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This research explores the effectiveness of machine learning (ML) and deep
learning (DL) models in fault prediction of induction motors, focusing on
fault detection through the analyzes of sensor data. The study examines
the performance of gradient boosting and feedforward neural networks.
Both models are evaluated on their ability to classify the health status of
induction motors, using data provided by Fraunhofer Innovation Platform
at the University of Twente.

Key to this research is the integration of Explainable Artificial Intelligence
(XAI) methods, specifically SHAP (SHapley Additive exPlanations) and LIME
(Local Interpretable Model-agnostic Explanations), to get insights on the
decision-making process of the models. These XAI techniques reveal how
specific features influence model predictions, making them transperent for
the end-user in industrial settings.
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1 INTRODUCTION

Induction motors play a crucial role in industrial operations due to
their efficiency and reliability in industrial operations[3, 6] However,
like any critical machinery, they are prone to faults, which may lead
to significant down times and economic losses. This has increased
the interest in fault detection techniques. Developments in machine
learning (ML) and deep learning (DL) are particularly promising, as
they offer powerful tools for analyzing complex data and identifying
patterns.

Despite the potential of ML and DL in real-time fault classification,
their adoption in industrial settings faces considerable challenges.
The primary issue is their “black-box” nature, which makes it diffi-
cult to understand how decisions are made. This lack of transparency
is a significant barrier to trust and usability in environments where
understanding and trust in automated processes are crucial.[8]

Explainable Artificial Intelligence (XAI) provides methodologies
to reveal the reasoning behind the decision-making process of ad-
vanced models. By making the underlaying mechanics of these
models more accessible and understandable, XAI can enhance the
trust in these tools.[2, 9] This research aims to integrate XAl tech-
niques into fault classification systems, making them transparent
and building trust among users. To clarify, the following research
question will be the main focus:

RQ: How can Explainable Artificial Intelligence (XAI) techniques
be integrated into predictive maintenance models that are targeted
at classifying the health status of induction motors using sensor
measurements to make decisions given by the models transparent?

TScIT 41, July 5, 2024, Enschede, The Netherlands

© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

This study will utilize raw sensor readings from an experimental
setup of an induction motor at Fraunhofer Innovation Platform at the
University of Twente to train and evaluate the effectiveness of the
applied ML and DL methods. Analysis of the performance metrics
of these models and application of popular XAI techniques, such
as Shapley Additive exPlanations (SHAP) and Local Interpretable
Model-agnostic Explanations (LIME) will be made to interpret and
understand their decision-making processes.

2 LITERATURE REVIEW

Induction motors are pivotal components in various industrial ap-
plications due to their robustness, efficiency, and cost-effectiveness.[6]
These motors operate on the principle of electromagnetic induction,
wherein an electric current generates torque in the motor’s rotating
element, known as the rotor. Despite their advantages, induction
motors are susceptible to some operational issues, with misalign-
ment being a particularly significant fault that can severely impact
their performance.[10] Misalignment in induction motors refers to
the scenario where the motor shaft does not properly align with the
axis of the driven load!.

For instance, misalignment increases mechanical stress on the mo-
tor’s bearings and shafts, accelerating wear and tear and potentially
leading to failures. Moreover, misaligned components often lead to
vibrations and noise, decreasing overall operational efficiency.[10]

Gradient Boosting is a powerful ensemble learning technique
widely used in machine learning in the form of an ensemble of weak
prediction models, typically decision trees. It builds the model in a
stage-wise fashion like other boosting algorithms, but it generalizes
them by allowing optimization of an arbitrary differentiable loss
function This method is widely known for its ability to deal with
non-linear data and its robustness against over-fitting.[1]

Neural networks have revolutionized the field with their ability
to model complex nonlinear relationships that exist in real-world
data. A neural network typically consist of several layers through
which data is processed, allowing the model to learn complex fea-
tures at each layer. This architecture makes them suitable for high-
dimensional data, as they can do no require any feature selection or
extraction methods for improved performance.[11]

