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Cybersecurity analysis requires effective methods to model various attack
scenarios while managing associated costs. This research addresses this
challenge by utilizing game theory solvers within the PRISM model checker
to identify cost-effective security strategies in Attack Defense Trees (ADT).
ADT provides a structured framework for modeling potential attack scenar-
ios and defense strategies, while game theory offers a formal methodology
for analyzing strategic interactions between attackers and defenders. This
study develops methodologies for translating ADT into PRISM-compatible
models and optimizing security strategies based on cost considerations. The
research objectives include investigating the feasibility of using game theory
solvers in the context of ADT, integrating them with PRISM, identifying cost-
effective strategies using PRISM games, evaluating the cost-effectiveness
of these strategies, and providing practical insights for practitioners. The
findings demonstrate the viability of this approach and offer valuable guid-
ance for enhancing cybersecurity defenses through cost-focused strategic
modeling and analysis.
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1 INTRODUCTION

In today’s interconnected world, ensuring the security of systems
and networks is becoming increasingly important. With the ever-
increasing complexity of threats and vulnerabilities, the need for
effective strategies to mitigate risks and protect critical assets has
become crucial. There have been more than 350 million victims
of cyberattacks or system failures in 2023 [7], which signifies the
rising threat of these attacks. These threats have created various
challenges for security professionals to ensure the security of com-
puter systems.

However, these challenges are not new. Cybersecurity special-
ists have been fighting these attackers for decades and have been
proposing effective solutions to ensure the security of a system.
As better defensive solutions are proposed, more creative attack
strategies are also used, leading to an arms race between attackers
and defenders. This constant evolution results in systems having
various vulnerabilities that attackers can exploit, while also having
some defenses set up to prevent these attacks. A formal way to
represent these possible attack scenarios and the defenses of the
system was introduced in the form of Attack Defense Trees (ADTs)
[9]. Following the terminology introduced in [9], the root node in an
ADTree is called the proponent, and the other agent is the opponent.
The aim of the proponent is to achieve the root goal, whereas the
opponent tries to prevent the proponent from reaching that goal.
An example ADT is demonstrated in Fig. 3

TScIT 41, July 8, 2024, Enschede, The Netherlands

© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Each attack has a cost associated with it since it requires resources
to execute. Similarly, deploying each defense also incurs costs. The
goal of an attacker is to minimize its costs while achieving the
goal stated in the root node when the attacker is the proponent.
Conversely, the goal of a defender is to ensure that the attacker
does not achieve its goals while minimizing its own costs. These
competing goals of the attacker and defender indicate that this
scenario can be described as a game where both parties compete
against each other. In a competitive scenario like this, the concept of
Pareto front becomes relevant. Instead of one optimal solution, there
is a family of optimal solutions called the Pareto front. [12] The
Pareto front is the solution in which one of the objectives cannot
be improved without worsening another objective. [12]

Given that these scenarios can be described as games where both
parties compete against each other, game theory principles could
be effectively utilized to analyze an Attack Defense Tree [8]. Game
theory provides a powerful framework for analyzing strategic inter-
actions among multiple decision-makers with conflicting objectives.
By modeling security scenarios as games between attackers and
defenders, it is possible to systematically explore different strategies
and their potential outcomes, leading to optimal solutions for both
attackers and defenders.

However, there are many possible actions that can be taken by
an attacker or a defender, especially in larger ADTs which are more
applicable in real-life scenarios. Therefore, computing the optimal
solutions for an Attack Defense Tree manually is not the most ef-
ficient way to approach the problem. Finding fast algorithms to
analyse attack defense trees is crucial because of the increasing
complexity and frequency of cyber threats. Faster algorithms would
enable organizations to proactively strengthen their security sys-
tems. Consequently, PRISM games [5], an extension of the PRISM
model checker that allows for the analysis of stochastic multiplayer
games, has been utilized. Instead of calculating one optimal solu-
tion for attackers and defenders, this study aims to calculate all
Pareto optimal solutions using the PRISM framework [10]. The goal
of this research is to investigate how game theory solvers, specifi-
cally PRISM games, can be utilized within the PRISM framework to
identify optimal security and countermeasure strategies in ADTs.
Calculating the costs of executing an attack or deploying a defense
falls outside the scope of this research. This study has assumed that
all the costs involved are already known.

