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Abstract

Knowledge of patient comorbidities is crucial for effective healthcare decision-making and
predictive modeling, particularly for vulnerable populations such as geriatric hip fracture
patients. While electronic health records (EHRs) contain a wealth of data, data regarding
comorbidities is often buried in unstructured text, posing a challenge for data extraction.
The aim of this work was to evaluate the potential of machine learning (ML) and natu-
ral language processing (NLP) in extracting comorbidity data from EHRs, and thus work
towards more complete representations of patient comorbidity in support of clinical care
and research.

In this work we frame the task of identifying comorbidity in clinical documents as a
multi-label classification problem. We aim to classify emergency department (ED) docu-
ments for elderly hip fracture patient into the categories of the Charlson Comorbidity Index
(CCI), a well-established method of categorizing comorbidity. We first evaluated the per-
formance of Naïve Bayes, Gradient Boosting, Random Forest, and a RoBERTa variant in
a fully supervised setting based on ±3200 documents. The performance of the fully super-
vised classifiers was hampered by the significant class imbalance for the CCI-categories.
For all models except Naïve Bayes we observed f1 scores above 0.8 for nearly all categories
with an occurrence rate of 5% or higher, but performance dropped significantly with a
decreasing occurrence rate under this 5% threshold. In the supervised learning scheme
our best classification accuracy based on the full document label was 0.71, achieved with
per-class binary Random Forests.

We attempted to mitigate the effects of the class imbalance by augmenting our training
data with ±20000 intake notes for patients outside the hip fracture cohort, using a weak
supervision scheme. Weak labels were generated programmatically by checking for the
presence of relevant terminology from SNOMED CT and the Unified Medical Language
System (UMLS), two comprehensive medical terminology systems. The generated weak la-
bels were supplemented with pseudo-labels generated by inference of the previously trained
fully supervised Random Forest over the unlabeled documents. We find this approach to
considerably improve classification performance for rare CCI categories, resulting in in-
creases in the f1 score of 0.05− 0.35 for categories with a prevalence under 5%. Random
forest again was the most performant model, and document-level classification accuracy
increased to 0.75 after inclusion of the weak- and pseudo-labeled documents.



Medical abstract

Objective: In this work, we apply machine learning (ML) to classify emergency depart-
ment (ED) visit notes for elderly hip fracture patients into the groups of diagnoses of the
Charlson Comorbidity Index (CCI). The CCI is a categorisation of groups of diagnoses,
e.g. myocardial infarctions, cerebrovascular diseases, and renal diseases, and serves as a
clinically validated predictor for 10-year patient mortality. The CCI has also found use as
a powerful feature in other clinical predictive models, such as models that predict post-
operative mortality. A machine learning model capable of identifying the CCI-categories
from documents in the EHR would allow for a better overview of patient comorbidity in
systems like EHRs, facilitating better clinical decision making. Furthermore, it would al-
low for easier inclusion of comorbidity as a factor in clinical research, resulting in more
comprehensive analysis and improving the quality of the research.

Methods: We first evaluated the performance of four widely-used ML models (Naïve
Bayes, Gradient Boosting, Random Forest and a transformer model), trained and evaluated
based on ±3200 manually labeled documents for hip fracture patients. We subsequently
extended our dataset with ±20000 ED documents for elderly patients with other types of
fractures. The second set of documents was labeled by a computer program which checks for
the presence of relevant terminology from SNOMED CT and the Unified Medical Language
System (UMLS). These terminology-based labels were complemented by predictions of the
Random Forest that was trained using the manually labeled data.

Results: When trained based on only the manually labeled documents, three models
achieved f1 performance scores above 0.8 for CCI-categories with a prevalence over 5%
- however the limited amount of manually labeled data resulted in a gradual decrease
towards 0 in the f1 score for categories with a prevalence under 5%. The addition of the
computer-labeled documents was effective in improving model performance for these rare
CCI-categories. With the best-performing model, Random Forest, we observed increases
in the f1 score in the range 0.05− 0.35 for categories with a prevalence under 5%.