Traditional fault detection methods such as Motor Current Sig-
nature Analysis (MCSA) have long been standard in monitoring
the state of induction motors. MCSA analyzes a motor’s signal at a
given instance to detect any irregularities that signify faults. While
effective for most cases, MCSA can sometimes miss subtleties in
signal anomalies, especially in environments with noisy data where
fault indicators are less pronounced.[10]

Recent studies have shown that machine learning and deep learn-
ing methods promise improvements over traditional techniques
like MCSA. Techniques such as Support Vector Machines (SVM),

The term “driven load” refers to the machinery or equipment that is powered by the
motor.
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Fig. 1. Methodology Pipeline

Artificial Neural Networks (ANN), and Decision Trees have been em-
ployed to improve fault detection’s accuracy and efficiency. These
models can handle large, noisy datasets as well as distinguish be-

tween complex fault patterns more effectively than traditional methods.[4,

5]

In a study, SVMs were praised for their ability to classify nonlinear
data and manage the challenges posed by non-linear fault dynamics
in induction motors.[5] Deep learning models , have also improved
precision in these tasks by learning vast amount of data.

The adoption of ML and DL models in fault detection, despite
their effectiveness, introduces complexity in understanding model
decisions, which is critical for trust and accountability in industrial
operations. Explainable Artificial Intelligence (XAI) addresses this
challenge by making the outcomes of Al systems transparent and
understandable to human operators.[38]

XAI provides deeper insights into classification models giving
explanations for why certain decisions or predictions are made. For
instance, by applying SHAP, stakeholders can understand which
features of the data most influence the outcome of a gradient boost-
ing or neural network model.[2] LIME, another popular, XAI tech-
nique, contributes by approximating the locally behavior of the
complex models, providing with explanations for individual predic-
tions made.[7]

3 METHODOLOGY

The steps taken during this research were similar to any AI/XAI
pipeline. A structured approach was taken during the research (See
Figure 1) which resulted in a smooth and effective research environ-
ment.

3.1 Data Processing

3.1.1 Data Collection. As in any ML or DL data collection and
analysis was the foundation of the research. Data was sourced from
an experimental setup at the Fraunhofer Innovation Platform at the
University of Twente, designed to simulate operational scenarios
for induction motors under different conditions. At various phases
of the data collection, misallignment was intentionally introduced
to produce data that can be interpreted as faulty state.
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Fig. 2. Example data samples showing downtime and how they effect sensor
readings

3.1.2  Data Preparation. Raw data collected from these sensors was
initially in a format unsuitable for direct analysis. This data un-
derwent a pre-processing phase to convert it into a structured for-
mat suitable for ML and DL applications. This process included
labeling and combining all data readings from different dates. Ex-
ploratory data analysis was conducted using line graphs and his-
tograms. These visual tools were crucial in identifying underlying
data patterns, distributions, and potential anomalies, aiding the
steps for feature selection.

Outliers can significantly skew with the results of ML and DL
models, potentially leading to poor generalizations on unseen data.
After initial analysis on the data using the processed graphs data
samples with a frequency lower then 10 were removed. The exper-
imental setup was never set to work on a frequency lower then
10 and after analyzing data samples with the graphs (See Figure
2) it was concluded that such areas in the dataset do not represent
real world data and might introduce bias in the models. To address
this further, Isolation Forests were used to identify and remove
outliers. The Isolation Forest method is particularly effective for
high-dimensional datasets as it isolates anomalies instead of pro-
filing normal data points. The “contamination” parameter was set
to 0.1, indicating an expected proportion of outliers in the dataset.
This value was chosen based on preliminary data exploration which
suggested that an estimate of %10 of the could be anomalous. Finally,
from

In the datasets used for training the models, a significant class im-
balance was observed. The amount of faulty condition data (majority
class) far exceeded the instances of normal operational data, specifi-
cally 67% of the data was faulty . This imbalance can lead models in
being biased towards predicting the majority class, meaning that
even high accuracies might mask poor performance in detecting
less frequent conditions. To observe any changes in results, each
model is trained on original unbalanced data and balanced data.