In the following sections of this paper, the specific objectives,
related work, methodology, and outcomes of this research will be
explored. The discussion will begin by detailing the specific ob-
jectives of the research, including the integration of game theory
solvers with ADTs and PRISM, and the development of methodolo-
gies for translating ADTs into PRISM-compatible models. Related
work in the fields of cybersecurity, game theory, and formal verifi-
cation will then be reviewed to provide a comprehensive context for
the study. The methodology section will describe the approach to
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modeling and analysis, including the use of PRISM games to identify
Pareto optimal strategies. Finally, the outcomes of the research will
be presented, demonstrating the effectiveness of the methodologies
and offering practical insights for cybersecurity practitioners aiming
to enhance the security of their systems through strategic modeling
and analysis.

In summary, this research makes a significant contribution to
the field of cybersecurity by combining the strengths of ADTs and
game theory with the powerful capabilities of the PRISM model
checker. The methodologies and strategies developed in this study
have the potential to transform how cybersecurity defenses are
designed and implemented, providing a more robust and strategic
approach to countering sophisticated cyber threats. By advancing
the understanding of optimal defense strategies and the application
of formal verification methods in cybersecurity, this research aims to
pave the way for more secure and resilient systems in an increasingly
digital world.

2 RELATED WORK

Research in the fields of security analysis, game theory, and formal
methods has laid the foundation for this research on optimizing
security strategies with game theory and Attack Defense Trees
(ADTs).

Game theory has played a significant role in security analysis,
providing a formal framework for modeling strategic interactions be-
tween rational decision-makers [1]. Researchers have applied game
theory concepts, such as Nash equilibrium and Bayesian games
to analyze security games and identify optimal defense strategies
against potential attacks [4]. By modeling the interactions between
attackers and defenders as strategic games, researchers can system-
atically explore and quantify the effectiveness of various security
strategies, offering valuable insights for enhancing cybersecurity
measures.

Kordy et al. have made the connection between game theory
and ADTs explicit [8]. They have argued in their research that
attack-defense trees and binary zero-sum two-player games have
equivalent expressive power when considering satisfiability. They
also demonstrated that these models can be converted into each
other while preserving their outcome and internal structure, estab-
lishing a formal equivalence between the two representations. This
equivalence highlights the potential for leveraging game-theoretic
approaches to analyze and optimize security strategies within the
ADTs framework. Unlike this research paper, the research by Kordy
et al. does not attempt to utilize their proof to model an attack de-
fense tree as a game and use game theoretic principles to calculate
optimal costs for the attacker and the defender.

Utilizing strategic games on ADTs is not a new concept. One
research has shown an approach that can be used to evaluate the
effectiveness and economic profitability of countermeasures (de-
fenses) as well as their deterrent effect on attackers [4]. Their re-
search provides decision-makers with a useful tool for performing
better evaluations of IT security investments during the risk man-
agement process . This work outlines the importance of integrating
economic considerations into security strategy analysis, ensuring
that defenses are not only effective but also cost-efficient.
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Recent research has also explored the use of PRISM games for
security analysis. Eisentraut and Kfetinsky (2019) extended ADTs
with costs and success probabilities, providing a framework for
analyzing the probability of successful attacks/defenses and their
expected costs. They proposed algorithms for reduction to PRISM-
games and direct analysis of ADTs[6]. While this research focuses on
identifying one optimal solution, this study seeks to calculate Pareto
optimal solutions, offering a broader perspective on the trade-offs
between different security strategies.

Pareto optimal solutions of ADTs have also been researched by
Aslanyan and Nielson. In their research, they devised automated
techniques that optimize all parameters at once. Moreover, in the
case of conflicting parameters, their techniques compute the set
of all optimal solutions, defined in terms of Pareto efficiency [3].
However, it is important to note that their techniques are limited to
proper trees and do not extend to Directed Acyclic Graphs (DAGs).
Lopuhai - Zwakenberg et al. have argued that proper trees are more
restrictive in terms of node connections, allowing only one parent
for each node (except the root), while DAGs permit multiple parents
for a node [11]. In contrast to the research of Aslanyan and Nielson,
this research uniquely focuses on extending the concept of Pareto
optimality to the more complex structure of DAGs within ADTs. By
addressing this gap in the literature, this study aims to provide a
more comprehensive understanding of Pareto optimal solutions in
the context of ADTs with DAG structures.

Additionally, integrating PRISM with game theory solvers in-
troduces new dimensions to security analysis. The PRISM model
checker has been widely used for analyzing probabilistic systems,
and its extension to PRISM-games allows for the modeling of sto-
chastic multiplayer games. This capability is crucial for accurately
representing the dynamic and probabilistic nature of cyberattacks
and defenses, enabling more realistic and robust security strategy
optimization.

