
1

Flexibility Informed Profile Steering
using Shapley Values

Felix van der Waals, s2835371
Department of EEMCS, University of Twente, Enschede, The Netherlands

Email: f.w.j.vanderwaals@student.utwente.nl

Abstract—Profile Steering (PS) is a Demand Side Management
(DSM) method that can schedule devices in order to reduce peak
demands on the power grid. In PS, a coordinator iteratively asks
all devices (or nodes) to optimize their power profile and accepts
the best candidate profile presented. PS is unscalable as all nodes
are asked to compute a candidate profile in each iteration.

We propose Flexibility Informed Profile Steering (FIPS). An
algorithm that uses flexibility information to determine the order
in which nodes are asked to optimize on the problem. To quantify
flexibility we use previous research on a solution concept called
‘Shapley values’ from game theory. This concept considers all
contributions of a node with different combinations with other
nodes.

In this paper we investigate the performance of FIPS compared
to PS by simulating power demand of different sizes of neigh-
borhoods for a year. We found that FIPS has better scalability
and an improved computational efficiency. Furthermore, the
way we use the flexibility information influences the scalability,
computational efficiency and the reached objective score.

Index Terms—Profile Steering, Shapley Value, Demand Side
Management

I. INTRODUCTION

The amount of electrical power demanding devices in
households is increasing because of the demand for lower
carbon emissions [1]. This increase in electric vehicles (EV),
battery energy storage systems (BESS) and photovoltaics (PV)
results in larger peak demands of the power grid. The power
grid itself can only handle a certain amount of power at a time
and therefore it imposes a maximum permissible power peak.
As increasing the capacity of the power grid, by upgrading
or replacing assets, is a rather inefficient way of reducing
the pressure on the grid, different approaches of preventing
power peaks have been explored in literature. One of which is
Demand Side Management (DSM); by managing the demand,
the needed capacity can be reduced.

Profile Steering (PS) is such a DSM method and effectively
schedules the power demand of devices in order to ’shave’
power peaks by asking all devices to optimize their own
power profile after which the best optimization is chosen [2].
However, because the algorithm has a quadratic computational
complexity and its computational efficiency is low it is unscal-
able and it potentially uses more computations than needed
[3].

In this paper we propose an improved version of PS where a
quantification of the flexibility of devices is used to determine
the order in which the devices are asked to optimize their own
power profile. To quantify the flexibility we use the Shapley

value solution concept as was studied by Varenhorst et al.
[4]. The concept is used to assign a value to a device based
on the average of its marginal contributions in the past. A
contribution is quantified by the amount of improvement a
device could introduce.

In Section II we first explain the precise workings and
limitations of PS and some altered versions of PS. Then we
elaborate in Section III on our proposed algorithm: Flexibility
Informed Profile Steering (FIPS). Subsequently, in Section
IV, we analyze FIPS in comparison to PS where we focus
on the peak-shaving performance, empirical computational
complexity and computational efficiency. Lastly, we discuss
our findings and draw conclusions from them in Sections V
and VI.

II. BACKGROUND AND RELATED WORKS

In this section, the precise workings and the limits of PS
are explained. Then, some different versions are discussed that
optimize PS in some way after which a method to quantify
flexibility is discussed.

A. Profile Steering

PS is a DSM method to use the grid more efficiently
proposed by Gerards et al. [2]. The algorithm uses devices
their flexibility in planning to steer the power profile x⃗ to
a desired profile p⃗. It does this by first asking each node
m ∈ {1, ...,M}, where a node is a device or a household (PS
can work at any level in a coordinator follower hierarchy), to
change its own power usage x⃗m to be as close as possible to
the zero profile i.e. it minimizes ||x⃗m||2 (Euclidean distance,
2-norm). These profile vectors are representations of power
usage at a specific time. All these profiles are added to create
the total profile: x⃗ =

∑M
m=1 x⃗m.

After the total power profile is created, every node is asked
to create a candidate profile ⃗̂xm that minimizes the Euclidean
2-norm distance between the total power profile x⃗ and the
desired profile p⃗. An improvement em of this candidate profile
⃗̂xm compared to the previous profile x⃗m is calculated and
the node that presents the candidate profile that can improve
the profile the most, can change its profile. This chosen node
calculates the difference between its current profile x⃗m and
the candidate profile ⃗̂xm. The change in profile is added to
the total profile x⃗. Then all nodes are asked again to create
a new candidate profile based on the new total profile x⃗ and

2

this is repeated until no significant changes to the total profile
are made, meaning max(em) is below a certain threshold ϵ.