Data balancing is achieved using the Synthetic Minority Over-
sampling Technique (SMOTE). SMOTE creates synthetic samples
from the minority class instead of creating random copies. This is
done by selecting examples that are close in the feature space, draw-
ing a line between the examples in the feature space and drawing
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a new sample at a point in that line. This approach helps to create
a more diverse and representative data, which could potentially
improve generalization capabilities of the models to be trained.

Based on the data analysis, and limitations in scope of this studies,
frequency component of the data was ignored from this stage of the
project and onwards.

3.1.3  Feature Preparation. Unlike traditional feature engineering
for most ML approached, where new features are derived or con-
structed, this study focused on feature selection. The reason being,
that the sensors on the experimental setup providing with extracted
features directly during the data collection phase. Some of such
features are: “X-Axis Kurtosis” and “X-Axis Crest Factor”. Based
on insights gained from data visualizations some features were se-
lected for the ML model. Additionally, an ANOVA was conducted to
statistically evaluate the impact of different features. This helped in
identifying the most significant features that contribute to accurate
classifications.

3.2 Model Development

This section outlines the development and configuration of the ML
and DL models used in this study: a feed forward neural network and
gradient boosting classifier. Each model was chosen for its ability to
handle different aspect of the datasets and to explore how various
approached impact the classification of fault conditions in induction
motors.

3.2.1 Gradient Boosting Classifier. The gradient boosting classifier
was selection for its strength in handling tabular data and its ef-
fectiveness in improving accuracy by reducing bias and variance
through ensemble methods. The configuration of the gradient boost-
ing model included:

- Number of Estimators: A total of 100 trees were used, allowing
the model to learn from errors of the previous trees and adjust
accordingly.

- Learning Rate: Set at 0.1, this parameter controls the con-
tribution of each tree to the final outcome, helping to avoid any
over-fitting over the training set by making the learning process
more gradual.

- Max Depth of Trees: Each tree had a maximum depth of 3,
which was sufficient to capture the necessary interaction between
features.

3.2.2  Feedforward Neural Network . The feedforward neural net-
work implementation in this study is designed to capture and an-
alyze complex patterns in the sensor data from the experimental
setup. The network architecture consists of three main layers: input,
hidden, and output layers, along with ReLU activation functions.
Below is the breakdown the final network’s architecture:

- Input Layer: The input layer receives the data directly from the
features processed during the data preparation stage. It connects to
a hidden layer of size as specified by a hidden_dim variable.

- Hidden Layer: The network includes two hidden layers. This
first hidden layer consists of 32 neurons, followed by a ReLU activa-
tion to introduce non-linearity. The second hidden layer contains
16 neurons, also followed by ReLU activation.
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- Output Layer: The final layer of the network is the output layer,
which uses a sigmoid function to output a probability, indicating
the likelihood of a fault condition in the induction motor. This is
layer is crucial for the binary classification at hand.

The number of neurons in the hidden layer were tuned to get the
best results possible. The initial approach was to start with a random
number ranging from the size of the input layer and the output layer
size. After tuning and training with several combinations the final
architecture of the network was decided on. To optimize the training
process and avoid overfitting, an early stopping mechanism was
implemented. This mechanism monitors the validation loss during
training and will end the training process if the validation loss fails
to improve over a defined number of epochs.

3.3 Model Training and Evaluation

3.3.1 Training. The training of the gradient boosting classifier and
feedforward neural network was conducted in a structured approach
to ensure consistent development and analysis. The dataset was
split into the training and testing sets. The training set was used to
train the models and the test set was used to evaluate the model’s
performance.

The modes were then trained using the algorithms with specified
hyper parameters (See 3.2). For the neural network, training involved
forward propagation of inputs, back propagation of errors, and
adjustments of weights. Specifically, the Stochastic Gradient Descent
(SGD) optimizer was used, optimized after tuning to ensure optimal
performance. The final configuration of SGD included a learning
rate of 0.01, momentum of 0.9, and a weight decay of 0.01.