This research seeks to build on these foundational works by
combining game theory, ADTs, and PRISM-games to develop a
comprehensive framework for optimizing security strategies. By
translating ADTs into PRISM-compatible models and leveraging
game-theoretic principles to identify Pareto optimal solutions, this
study aims to enhance the strategic planning and decision-making
processes in cybersecurity. The ultimate goal is to equip security
professionals with advanced tools and methodologies that offer a
balanced approach to minimizing risks and costs while maximizing
defense effectiveness.

3 RESEARCH QUESTION

The primary research question (RQ) guiding this study is:

RQ: How can game theory solvers be utilized to identify optimal
security and countermeasure strategies in Attack Defense Trees?

This question represents the central aim of this study, which is
to explore the application of game theory principles in the analysis
and optimization of security strategies within the context of Attack
Defense Trees (ADTs). By addressing this question, the understand-
ing of how strategic interactions between attackers and defenders
can be systematically analyzed to improve cybersecurity defenses.
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Researching this primary question naturally leads to several sub-
research questions (Sub RQs), which delve into specific aspects of
the broader inquiry:

Sub RQ1: How feasible is it to utilize game theory solvers to find
an optimal security strategy in Attack Defense Trees?

This sub-question focuses on the practicality and effectiveness of
employing game theory solvers in the context of ADTs. It seeks to
determine the extent to which these solvers can handle the complex-
ities and nuances of ADTs, including the scalability of the approach
and the computational resources required. Investigating this feasibil-
ity aims to identify potential limitations and strengths of integrating
game theory solvers with ADTs, thereby providing a foundational
understanding of their applicability.

Sub RQ2: How can Attack Defense Trees be translated into a PRISM-
compatible model?

The second sub-question addresses the methodological aspect
of this research. It involves developing and refining algorithms
and techniques to convert ADTs, which represent complex security
scenarios, into models that are compatible with the PRISM model
checker’s input requirements. This translation process is critical for
enabling the use of PRISM games in the analysis, and it involves
ensuring that the semantics and structure of the original ADTs are
preserved in the PRISM-compatible models. This sub-question ex-
plores the challenges and solutions associated with this translation
process, aiming to establish a robust framework for accurate model
conversion.

Sub RQ3: How does the output of the PRISM model checker relate
to Attack Defense Trees?

The third sub-question focuses on the interpretation and applica-
tion of the results obtained from the PRISM model checker. It seeks
to understand how the outputs generated by PRISM games, such
as optimal strategies and Pareto optimal solutions, can be mapped
back to the original ADTs. This involves analyzing how the strate-
gic insights provided by PRISM games can inform decision-making
processes in cybersecurity, and how these results can be used to
enhance the effectiveness of security strategies. By addressing this
sub-question, this research aims to bridge the gap between theoreti-
cal analysis and practical application, ensuring that the findings of
this research can be effectively utilized by security professionals.

4 BACKGROUND
4.1 Attack Defense Tree

Attack Defense Trees are hierarchical structures where nodes repre-
sent attack or defense actions, and the tree’s structure illustrates the
dependencies and relationships between these actions. An attacker
aims to compromise a system by achieving certain goals, while a
defender aims to prevent the attacker from reaching these goals by
implementing countermeasures[9].

In this paper, the representation of the hierarchial structure is
similar to the one used in the paper by Kordy et al [9]. Attacks are
represented by a circular red node and defenses are by a circular
green node which is demonstrated in Fig. 1
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These nodes are connected by a line, indicating the logical re-
lationships and dependencies between them. An attack node con-
nected to another attack node signifies sequential attack step re-
quired to achieve a goal. Conversely, a defense node connected to
an attack node represents a countermeasure to that attack.

| Attack | Defense

Attack node Defense node

Fig. 1. An attack and a defense node

To further illustrate the logical dependencies between actions,
AND gates and OR gates are used within the tree structure. AND
gates, as shown in Fig 2 are represented by an arc connecting multi-
ple nodes to a single node which indicates that all preceding actions
must be successfully executed for the subsequent action to be viable.
On the other hand, OR gates are not represented by an arc. When
nodes do not have an arc connecting them, they form an OR gate.
This indicates that if any of the preceding actions are executed suc-
cessfully, it is sufficient to proceed to the next step. This means that
an attacker has multiple options to achieve the same goal. Similarly,
defenders can use OR gates to represent alternative defenses , where
executing any of them can prevent an attack.

™~

[ attack [ attack |

/Q‘/XT AND Gate / _‘Ail OR Gate

Defense_1 Defense_2 Defense_1 Defense_2

Fig. 2. lllustration of the AND gate and the OR gate

With this information, we can now analyze an entire Attack
Defense Tree , evaluating the various attack strategies and the cor-
responding defense mechanisms. An example tree is shown in Fig.
3. Using PRISM games, this paper has determined the optimal costs
for the attacker and the defender within this tree.