PS is able to reduce power peaks, but for every iteration that
is made, all nodes need to receive and transmit a message with
data. This means that if one node responds slow it becomes
a bottleneck for the algorithm. Furthermore, increasing the
amount of nodes makes the performed computations grow
quadratically [3].

B. Versions of Profile Steering

Several methods to improve certain characteristics of profile
steering exist. Two relevant papers are discussed in this
subsection.

In the first paper, written by Pappu et al. [5], the authors
proposed an asynchronous and distributed method based on
profile steering. This method removes the coordinator role
from the network effectively having a distributed network in-
stead of a centralised or decentralised network. The algorithm
runs on every node in the system and all nodes optimize their
own profile periodically. When a node is optimizing its own
profile it acquires the global problem and notifies the other
users that it is optimizing such that no other nodes optimize
on the same problem. This method has shown that it can be 11
times faster in terms of performed computations while having
a 1.35% deviation in its final objective score compared to PS.
The increase in the final objective score indicates that the order
in which nodes can optimize on the global problem has some
effect on the local minimum found for the objective score. In
addition to the improvement in the amount of computations,
with this method the slowest node in the system is no longer
a bottleneck for the algorithm.

In the second paper Hoogsteen et al. [3] did research on
the scalability of profile steering. By combining improvements
of PS and parallelization techniques the authors were able to
bring the complexity of the algorithm from quadratic to linear
while obtaining similar results. The optimization problem was
distributed among clusters making parallelization possible. PS
was improved by accepting multiple profiles each iteration and
pruning nodes that had small improvements in the previous
iteration. These changes improve the computational efficiency
of PS because for each iteration less improvements are cal-
culated and more candidate profiles are accepted, resulting in
less redundant calculations. As the computational efficiency is
increased with these changes a considerable amount of calcu-
lations is still redundant because not all calculated candidate
profiles are accepted.

C. Quantifying flexibility

The flexibility of a node is a metric of considerable impor-
tance for the PS algorithm. In PS, the possible improvement
of a node is calculated during each iteration, resulting in
a precise improvement em specific to that iteration. The
found improvement em values are then used to determine
the node that can replace its profile x⃗m with its candidate
profile ⃗̂xm. Optimizing the profile of a node each iteration is
energy-consuming and therefore, having an estimation of this
improvement for each node is of use for an improved version

of PS. As the improvement of a node is partly determined by
its flexibility some quantification method for the flexibility of
a node can serve as a proxy estimate of the actual possible
improvement of a node.

Varenhorst et al. [4] propose a way of quantifying device
flexibility by making use of the Shapley value solution con-
cept. Calculating a Shapley value is done by taking the average
of all marginal contributions of all the possible combinations
of devices. The marginal contribution of the node is calculated
by taking the difference between the Root Mean Square (RMS)
of the power profile without steering and the RMS of the
power profile with (profile) steering. The average of these
marginal contributions is taken since the flexibility of a device
is partly determined by its synergy with other devices. The
computations needed for calculating the Shapley value for a
node grows exponentially with the amount of nodes making it
unscalable. However, an approximation of the Shapley value
can still be made by using the results obtained by Varenhorst
et al.

III. ALGORITHM

In Section II-B the improvements and the deficiencies of the
two versions of PS were discussed. In this section we propose
an improved version of PS that tries to combine the lessons
learned from literature: Flexibility Informed Profile Steering
(FIPS). The steps of this version are described in Algorithm
1.

The initialization of this new method remains the same as
for PS; the coordinator asks every node to optimize its own
profile x⃗m and combines these profile to create a total profile
x⃗. After the initialization phase is done, only a single node
is asked to optimize on the problem and its candidate profile
is accepted without any consideration of the possible optimal
solutions of the other nodes. As a result, no redundant profiles
are optimized and thrown away and a different local minimum
can be found. To pick the node that is allowed to create a new
optimal planning, we create an ordered list of nodes (Msort[])
after the initialization phase. The order of the nodes on the
created list determines the order in which nodes can optimize
their own profile x⃗m to change the total profile x⃗. When we
reach the end of the list, we start at the beginning of the list
again until the stopping criterion is met.