3.3.2  Evaluation. Evaluating the performance of the models is crit-
ical to understand their effectiveness. The metrics used to evaluate
the performance of the models were: Accuracy, Precision, Recall
(Sensitivity), F1-Score and Confusion Matrices.

Each metric offers insights into to the model performance and
together provide a well understanding of how the models predict
unseen data. The use of different metrics in essential to capture
different aspects of model performance beyond simple accuracy,
addressing both the model’s strength and weaknesses in predicting
fault.

3.4 Explainable Artificial Intelligence (XAI)

In efforts of making the models developed transparent and trustwor-
thy, XAl techniques, specifically SHAP and LIME, were implemented.
These techniques were applied after the models were trained to pro-
vide insights into the decision-making processes of both the gradient
boosting classifier and feedforward neural network.

SHAP is utilized to quantify the contribution of each feature to
the prediction. This method provides information about how much
each feature is pushing the model output towards or away from a
particular prediction.

LIME, on the other hand, offers local interpretability by approx-
imating the underlaying model locally around a prediction. This
algorithm perturbs the input data by tweaking the feature values
and observes any changed in the predictions. Using these observa-
tions, LIME generates an interpretable model around the prediction,
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precision | recall | f1-score
0 0.88 0.85 0.86
1 0.93 0.94 0.94
Accuracy 0.91

Table 1. Results of Gradient Boosting Classifier model trained on unbal-
anced data (0 and 1 representing normal and faulty state respectively).

precision | recall | f1-score
0 0.83 0.90 0.86
1 0.95 0.91 0.93
Accuracy 0.91

Table 2. Results of Gradient Boosting Classifier model trained on balanced
data (0 and 1 representing normal and faulty state respectively).

precision | recall | fl-score
0 0.97 0.90 0.93
1 0.95 0.99 97
Accuracy 0.96

Table 3. Results of Feedforward Neural Network model trained on unbal-
anced data (0 and 1 representing normal and faulty state respectively).

which helps in understanding what changes to the input features
lead to changes in the output.

4 RESULTS
4.1 Model Metrics

The performance of the gradient boosting algorithm on unbalanced
and balanced datasets reveals several insights into the model’s capa-
bilities in fault detection. High accuracy is achieved when training
on unbalanced data (See Table 1), specifically an accuracy of 91%.
The precision and recall on the normal conditions were 88% and
85% respectively, and even higher for faulty data predictions with
precision of 93% and recall 94%. These results indicate that the model
is slightly better at identifying faulty conditions than normal condi-
tions in terms of both precision and recall, resulting in an F1-score
of 86% and 95% for classes 0 and 1, respectively.

When the data is balanced using the SMOTE techniques, the over-
all accuracy remains consistent at 91%, suggesting that balancing
the classes does not have any negative nor positive impact on the
model’s overall accuracy (See Table 2). However, the internal dynam-
ics of the model performance show some changes. The precision for
normal conditions decreases to 83% but sees an increase in recall to
90%, indicating a trade-ff where the model can now capture higher
proportion of actual normal conditions at the expense of slightly
more false positives. An improvement for the faulty condition’s
precision is seen as it increases to 95% with a slight reduction in
recall to 91%. This change suggests that while the model becomes
more reliable in confirming fault conditions when it predicts them,
it slightly reduces its sensitivity in detection all potential faults. The
performance of the feedforward neural network also provides with
some valuable insights into the model’s behavior under different
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precision | recall | f1-score
0 0.93 0.94 0.93
1 0.97 0.96 97
Accuracy 0.96

Table 4. Results of Feedforward Neural Network model trained on balanced
data (0 and 1 representing normal and faulty state respectively).

data conditions. Initially, on the unbalanced datasets, the model
achieves an accuracy of 96% (See Table 3). It shows a precision of
97% on normal condition and 95% for the faulty condition, reflecting
on the model’s ability on distinguishing between normal and faulty
states. The recall rates are 90% for the normal conditions and nearly
perfect with 99% for the faulty conditions, meaning that while the
model is slightly conservative in labelling conditions as normal, it
excels at identifying most of the faulty conditions, corroborated by
a high F1-score of 97% for normal condition predictions.