An analysis of the tree given in Fig. 3 can be performed to under-
stand the cost dynamics between the attacker and the defender in
that tree. The costs associated with each node are provided in curly
braces to the right of the node.

The tree begins with a "Root Node," which is the node that the
attacker wants to reach. The defender wants to prevent the attacker
from reaching it. The root node branches into two main attack nodes:
A1 and A2, with costs of 20 and 15, respectively.

For A1, the defender can counter the attack with the defense D1,
costing 10 or defense D1_2, costing 2. If the attacker chooses A2,
the defender has to defending with D2 and D2_2, costing 5 and 4,
respectively.

There is an OR gate between Al and A2 and the root node. There-
fore, the attacker can choose either of the attacks to reach the root
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Fig. 3. Example Attack Defense Tree

node. The minimum cost for the attacker to succeed is 15 since that
is the lowest costing node (A2) that will allow the attacker to reach
the root node. There is an OR gate between the defenses D1 and
D1_2. Therefore, to defend A1 , the defender can choose between
D1 and D1_2. Since D1_2 only costs 2 and the D1 costs 10, D1_2
is the optimal defense for attack node A1. Since the attacker can
reach the root node with either A1 or A2, both the attacks must be
defended. There is an AND gate between D2 and D2_2. Therefore,
both of them must be active to defend against attack A2. The cost
to defend against attack A2 is the sum of the cost of D2 and D2_2
which is 9. Considering these costs for the defender, the minimum
cost for the defender to guarantee that the attacker does not reach
the root node is the minimum cost to defend A1 and the minimum
cost to defend A2 whose sum is equal to 11.

By modeling this ADT in PRISM games and using PRISM’s prop-
erty verifying tool, it is possible to confirm these strategic cost
assessments. This will validate this analysis and ensure that the
theoretical cost optimization aligns with practical simulation out-
comes.

4.2 PRISM games

PRISM Games is an extension of the PRISM model checker, specifi-
cally designed to support the analysis and verification of stochastic
multi-player games (SMGs). It combines probabilistic verification
techniques with game-theoretic approaches to model and analyze
systems where multiple agents (or players) interact, often with
competing objectives[5]. PRISM Games extends the capabilities of
the PRISM model checker to handle scenarios involving strategic
decision-making under uncertainty [5], [10]. It allows the modeling
of various types of games, including turn-based games where play-
ers take turns making decisions and also concurrent games where
players make decisions simultaneously [5].The main advantage of
PRISM Games is its ability to handle complex interactions between
multiple players, each with their own strategies and objectives.

The choice of PRISM Games for modeling and analyzing Attack-
Defense Trees (ADTs) was made due to its unique capabilities and
suitability for handling the complexity and strategic interactions
present in security scenarios. PRISM Games allows for the explicit
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modeling of different players (e.g., attackers and defenders) and their
respective strategies, making it an ideal tool for analyzing ADTs
[5]. ADTs involve strategic decision-making where both attackers
and defenders have competing objectives and must choose their
actions based on their goals. PRISM Games supports this through
its formalism for specifying player actions and reward structures.
This ensures that all possible outcomes of the interactions between
attackers and defenders are considered, providing a comprehensive
analysis of the security measures.

5 METHODOLOGY
5.1 Development of Translation Method

A systematic methodology was developed to translate ADTrees

into PRISM-compatible models. This involved conceptualizing the

translation process and establishing clear mappings between ADT

components and PRISM model structures. The resulting transla-

tion methods provided a robust framework for leveraging PRISM’s

analytical capabilities in security strategy optimization.

(1) Defining players: [Fig. 4]

In PRISM games, the models modelled as Stochastic Multi-
Player Games (SMG), defining the players is the foundational
step. The SMG framework is suitable for scenarios involving
multiple players with possibly competing objectives. In the
ADT model, the attacker and defender have opposing goals
where the attacker aims to reach the root node while the
defender aims to prevent this. While this research does not
involve randomness, the SMG framework allows for future
extensions where actions could have probabilistic outcomes.
In this ADT model, there are two players: the attacker and the
defender. Each player has a set of actions they can perform
during their turn.
Player Attacker: The attacker has actions corresponding to
attacking the nodes (Al and A2) and finishing their attack
phase.
Player Defender: The defender has actions corresponding
to defending the nodes (D1, D1_2, D2, D2_2) and finishing
their setup phase.