Conclusion: Of the tested models the Random Forest, after the introduction of the
computer-labeled documents, performed best. In 75% of test cases, the Random Forest
was able to predict all correct CCI-categories for a patient, and in 92% of test cases the
predicted CCI-score was within 1 point of the correct score. While there is still room
for improvement, particularly in classifying rare groups of diagnoses, our results offer a
positive outlook for a more complete overview of comorbidity in EHRs, and the inclusion
of comorbid condition as input for research and predictive models.

Keywords: weak supervision, machine learning, clinical NLP, medical terminologies, SNOMED
CT, hip fractures, Charlson Comorbidity Index



Chapter 1

Introduction

Over the past two decades the use of electronic health records (EHRs) and health infor-
mation systems (HIS) in healthcare has become widespread, to a point where the vast
majority of hospitals and primary care physicians have now adopted an EHR of some form
[47]. In the Netherlands all hospitals have chosen suppliers for a HIS/EHR and are cur-
rently using either an integrated EHR or a collection of subsystems [3].

Modern EHRs are a valuable tool in clinical research as they comprise a wealth of
information [14], containing data such as test results, images, and patient vitals, as well as
containing descriptions of the patient care process i.e., diagnoses, treatments and outcomes.
However, most of this data is in unstructured form due to the nature of communication and
reporting in medical practice [66]. About 80% of EHR data is unstructured [36]. Natural
language processing (NLP) may offer solutions for processing this unstructured data for
improving healthcare processes [66].

Ziekenhuisgroep Twente (ZGT) wishes to work towards models that can be used for
improving and informing healthcare processes, patient comorbidities are important fea-
tures for these models. Electronic health records contain a wealth of free-text clinical
documents that contain information regarding comorbidities, however extracting this in-
formation manually is not reasonably feasible due to the significant time investment re-
quired. While automated labeling for individual studies based on ad-hoc rules is possible,
it amounts to a significant amount of additional work for each study and results in inconsis-
tent views on comorbidity across these studies. Furthermore, simple rule-based approaches
are complicated by the intricacies of clinical reporting and text mining in general. For ex-
ample, clinicians use a wide range of terms for the same concepts, and abbreviations are
prevalent and may be ambiguous. These types of issues significantly limit the power of
simple rule-based approaches. The goal of this work was to design a solution for automat-
ically obtaining relevant comorbidities from clinical notes by leveraging natural language
processing and machine learning methods, so that this solution may be used for efficient
and consistent extraction of these conditions in further studies. More specifically we for-
mulated the following research question:

RQ1 How can we design a machine learning approach or artifact for obtaining relevant
comorbidities from clinical notes?

(a) Which comorbid conditions are relevant?
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(b) How can the inherent structure of clinical notes be leveraged for improving model
performance?

The prohibitive cost of manual annotation is an issue that also applies to this study.
This study initially had just over 3200 manually annotated documents available for training
and testing. This proved to be insufficient to create a model that was capable of extracting
several groups of comorbid conditions in which we are interested at a sufficient level of ac-
curacy. Taking into account the mentioned shortcomings for ad-hoc rule-based annotation
approaches, and inspired by the availability of comprehensive medical terminology systems
we pose the following questions:

RQ2 How can we leverage existing medical terminologies and ontologies in labeling suf-
ficient training data?

(a) What are the shortcomings of training data labeled using medical terminologies com-
pared to handlabeled data?

(b) How can we mitigate these shortcomings?

In addition to the main goal of working towards a ML-based solution, we have experi-
mented with an approach to structuring research based on agile methodologies. While we
will not fully cover this in this thesis, we do want to allude to it here as it impacted the
research process. A full treatment of this topic can be found in appendix F. The main
question we aimed to answer regarding the new approach is:

RQ3 How will adopting elements from Agile methodologies impact the research process
in terms of effectiveness and efficiency?