Upon applying the SMOTE technique to balance the dataset, the
model’s performance demonstrates some shift (See Table 4). For the
normal class, precision drops to 93%, while the recall increases to
94%. This shift suggests that the model, while the model became
less precise, it is now more inclusive when classifying conditions as
normal, catching more true normal states but at the cost of increase
false positives. Conversely, for the faulty class, precision rises to
97% indicating that a high number of faulty conditions were made
right. However, the recall for faulty conditions decreases to 96%,
pointing to a slight drop in the model’s ability to detect all faulty
conditions compares to the unbalanced scenario.

Particularly in settings with class imbalance, balancing the datasets
typically leads to improved overall accuracy and model robustness
by ensuring that the model does not favor the majority class. How-
ever, in the case of the feedforward network analyzed here, the
expected increase was not observed here, instead, there was a slight
decrease.

While balancing of classes though techniques like SMOTE ensures
that the minority class is better represented, this can sometimes
lead to overfitting. The model may adapt too well at the synthetic
characteristics of the generated samples, which might not perfectly
represent the true distribution of the minority class.

As observed, balancing improved recall at the expense of precision
in certain classes. This trade-off can affect overall accuracy, which
is critical in fault detection scenarios where false positives can be
as detrimental as false negatives.

4.2 Explainable Artificial Intelligence (XAl)

To better understand these unexpected outcomes, XAl techniques,
specifically SHAP and LIME, may be crucial.

By applying SHAP, we can identify how each feature contributes
to the decisions behind the models. SHAP values can reveal how
certain features may behave differently when the data is balanced,
potentially leading to insights on whether the model’s unexpected
performance is due to certain features in the data.

LIME may be useful to explore local probabilities around indi-
vidual predictions across both balanced and unbalanced datasets. It
can help understand on a case-by-case basis why certain instances
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are misclassified after balancing proving insights into specific con-
ditions or feature ranges where the model’s performance weakens.
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X-Axis Kurtosis
Z-Axis Peak Velocity(mm/sec)

X-Axis RMS Velocity(mm/sec)
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Z-Axis Peak Acceleration(G)

X-Axis Peak Acceleration(G)
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-4 -2 0 2
SHAP value (impact on model output)

Fig. 3. SHAP values for the Gradient Boosting model trained on unbalanced
data. Plot shows how much each feature has an impact on the output.
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Fig. 4. SHAP values for the Gradient Boosting model trained on balanced
data. Plot shows how much each feature has an impact on the output.

The SHAP value plots for the gradient boosting model applied
to both unbalanced (See Figure 3) and balanced (See Figure 4) data
provide visual evidence of how certain features impact model pre-
dictions. The SHAP analysis indicate that features “X-Axis Kurtosis”
and “Z-Axis Peak Velocity” have a significant influence on the pre-
diction of the models. This suggests a strong dependency on these
features, meaning that small changes in these readings may lead to
shifts in the model’s predictions.

In our analysis using LIME on the gradient boosting model, partic-
ular attention was given to instances that were incorrectly classified.
These instances generally demonstrated a distinct pattern where
the “X-axis” feature influenced towards a faulty state, while most of
the other features would contribute to pushing the prediction back
towards a non-faulty state.

As seen in Figure 5 even though the true label was normal state,
only “X-Axis Kurtosis” contributed the prediction towards faulty,
making it a wrong classification. However, an interesting observa-
tion was that for wrong prediction of faulty (See Figure 6) “X-Axis
Kurtosis” would again push towards the prediction being faulty,
however, other features would this time push the prediction in
being normal state.

The SHAP plot for unbalanced data (See Figure7) shows signifi-
cant positive and negative impact from various features. Notably, fea-
tures like “X-Axis Kurtosis” and “Z-Axis Peak Acceleration(G)” have
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Local explanation for class 1

X-Axis Kurtosis <= -0.75
Z-Axis Peak Velocity(mmisec) <= -0.81 -
Z-Axis Peak Acceleration(G) > 0.56 -
X-Axis RMS Velocity(mmisec) <= -0.82 -
i

-0.74 < X-Axis Peak Acceleration(G) <= -0.11

Fig. 5. LIME Gradient Boosting False Negative: Case when the actual state
of the motor is normal, but the prediction is made as faulty state.