=mg

player attacksr

[all, attack, svaluation, [al], [finish_attack]
endplayer

player defender

[dl], [dZ], [finish_setup], defend

endplayer

Fig. 4. Player Definition in PRISM

Define Global Variables: [Fig. 5]

—
)
~

Global variables are used to maintain the state of the game,
such as whether a particular node is active, the current turn,
and the overall outcome of the game.

Node Activation: d1, d1_2, d2, al, a2, d2_2 are boolean vari-
ables indicating whether the respective nodes are active. All
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global dl : bool init false; global dl 7 : bool init false;

global dZ : bool init false; global al : bool init false;

global aZ : bool init false; global turn : [0..Z2] init O;

global success_root : bool init false; global awb : bool init false;
global dwl : bhool init false; global cover : bool init false;

global dZ = : bool init false;

node state variables are initialized to false to indicate that
none of the nodes are active at the start of the game.

Turn Management: turn is an integer variable that tracks
whose turn it is (0 for defender setup, 1 for attacker actions,
2 for evaluation).

Outcome Tracking: success_root, awb, dwb, and over are
boolean variables used to determine the outcome of the game.
success_root indicates if the attacker has reached the root
node. The variables awb and dwb are used to check if the at-
tacker or the defender has won the game respectively. Boolean
over indicates whether the game is over.

Fig. 5. Global Variables defined in PRISM

(3) Defender Module: [Fig. 6]

=

Modules in PRISM represent the different actions that can be
taken by the players which in this case are the defender and
the attacker. Each module specifies the possible actions that
can be taken by a player and the conditions under which these
actions can occur. The defender’s module includes actions
to activate defense nodes (D1, D1_2, D2, and D2_2). The
finish_setup action indicates the end of the defender’s turn.
Action Definitions: Each [dX] action checks if the current
turn is the defender’s setup phase (turn = 0) and if the node
is not yet activated (!dX), then activates the node (dX’ = true).
Turn Transition: [finish_setup] transitions the turn from
the defender to the attacker (turn’ = 1).

module defend

[d1l] turn =0 & !dl &lover -> (dl"'=true);
[dl_Z] turn=0 & !dl 2 &lover -> (dl_Z'=true);
[d2] turn =0 & ldZ &lover -> (dI'=true);

[d2_ 2] turn =0 & !dIZ_Z & lover -> (dIZ_Z'=true);
[finish_setup] turn=0 &lover -> (turn'=1l);
endmodul e

Fig. 6. Defend module in PRISM

Attacker Module: [Fig. 7]

The attacker’s module includes actions to activate attack
nodes (A1 and A2). The finish_attack action indicates the
end of the attacker’s turn.

Action Definitions: Each [aX] action checks if the current
turn is the attacker’s action phase (turn = 1) and if the node
is not yet activated ('aX), then activates the node (aX’ = true).
Turn Transition: [finish_attack] transitions the turn from
the attacker to the evaluation phase (turn’ = 2).

(©)

5.2
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Success Condition: The final condition checks if the attack
succeeds (success_root = true) based on the activation states
of defense and attack nodes.

module attack

[al]l turn =1 & lal &lover -> (al'=true);
[aZ] turn =1 & laZ &lowver -> (al'=true);
[finish_attack] turn=1 &lover -> (turn'=I);
[1 lsuccess_root & (ldl & al &ldl_Z)

| ((d2 | i

-> (success root' = true);

endmodul e

Y & al) & turn=Z &lover

Fig. 7. Attack module in PRISM

Evaluation Module: [Fig. 8]

The evaluation module determines the outcome of the game
based on whether the attacker successfully reaches the root
node.

Attacker Wins: [aw] action sets the attacker win boolean
(awb’ = true) and marks the game as over (over’ = true) if the
attacker succeeded (success_root = true).

Defender Wins: [dw] action sets the defender win boolean
(dwb’ = true) and marks the game as over (over’ = true) if the
attacker failed (!success_root).

module =valuation

[aw] turn =2 & success_root &lover

-> (awh'=true) & (over ' =true);

[dw] turn =Z & lsuccess_root &lover
> (dwh'=true) & (ocver'=true);

endmodule

Fig. 8. Evaluation module in PRISM

Create the reward structure: [Fig. 9]

Rewards are defined to represent the costs associated with
each action for both the attacker and the defender.By defining
rewards in PRISM, specific costs to the actions are assigned.
This makes it possible to evaluate the effectiveness of different
strategies for both the attacker and the defender. The costs
for each action are demonstrated in Fig. 3

Defender Costs: "dc" reward structure defines the cost of
each defense action.

Attacker Costs: "ac" reward structure defines the cost of
each attack action.