The rest of this document is structured as follows:
• Chapter 2 provides an overview of the context of this research at ZGT.
• Chapter 3 provides background information on several topics and concepts relevant

to this work.
• Chapter 4 discusses related work and literature.
• Chapter 5 covers the main aspects of our methodology regarding training ML models

and discusses some challenges we identified for the problem at hand.
• Chapter 6 covers our first attempt at answering answering RQ1, based on the ±3200

manually annotated documents.
• Chapter 7 covers work in answering RQ1 in conjunction with RQ2.
• Chapter 8 is a discussion and reflection on our obtained results.
• Finally, chapter 9 concludes this thesis.
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Chapter 2

Context

2.1 ZGT

Care for older adults is a core expertise and spearhead for care, research and innovation at
Ziekenhuisgroup Twente (ZGT). A specific area of research ZGT concerns itself with is that
of the multidisciplinary care for elderly hip fracture patients. In order to improve quality
of care for these patients, among others, the Centre for Geriatric Traumatology (CvGT)
was established in 2008 at Ziekenhuisgroep Twente. At the CvGT patients aged 70 years
and older are treated according to a multidisciplinary orthogeriatric care pathway. This
pathway involves intensive co-management by a geriatrician, who is involved in performing
a comprehensive geriatric assessment and evaluating patient treatment on a daily basis
[79]. In support of the care delivered by the CvGT, ZGT puts effort into creating and
evaluating metrics and models that may be used in improving prognosis and guiding the
clinical pathway [46][78], determining risk of future fractures [71], as well as streamlining
the care process, for example through automatic generation of radiology reports [48]. The
data driving these models is often extracted from ZGT’s EHR. In accordance with the
number cited by Li et al. [36] about 80% of the EHR consists of unstructured data.
This prevalence of unstructured data complicates the creation and training of models for
prediction and classification.

2.2 Project Context

This specific research project originated from a desire at ZGT to build on the work of
Yenodigan et al.[78] on predicting of post-operative mortality for elderly hip fracture pa-
tients. Comorbidities are significant contributing factors to mortality in both general and
hip-fracture populations[41] and in the work of Yenidogan et al. they were therefore in-
cluded as an input feature in their structured modality, however the completeness of the
comorbidity feature was low. This low completeness is explained by the fact that co-
morbidities are not registered in the EHR in a structured manner unless the patient has
previously received a diagnosis or treatment for the comorbid condition in a ZGT Hospital.
Comorbid conditions can instead be found dispersed throughout communication between
medical professionals and in clinical documentation, which are unstructured texts. Parallel
to this desire to continue previous research, there is also the practical desire to complete
the overview of patient in the EHR for clinical practice, either by completing the structured
overview of conditions in the EHR or by providing some metric on patient comorbidity in
a separate dashboard. Extracting the comorbidities from natural texts for use in a pre-
dictive model or augmentation of the EHR is a time consuming manual data extraction
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task. This is not a desirable task in a healthcare setting, where healthcare professionals
are already overloaded on reporting and paperwork, nor is it practical in a clinical research
setting where datasets may be too large to manually process. This work therefore serves to
facilitate a continuation of the work on predicting post-operative mortality as well as other
future research projects by providing an efficient way of gathering a structured overview
of comorbidities for the patient cohorts in those studies.