A. Ranking methods

The way we sort the list Msort influences the amount of
iterations needed to converge and the final objective score
reached as we saw in the paper written by Pappu et al. [5].
Therefore, in this paper we consider three methods that sort
the nodes on the list in a different way.

1) Flexible nodes last: The first method uses the previously
discussed Shapley values. The nodes are ranked from least
flexible to most flexible where flexibility is estimated by
a Shapley value as explained by Varenhorst et al. [4]. We
expect that when the least flexible nodes are asked to optimize
first, a better objective score is achieved compared to other
methods. This would make sense because a node that offers
low flexibility is more likely to lose its flexibility when a node

3

Algorithm 1 Pseudocode of FIPS
1: for m ∈ {1, ..., M} do
2: Request node m to minimize ||x⃗m||2
3: x⃗ :=

∑M
m=1 x⃗m

4: Create Msort[] and sort nodes based on one of the
methods in Section III-A

5: i := 0
6: repeat
7: d⃗ := x⃗− p⃗
8: m := sorted nodes[i mod |Msort|]
9: p⃗m := x⃗m − d⃗

10: For node m, find a planning ⃗̂xm that minimizes ||⃗̂xm−
p⃗m||2

11: em := ||x⃗m − p⃗m||2 − ||⃗̂xm − p⃗m||2
12: x⃗ := x⃗− x⃗m + ⃗̂xm {update total profile}
13: x⃗m := ⃗̂xm {update profile of node m}
14: i := i+ 1
15: until max(em) < ϵ ∧ i >= |Msort|

that offers high flexibility is asked first. We refer to this method
as FIPS flex. last.

2) Flexible nodes first: The second method also uses flex-
ibility Shapley values. For this method the nodes are ranked
from most flexible to least flexible. We expect that this sorting
method performs similar to PS in terms of final objective score
because, like PS, it is a greedy strategy as it chooses the nodes
that can optimize the most over the other nodes. We refer to
this method as FIPS flex. first.

3) Random: The third method randomly sorts the nodes
each time the list is created. This method gives an indication
of the importance of the order of the nodes because when the
performance is similar to the two previously described sorting
methods it indicates that sorting based on the flexibility does
not influence performance and vice versa. We refer to this
method as Uninformed Profile Steering (UPS) because it does
not use any flexibility information.

B. Stopping criterion

The stopping criterion cannot remain the same because the
way in which the nodes are chosen is different than PS; when
a node is able to improve on the problem below the threshold
value, it does not mean that the other nodes cannot improve
on the problem anymore. To solve this we store the last
improvements of each node and compare the maximum of the
stored improvements to a threshold value. When the maximum
improvement is smaller than the threshold value it indicates
that it is likely that the point of convergence is reached or
that it is close (if the threshold value is sufficiently small).
To make sure that the algorithm does not stop prematurely all
nodes need to have calculated an improved at least once.

IV. EVALUATION

To evaluate the performance of the proposed algorithm we
perform a simulation where all algorithms receive the same
use-case.

TABLE I
FLEXIBILITY SHAPLEY VALUES OF DEVICES IN THE SIMULATION [4]

EV (11 kW, 50 kWh) 719
EV (3.7 kW, 10 kWh) 615

BESS (3 kW, 13.5 kWh) 560
HP (2 kW, 3 kWh) 453

BESS (3 kW, 7 kWh) 413
BESS (3 kW, 3.5 kWh) 219

DW 26
WM 5

To simulate a real life power demand we use the Artificial
Load Profile Generator (ALPG), by Hoogsteen et al. [6]. The
algorithm simulates demands of households which consist of
EVs, BESSs, dishwashers (DWs), washing machines (WMs),
heat pumps (HPs) and a static load.

The power usage of EVs, DWs and WMs can be planned as
needed between two given time intervals. BESSs can charge
themselves and supply power to the grid to optimize the given
problem. HPs are similar to BESSs as they can store some
energy. However, they also have a heat demand where they
need to generate a specific amount of heat at given time
intervals. The HPs can decide when to charge to meet the
demand. In our simulation we use heat demand profiles from
2020 of different houses.