Identification of Optimal Strategies

Utilizing the PRISM model checker, optimal security strategies
within ADTs were identified and optimized. Optimization crite-
ria focused on minimizing attacker costs while optimizing resource
allocation for defenders. This made it possible to create the optimal
strategy for the attacker and the defender. PRISM Games’ support
for multiplayer game analysis enabled the identification of optimal
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rewards "dc"
[dl] true : 10;
[dl_Z] true : Z;
[dZ2] txrue : 5;
[dZ_Z] true : 4;
endreward
rewards "ac"
[al] txrue : Z0O;

[aZ] true : 15;

endrewards

Fig. 9. Reward structure in PRISM

strategy spaces within diverse ADT scenarios which made it possi-
ble to define a strategy including the optimal move for the attacker
and the defender at any stage of the tree. Several properties within
PRISM were used to analyze the ADT. Important properties such
as the minimum attacker cost, maximum attacker cost, minimum
defender cost and maximum defender cost were analyzed.

5.2.1 Simulation. PRISM offers a simulate feature that allows users
to simulate the execution of a model under various scenarios. [2]
This feature enables the visualization of state transitions and the
examination of how different strategies unfold over time. By using
the simulate function, PRISM can generate sample paths through the
state space, observing the outcomes and costs associated with each
sequence of actions. By observing the state transitions, it is possible
to see how defenses are activated and how attacks are executed,
leading to a deeper understanding of the strategic dynamics and also
makes it possible to easily track the accumulation of costs for both
the defender and the attacker. This enables us to compare the total
costs incurred under different strategies and scenarios, facilitating
the identification of cost-effective approaches.

5.2.2  Properties. Properties in PRISM are formal specifications used
to describe and verify the behavior of models. [2] They are written
in temporal logic and allow users to query various aspects of the
system’s performance, reliability, and costs. By defining properties,
PRISM can formally analyze the expected outcomes, costs, and suc-
cess probabilities of both the attacker and defender under various
scenarios. This helps in identifying optimal strategies, understand-
ing trade-offs, and ensuring that the modeled security mechanisms
meet desired objectives. The properties analyzing the costs of the
defender have the «defender» keyword. It specifies that only the
player defender’s actions should have an effect on this property.
This is because the defender plays first and no matter what the
attacker chooses the defender has to choose its best option. Con-
versely, the properties analyzing the costs of the attacker do not
have any keyword like the defender does. This is because the at-
tacker must take into account the actions of the defender and make
a decision accordingly. The following properties have been used to
analyze the ADT :

e Minimum Defender cost : The property defined as :
<< defender >> R’dc’min =?[F’dw”]

calculates the minimum total cost for the defender to achieve
a winning state for the defender. A winning state for the
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defender is when after the attacks have been executed, the
variable successRoot remains false. This property is critical
for understanding the least amount of resources the defender
needs to allocate to successfully defend the attacker’s attacks.
Returns 0 if it the attacker always has a path to the root node
irrespective of the defenses in place suggesting the defender
to do nothing and save resources.
e Minimum Attacker cost : The property defined as :

R’ac”min =?[F’aw”]

calculates the minimum total cost for the attacker to achieve
a winning state. This property helps in understanding the
least cost path the attacker can take to successfully execute
an attack. A winning state for the attacker is when after the
attacks have been executed, the variable successRoot changes
to true.

e Maximum Defender cost : The property :

<< defender >> R’dc’max =?[F’dw”]

calculates the maximum total cost for the defender to achieve
a winning state. This property is important for understand-
ing the upper limit of resources the defender might need to
allocate to ensure a successful defense.

o Maximum Attacker cost : The property :

R’ac’max =?[F’aw”]

calculates the maximum total cost for the attacker to achieve
a winning state. This property is important for evaluating
the worst-case scenario for the attacker in terms of cost. It
returns infinity if it is possible for the defender to make it
impossible for the attacker to reach the root node.

5.3 Pareto Efficient Solutions

Pareto efficient solutions are useful for visualizing the trade-offs
between different strategies. In the case of an attack-defense tree
(ADT), it helps in understanding the optimal balance between the
costs incurred by the defender and the attacker. To obtain the points
of the graph, the ADT was simulated multiple times as mentioned
in section 5.2.1 Each time a different attacker strategy was used. The
minimum cost for the defender to defend the tree with the attacker
strategy was noted. Since there are only 2 possible attacker strategies
in the example tree used, the cost to attack A1 and A2 were plotted
against the minimum cost to defend those nodes respectively. The
results are in section 6.2

6 RESULTS AND DISCUSSION
6.1 Property Verification

In this section, the outcomes of this study are presented . This
research aimed to identify cost-effective security strategies by lever-
aging game theory solvers within the PRISM model checker. The
properties in Section 5.2.2 have been verified. The results are in the
table below.
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Property Value
Minimum Defender Cost 11.0
Maximum Defender Cost 21.0
Minimum Attacker Cost 15.0
Maximum Attacker Cost 00

Minimum Defender Cost : The minimum cost for the defender
represents the optimal scenario where the defender spends the least
amount of resources to successfully defend the root node. This cost
is incurred when the defender uses the least costly effective defenses.
In this case, activating only D1_2 (2) and both D2 (5) and D2_2 (4)
results in a total cost of 11.

