

N Normal Beat

L Left bundle branch block beat

R Right bundle branch block beat

V Premature ventricular contraction

/ Paced beat

A Atrial premature beat

Table 7. The various classes used in the model with their respective

8

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://doi.org/10.1093/eurheartj/ehi733
https://doi.org/10.1109/SCOReD.2012.6518609
https://doi.org/https://doi.org/10.1038/s41591-018-0268-3
https://doi.org/https://doi.org/10.1038/s41591-018-0268-3
https://www.nature.com/articles/s41591-018-0268-3
https://www.mdpi.com/2076-3417/13/17/9591
https://www.mdpi.com/2079-6374/14/4/201
https://www.mdpi.com/2079-6374/14/4/201
https://doi.org/10.1109/TVLSI.2023.3236530
https://doi.org/10.1109/TVLSI.2023.3236530
https://doi.org/10.1109/ACCESS.2019.2920335
https://doi.org/10.1109/ACCESS.2019.2920335
http://essay.utwente.nl/94789/
https://doi.org/10.1109/ICRC.2016.7738674
https://doi.org/https://doi.org/10.1016/j.mejo.2005.11.003
https://www.sciencedirect.com/science/article/pii/S0026269205003927
https://www.sciencedirect.com/science/article/pii/S0026269205003927
https://doi.org/10.13026/wgex-er52
https://github.com/maomran/softmax
https://github.com/maomran/softmax
https://github.com/maomran/softmax
http://ceur-ws.org


Investigating Approximate Computing to design an energy-efficient
deep learning architecture for anomaly detection from ECG signals 41st Twente Student Conference on IT, July 5th, 2024, Enschede, Netherlands

C NEURON TESTBENCH

Algorithm 1 Testbench for one Neuron

1: Input: NEURON, input, weight, L1, L2, L3, CK
2: weights = open(weight)

3: for 𝑖 = 0 to 2 do
4: if 𝑖 == 0 then
5: inputs = open(input, read)

6: outputs = open(L1, write)

7: forLoop = 15

8: else if 𝑖 == 1 then
9: inputs = open(L1, read)

10: outputs = open(L2, write)

11: forLoop = 15

12: else if 𝑖 == 2 then
13: inputs = open(L2, read)

14: outputs = open(L3, write)

15: forLoop = 7

16: end if
17: for 𝑗 = 0 to forLoop do
18: NEURON.rst = 1

19: wait for 2× CK

20: NEURON.rst = 0

21: while inputs is not None do
22: NEURON.input = inputs

23: NEURON.weight, NEURON.bias = weights

24: NEURON.STR = 1

25: wait for CK

26: NEURON.STR = 0

27: wait for 2× CK

28: if NEURON.output < 0 or 𝑖 == 2 then
29: write(output, NEURON.output)

30: else write(output, ’0’)
31: end if
32: end while
33: end for
34: end for
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