Our power demand simulation has a length of 366 days (one
year) where every day is composed of 96 intervals. For every
day in the year a 2-day-ahead planning is made by the profile
steering algorithms. We shift the 2-day-ahead planning with
steps of 1 day resulting in overlapping days. All devices for
which the two given time intervals lie within the current two
day window can be scheduled. Once a device is scheduled
and the window shifts by a day there are two possibilities. If
the two given time intervals also lie within the new two day
window the device can be rescheduled. If at least one of the
two given time intervals does not lie within the new two day
window the profile of the device is added to the simulation
but can not be rescheduled.

The power usage of all the combined households is mea-
sured, meaning that a BESS can supply power to another
household without contributing to the power usage. Another
way to look at this is that we measure the power usage from the
point of view of the supplier. This is not realistic because the
exchange of power between houses does put some pressure
on the power grid. However, in this evaluation we focus at
the differences between the different algorithms and not the
performance of the algorithms their implementation in the real
world.

We use the flexibility Shapley values obtained by Varenhorst
et al. [4]. In Table I the devices present in the simulation
accompanied by their Shapley values are found. The values
found in the table are the values that we use to sort the list of
devices. As the static load is not plannable, it is not included
in the table.

We perform four power demand simulations of a year,
where each simulation has a neighbourhood with a different
amount of households with a step size of 7 households. The
composition of households remains the same meaning that

4

TABLE II
AVERAGE OBJECTIVE SCORES PER DAY FOR ALL ALGORITHMS

Households 7 14 21 28
PS 30639 57907 88103 123115

FIPS flex. last 30634 57896 88087 123093
FIPS flex. first 30640 57907 88103 123116

UPS 30638 57902 88095 123103

the offered flexibility also remains the same. The aim of all
algorithms is to minimize ||x⃗||2. The stopping threshold value
for all algorithms is ϵ = 1e−4. Having gathered data from
the simulations, we look at the difference between the algo-
rithms in peak-shaving performance, empirical computational
complexity and computational efficiency.

A. Peak-shaving performance

To compare the peak-shaving performance of the algorithms
the average objective score per day is calculated as follows:
1

366

∑366
g=1 ||x⃗g||2 where x⃗g is the profile of a single day g

of the year. The lower the score is, the better the algorithm
performed. The final average objective scores per day for all
performed simulations can be found in Table II.

From this table it can be seen that all sorting methods
slightly outperform PS for all neighbourhood sizes. The aver-
age objective score relative to PS of FIPS flexible first, UPS
and FIPS flexible last is +0.000%, −0.008% and −0.018%
respectively. This shows that all proposed algorithms perform
similar or slightly better compared to PS when it comes to
peak-shaving performance.

The slight improvement in the objective score of UPS and
FIPS flexible last is explained by the order the nodes are
chosen. When we plan the more flexible devices first, the less
flexible devices have even less flexibility than before resulting
in a slightly worse objective score.

Based on these results we conclude that the order in
which we ask nodes to optimize has a minimal influence
on the finding of a different local minimum. Asking flexible
nodes last to optimize can result in the finding of a slightly
better local minimum. However, this difference in the reached
objective score is minimal.

B. Empirical computational complexity

When we talk about empirical computational complexity of
the algorithm we mean how much the amount of resources
needed to run the algorithm increases as the complexity of
the problem itself increases. To compare the empirical com-
putational complexity of the algorithms we look at the average
number of nodes asked to optimize because this number grows
in the same fashion as the total resources needed to run the
algorithm. The complexity of the problem is increased by
increasing the number of households.

Retrieving the average and the standard deviation of the
number of plannings made from the performed simulations
results in Fig. 1. It can be seen that for all sorting meth-
ods the empirical computational complexity is significantly
reduced compared to PS. Between the sorting methods there
is a difference in empirical computational complexity. Asking

Fig. 1. Average plannings as a function of the number of households

nodes randomly to optimize results in a similar empirical
computational complexity as asking the most flexible nodes
first. Furthermore, asking the flexible nodes last to optimize
results in a slightly higher empirical computational complexity
compared to the other sorting methods.