Minimum Attacker Cost: The minimum cost for the attacker
represents the least amount of resources needed to reach the root
node when the defender does not activate any defenses. In this case,
the attacker can choose the cheaper attack path, which is A2 with a
cost of 15.

Maximum Attacker Cost: The maximum cost for the attacker is
considered to be infinity because, in a scenario where the defender
perfectly defends all paths, the attacker would need an infinite
amount of resources to succeed. This implies that under perfect
defense, the attacker cannot reach the root node regardless of the
resources spent.

Maximum Defender Cost: The maximum cost for the defender
represents the worst-case scenario in terms of resource expenditure
to defend the root node. This cost is incurred when the defender
has to activate all possible defenses to ensure that the attacker does
not succeed. In this case, activating D1 (10), D1_2 (2), D2 (5), and
D2_2 (4) results in a total cost of 21.

The results provide a comprehensive understanding of the costs
associated with the strategic interactions between the attacker and
the defender in the modeled attack-defense tree. The range of costs
for both players indicates the efficiency and effectiveness of their
strategies. For the defender, the wide range between the maximum
(21.0) and minimum (11.0) costs highlights the variability in de-
fensive strategies. It emphasizes the importance of choosing cost-
effective defenses to minimize resource expenditure while ensuring
security. For the attacker, the significant difference between the min-
imum (15.0) and maximum (infinity) costs highlights the challenge
of breaching a well-defended system. The attacker must carefully
evaluate the potential defenses and choose the least costly path
to maximize their chances of success. These results validate the
theoretical model and demonstrate the utility of PRISM games in
analyzing complex security scenarios. By identifying the optimal
and worst-case costs for both players, we gain valuable insights
into the dynamics of attack and defense strategies, enabling better
decision-making in real-world applications.

6.2 Pareto Solutions

Through simulation the following results were obtained for all the
possible attack strategies such that the defender wins :
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Strategy Attacker cost Defender Cost
1 0.0 0.0
2 15.0 9.0
3 20.0 2.0

Strategy 1: This strategy is when the attacker and the defender
both do nothing. In a situation like this , the optimal move for the
defender is to also not take any action. This incurs a cost of 0.0 for
both the attacker and the defender.

Strategy 2 : This strategy is when the attacker activates A2.
The defender must have activated the defenses D2_2 and D2. This
incurs a cost of 9 for the defender which is the sum of the costs
of activating D2 and D2_2. It incurs a cost of 15.0 for the attacker
which is the cost of attacking the node A2.

Strategy 3 : This strategy is when the attacker activates Al. The
defender must have activated either the defense D1_2 or D1. The
optimal choice for the defender here is activating D1_2 since it costs
only 2 compared to D1 costing 10. This incurs an attacker cost of
20.0 and a defender cost of 2.0. The graph with the points in the
table can be seen in Fig. 10

Attacker and Defender Costs
X

Defender Cost

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Attacker Cost

Fig. 10. Attacker and Defender costs

7 CONCLUSION

This research has demonstrated the potential of combining game
theory with Attack Defense Trees (ADTs) and the PRISM model
checker to optimize security strategies. By translating ADTs into
PRISM-compatible models and utilizing game theory solvers, this
study has identified cost-effective defense strategies, providing valu-
able insights for cybersecurity practitioners. The study established
that game theory solvers are practical and effective tools for analyz-
ing ADTs. These solvers can handle the complexities and nuances of
ADTs, providing a comprehensive view of the strategic interactions
between attackers and defenders.By translating ADTs into PRISM-
compatible models, the research identified cost-effective security
strategies that balance the trade-offs between minimizing defense
costs and maximizing the effectiveness of security measures.
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7.1

Limitations

Despite the promising results, there are several limitations to this
study:

7.2

o Cost Assumptions: The research assumes that the costs of
attacks and defenses are known and accurate. In real-world
scenarios, these costs can be dynamic and difficult to estimate.

o Scalability: While the approach is effective for smaller ADTs

like the one analyzed in this paper, the computational com-

plexity increases significantly with the size of the tree. This
may limit its applicability to larger, real-world systems.