Local explanation for class 1

X-Axis Kurtosis <=-0.75

2-Axis Peak Velocity(mmisec) <= -0.81

-0.82 < X-Axis RMS Velocity(mmisec) <= -0.05

-0.72 < Z-Axis Peak Acceleration(G) <= -0.15

X-Axis Peak Acceleration(G) <= -0.74

Fig. 6. LIME Gradient Boosting False Positive: Case when the actual state
of the motor is faulty, but the prediction is made as normal state.
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Fig. 7. SHAP values for the Feedforward Neural Network model trained on
unbalance and balanced data, left and right plots respectively. Plot shows
how much each feature has an impact on the output.

a considerable negative effect, suggesting these features strongly
predict that there is no fault. On the other hand, “Z-Axis Crest Factor”
and “X-Axis Crest Factor” show a positive influence, which might
indicate their strong associations with fault conditions. Analyzing
the LIME output in Figure 8, depicting a false positive scenario,
where the model predicts the state as fault it is a normal condition.
It is easily seen that "Z-Axis Crest Factor" is influencing these re-
sults by pushing the prediction towards the faulty prediction. After
analyzing most of the false positive prediction this pattern was seen
in predictions.
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Fig. 8. LIME Feedforward Neural Network False Positive: Case when the
actual state of the motor is faulty, but the prediction is made as normal
state.

5 DISCUSSION

The comparative analysis of the gradient boosting and feedforward
neural network models reveals that while both models perform well
under unbalanced conditions, the introduction of SMOTE balancing
does not enhance the performance, however, has varied effects
on precision and recall. For all the cases it was evident that the
precision for normal state would decrease, while for faulty state it
would increase. Moreover, while an increase in recall for normal
state was seen, it was also observed that there is decrease in recall for
faulty states. These shifts can be attributed to how SMOTE changes
the decision boundary by introducing synthetic characteristics or
under fitting the data patterns, potentially effecting models’ ability
to generalize.

SHAP analysis provided a deeper understanding of feature in-
fluences, showing a strong dependency on features like *X-Axis
Kurtosis’ and ’Z-Axis Peak Velocity". These insights were com-
plemented by LIME, which illustrated the local decision-making
process, highlighting instances where feature interactions led to
misclassifications. These insights not only make the models created
(See 3.2) transparent, but also guide targeted improvements though
refined feature engineering and model tuning. By utilizing these
interpretable tools, it might be possible to address specific missclas-
sificatinos, adapt features for better accuracy, thereby strengthening
decision-making processes.

Future studies should consider the inclusion of frequency-based
features that capture the dynamic behaviors of induction motors un-
der various operational conditions. By integrating these frequency-
based features into the models, it is anticipated that the models may
perform better on unseen data.

Also, an important field for future research is the development of
time-series models to predict faults in induction motors before they
occur. Current models developed focus on classification tasks, deter-
mining if a fault exists at a given time point. However, integrating
time-series forecasting can extend this analysis by predicting when
faults would likely occur.

6 CONCLUSION

This research, has investigated the effectiveness of machine learn-
ing and deep learning models, specifically gradient boosting and
feedforward neural networks, in detecting faults in induction mo-
tors. The study leveraged XAI techniques, notably SHAP and LIME,
to make created models (See 3.2) transparent, providing insights
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into how various features influence model predictions. The study
effectively demonstrates that XAI techniques can be integrated into
classification models for faults in induction motors (See 4.2). By ap-
plying SHAP, we were able to identify how each feature influenced
models globally, revealing what were the features that influenced
the predictions the most. LIME provided local interpretation that
offered insight into specific instances, explaining why the models
made certain decisions.

The integration of XAI techniques addresses the opaque nature
of “black-box” models by providing clear explanations of why faults
are predicted, which is crucial for end-users in operational settings.
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