These results show that the order in which nodes are
asked to optimize matters for the empirical computational
complexity of the algorithm.

C. Computational efficiency

When we talk about computational efficiency in this paper
we mean how much resources are used to achieve a certain
objective score. Because the amount of resources, as previ-
ously described, grows in a similar fashion as the amount of
nodes asked to optimize we consider this as our metric.

In Fig. 1 we already see that all sorting methods have
better computational efficiency than PS. To further analyze the
computational efficiency we look at how the reached objective
score changes with respect to node plannings.

We visualize this by plotting the average objective score
after a certain number of plannings i: 1

366

∑366
g=1 ||x⃗g,i||2 where

x⃗g,i is the profile of the 2-day window visible on day g
after i plannings. Because the stopping criterion is based on a
threshold, the total amount of plannings differs for each day.
This means some x⃗g,i elements do not exist for larger i. To
still be able to take the average we extend all vectors x⃗g,i for
a specific day g by repeating the last objective score reached
until all vectors have the same length of the maximum number
of plannings made across all days. PS asks multiple nodes to
plan each iteration and the number of devices present across all
days g is not the same. Therefore the rounded average number
of present devices across all days is taken. This average is used
as a step size for the number of plannings i for PS.

We add 1 to the number of plannings i to make a logarithmic
scale possible. The resulting graph of the simulation with

5

Fig. 2. Objective score as a function of devices asked

28 households is found in Fig. 2. All other simulations with
different amount of households showed similar behaviour.

Fig. 2 shows that all sorting methods ask less nodes to
optimize to reach a certain score compared to PS. Asking the
flexible nodes last needs more computations to overtake PS.
This is an inherent characteristic of asking the flexible nodes
last because it is not a greedy algorithm like PS and FIPS flex.
first that aim to converge as fast as possible.

Another observation we made is that asking the most
flexible devices first does not result in the steepest descent. The
Shapley values that we use are not taking into consideration
that multiple devices of the same kind can have the same
coordinator. In effect, the same kind of devices are asked to
optimize on the problem in the first few iterations. In our
case these first devices are the EVs. Because the EVs must be
planned in a similar window the improvement of the device
decreases significantly after having asked other EVs. UPS asks
nodes randomly to optimize so it does not have this problem.
As a result, UPS has the highest computational efficiency on
average compared to the other algorithms.

A remarkable difference between the algorithms is that
the average objective starting score differs. This is possible
because a 2-day-ahead planning is made and this window
of two days shifts with steps of one day. The planning of
the previous day is saved. Therefore, the algorithm can plan
devices on the second day such that the objective starting score
is lower.

In short, the results show that the all methods have greater
computational efficiency than PS and the order the devices
are asked to optimize influences the slope of the descent to
a local optimum. Asking devices randomly results in the best
computational efficiency on average.

V. DISCUSSION

In this section we discuss the reliability of the found results,
possible improvement and the implications of the results
regarding computation time.

Firstly, about the reliability of the results. It needs to be
mentioned that changing the threshold value can have a big
impact on the results. A small change in planning of a single
node might cause other nodes to improve their profile even
more resulting in a series of similar events. In Section IV we
used 1e−4 as the threshold value. Although this value is rather
small, it might still have been possible that such events were
suppressed. In addition to this, the stopping criterion is not the
same for PS and FIPS causing the possibility for these events
to be different for both methods. Furthermore, the given use-
case also has an effect on the reliability of our results. In this
paper we used the ALPG algorithm to simulate demand of
a neighbourhood. However, there might be scenarios where
PS, a greedy algorithm, outperforms FIPS and the other way
around. The aforementioned matters can have some impact on
the results.

In Section IV-C we found that asking flexible nodes first to
optimize results in a worse computational efficiency compared
to UPS. This is due to the same type of devices being asked to
optimize in the first iterations. Calculating the actual Shapley
value for all nodes could result in a better computational
efficiency.

From Section IV-B and IV-C it is clear that FIPS and UPS
outperform PS in terms of empirical computational complexity
and computational efficiency. However, in terms of compu-
tation time to find a local minimum, PS can still have the
advantage. If all nodes add computing power, PS can use this
increase by making all nodes perform calculations. In contrast,
FIPS and UPS only use the computing power of one node.
PS is able to converge faster in terms of iterations because it
always chooses the highest improvement. This means that, if
no nodes become a bottleneck, PS is still able to be faster in
terms of computation time than FIPS or UPS.