Static Analysis: The study performs a static analysis of ADTs

without considering the evolving nature of cyber threats. Real-

time or dynamic analysis could provide security strategies
more applicable to real life security scenarios.

Multi-objective Optimization: While the study considered

cost-effectiveness, other factors such as probability of success-

ful attack were not included. Multi-objective optimization
approaches could provide strategies more applicable to real
life scenarios.

Future Work

To address the limitations and build on the findings of this research,
a few ideas for future work are proposed :

e Scalability Enhancements: Enhancing the scalability of the
proposed methodologies is crucial. This could be achieved
by optimizing the algorithms used for translating ADTs into
PRISM-compatible models

e Implement Multi-objective optimization: Properties of
actions other than costs such as probability of success could
be analyzed.

e Automate the translation process: A tool could be devel-
oped which takes simple text as input and outputs the correct
PRISM code.

8 Al STATEMENT
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viewed and edited the content as needed and takes full responsibility
for the content of the work.

REFERENCES

[1]

[2

[3]

4

[5]

[6]

Game theory for security and risk management. In Static & Dynamic Game
Theory: Foundations & Applications. Springer, 2018.

Prism manual. https://www.prismmodelchecker.org/manual/Main/Welcome, n.d.
Accessed: 2024-06-17.

Z. Aslanyan and F. Nielson. Pareto efficient solutions of attack-defence trees. In
R. Focardi and A. Myers, editors, Principles of Security and Trust, pages 95-114,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

S. Bistarelli, M. Dall’Aglio, and P. Peretti. Strategic games on defense trees. pages
1-15, 08 2006.

T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. Prism-games: A
model checker for stochastic multi-player games. In N. Piterman and S. A. Smolka,
editors, Tools and Algorithms for the Construction and Analysis of Systems.

TACAS 2013, volume 7795 of Lecture Notes in Computer Science. Springer, Berlin,
Heidelberg, 2013.

J. Eisentraut and J. Kfetinsky. Expected cost analysis of attack-defense trees. In
D. Parker and V. Wolf, editors, Quantitative Evaluation of Systems. QEST 2019,
volume 11785 of Lecture Notes in Computer Science. Springer, Cham, 2019.

[7]

(8]

[9]

[10

(1]

(12]

Arsalaan Khan

Identity Theft Resource Center. 2023 annual data breach report. Re-
trieved from https://www.idtheftcenter.org/wp-content/uploads/2024/01/ITRC_
2023- Annual-Data-Breach-Report.pdf, 2023.

B. Kordy, S. Mauw, M. Melissen, and P. Schweitzer. Attack-defense trees and
two-player binary zero-sum extensive form games are equivalent. In T. Alp-
can, L. Buttyan, and J. S. Baras, editors, Decision and Game Theory for Security.
GameSec 2010, volume 6442 of Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, 2010.

B. Kordy, S. Mauw, S. Radomirovi¢, and P. Schweitzer. Attack-defense trees.
Journal of Logic and Computation, 24(1):55-87, 2012.

M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model
checker. In T. Field, P. G. Harrison, J. Bradley, and U. Harder, editors, Computer
Performance Evaluation: Modelling Techniques and Tools. TOOLS 2002, volume
2324 of Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 2002.
M. Lopuhai-Zwakenberg, C. E. Budde, and M. Stoelinga. Efficient and generic
algorithms for quantitative attack tree analysis. IEEE Transactions on Dependable
and Secure Computing, 20(5):4169-4187, 2023.

H. Yao, Z. Xu, Y. Hou, Q. Dong, P. Liu, Z. Ye, X. Pei, M. Oeser, L. Wang, and D. Wang.
Advanced industrial informatics towards smart, safe and sustainable roads: A state
of the art. Journal of Traffic and Transportation Engineering (English Edition),
10, 03 2023.



https://www.prismmodelchecker.org/manual/Main/Welcome
https://www.idtheftcenter.org/wp-content/uploads/2024/01/ITRC_2023-Annual-Data-Breach-Report.pdf
https://www.idtheftcenter.org/wp-content/uploads/2024/01/ITRC_2023-Annual-Data-Breach-Report.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Research Question
	4 Background
	4.1 Attack Defense Tree
	4.2 PRISM games

	5 Methodology
	5.1 Development of Translation Method
	5.2 Identification of Optimal Strategies
	5.3 Pareto Efficient Solutions

	6 Results and Discussion
	6.1 Property Verification
	6.2 Pareto Solutions

	7 Conclusion
	7.1 Limitations
	7.2 Future Work

	8 AI Statement
	References