VI. CONCLUSIONS

In this paper we proposed a new version version of Pro-
file Steering (PS), called Flexiblity Informed Profile Steering
(FIPS), in order to improve on computational efficiency, com-
putational complexity and finding a local minimum.

In PS, every node is asked to find a candidate profile
during every iteration. Only one of these candidate profiles is
accepted. We proposed to determine the node that can optimize
on the problem with an ordered list. We used the Shapley
values found by [4] to determine the order of this list by either
asking the flexible nodes first or the least flexible nodes first.

Asking nodes to optimize and accepting their profile without
consideration of the other nodes their possible candidate
profile has resulted in improved empirical computational com-
plexity and efficiency compared to PS. In addition to this, we
were able to find a different local minimum compared to PS,
although the difference was minimal.

The order in which we ask nodes influences the found local
minimum, the empirical computational complexity and the
computational efficiency.

Asking the least flexible nodes first to optimize on the
problem results in a slower convergence to a local minimum
and a higher empirical computational complexity than asking

6

the most flexible nodes first. Asking nodes to optimize ran-
domly results in a similar empirical computational complexity
compared to asking the most flexible nodes first. Furthermore,
asking nodes randomly results on average in the best compu-
tational efficiency compared to all other methods.

The computational efficiency of FIPS flexible first is lower
compared to asking the devices at random. This is likely
due to the estimation of Shapley values for nodes instead of
calculating this value for every node.

In future work, we look at dynamically changing the order
devices are asked to optimize by updating their Shapley values
based on historical events.

ACKNOWLEDGEMENTS

I would like to extend my sincere thanks to my supervisors
Gerwin Hoogsteen and Aditya Pappu. Their feedback, knowl-
edge and expertise helped me create this thesis.

DECLARATIONS

During the preparation of this work the author used Chat-
GPT as a tool in order to write code more efficiently. After
using this tool/service, the author reviewed and edited the
content as needed and takes full responsibility for the content
of the work.

REFERENCES

[1] M. Hasanuzzaman, U. S. Zubir, N. I. Ilham, and H. Seng Che, “Global
electricity demand, generation, grid system, and renewable energy polices:
a review,” WIREs Energy and Environment, vol. 6, no. 3, p. e222, 2017.

[2] M. E. T. Gerards, H. A. Toersche, G. Hoogsteen, T. van der Klauw, J. L.
Hurink, and G. J. M. Smit, “Demand side management using profile
steering,” in 2015 IEEE Eindhoven PowerTech, pp. 1–6, 2015.

[3] G. Hoogsteen, M. E. Gerards, and J. L. Hurink, “On the scalability
of decentralized energy management using profile steering,” in 2018
IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-
Europe), pp. 1–6, 2018.

[4] I. A. M. Varenhorst, J. Hurink, and M. E. T. Gerards, “Quantifying
device flexibility with shapley values in demand side management,”
in Proceedings of the 15th ACM International Conference on Future
and Sustainable Energy Systems, e-Energy ’24, (New York, NY, USA),
p. 147–157, Association for Computing Machinery, 2024.

[5] A. Pappu, M. E. T. Gerards, G. Hoogsteen, and J. L. Hurink, “Asyn-
chronous Distributed Energy Management with Co-operative Agents,”
2024.

[6] G. Hoogsteen, A. Molderink, J. Hurink, and G. Smit, “Generation of
flexible domestic load profiles to evaluate demand side management
approaches,” in 2016 IEEE International Energy Conference (ENERGY-
CON), (United States), p. 1279, IEEE, Apr. 2016. eemcs-eprint-27137
; 2016 IEEE International Energy Conference, ENERGYCON 2016 ;
Conference date: 04-04-2016 Through 08-04-2016.

	Introduction
	Background and related works
	Profile Steering
	Versions of Profile Steering
	Quantifying flexibility

	Algorithm
	Ranking methods
	Flexible nodes last
	Flexible nodes first
	Random

	Stopping criterion

	Evaluation
	Peak-shaving performance
	Empirical computational complexity
	Computational efficiency

	Discussion
	Conclusions
	References