2.3 Research support and requirements

All experiments in this thesis were performed at the Information & Organization (I&O)
department at ZGT. I&O provides access to internal computing resources and infrastruc-
ture dedicated to research purposes. An important requirement imposed on this project
by ZGT and the I&O department is that it should be possible to host the resulting model
on the internal infrastructure, ruling out the use of cloud-hosted solutions and very large
language models like those in the GPT family. This requirement exists because moving
data off-premise is undesirable as it raises significant privacy concerns. Medical expertise
and domain knowledge was provided by prof. dr. J.H. Hegeman, a trauma surgeon at
ZGT involved with the Centre for Geriatric Traumatology.
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Chapter 3

Background

3.1 Comorbidity

There is discussion in the medical community regarding what constitutes comorbidity.
In a broad sense there is some agreement that there is a conceptual split between the
frameworks comorbidity and multi-morbidity, where comorbidity refers to a set of chronic
conditions existing concurrently with a specific index condition and multi-morbidity to the
existence of multiple chronic conditions in a general care setting. One can also take into
account additional health-related and social factors to build the more general framework
of patient complexity [65][44]. In both a care and research setting it matters which of the
frameworks is chosen. Harrison et al. [26] note that while the comorbidity framework is
useful in specialist care, adopting it a broader setting may lead to fragmented care where
different parts of the healthcare system simply treat one index disease instead of the pa-
tient condition being treated in holistic manner. For research, they note that comorbidity
and multi-morbidity frameworks require different approaches to sampling, as samples in
comorbidity studies are skewed towards the index disease and conditions that cluster with
the index disease and are thus not representative of patients with multi-morbidity in gen-
eral.

As this work relates to a specific index condition — hip fractures — the comorbidity
framework is most applicable in our case. However, even within that framework there may
exist discussion as to what conditions should be considered a comorbidity for the given
index condition. Research seems to mostly adhere to one of a number of previously defined
measures for comorbidity, the most common of these being the Charlson Comorbidity
Index (CCI) [10] followed by the Elixhauser Comorbidity Index [20]. In this work we will
use a variant of the Charlson Comorbidity Index.

3.1.1 Charlson Comorbidity Index

The original CCI is a score sheet containing 19 conditions. Each condition is given a weight
from 1 to 6 based on an estimate of 1-year mortality controlling for the contribution of
coexistent conditions, these points are summed to obtain a score for a given patient. For
each decade over 40 in the patients age an additional point is added to the score[10]. The
resulting score is used to calculate a predicted 10-year survival rate using equation 3.1, the
resulting values are plotted in figure 3.1.

survival = 0.987e
0.9×CCI

(3.1)
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Figure 3.1: Estimated 10-year survival rate for CCI scores.

Deyo et al. [18] adapted the CCI to a set of 17 conditions which could be mapped to
the clinical modification of the ninth revision of the International Classification of Diseases
(ICD-9-CM). Quan et al. [53] introduced an adaptation for the tenth revision of the In-
ternational Classification of Diseases (ICD-10) and enhanced the Deyo et al. ICD-9-CM
adaptation through back-translation. Fortin et al. [22] adapted the Quan algorithm to
use SNOMED-CT codes. These different coding algorithms may result in slightly different
CCIs over the same dataset; Viernes et al. [70] reported a difference in mean CCI of 0.32
between the Quan et al. ICD-10 algorithm and a SNOMED-CT algorithm by Observa-
tional Health Data Sciences and Informatics (OHDSI) included in the R FeatureExtraction
package.

Table 3.1 shows the categories in the Deyo adaptation of the CCI and the associated
weights. It is important to note that there are three pairs of mutually exclusive categories
in this index: Diabetes, without chronic complications and Diabetes, with chronic compli-
cations, Mild liver disease and Moderate/severe liver disease, and Malignancy, except skin
neoplasms and Metastatic solid tumor. If the category with the higher weight applies to a
patient, we no longer count the points from the less severe category.

3.2 Clinical Coding

Medical coding is the practice of assigning standardized codes to clinical concepts, these
codes have found adoption in the healthcare systems for financial purposes such as billing,
as well as as keywords for flagging and retrieving important diagnostic information in
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Table 3.1: Conditions and associated scores in the Deyo-Charlson comorbidity
index.

Weight Condition
1 Peripheral vascular disease

Dementia
Myocardial infarction
Chronic pulmonary disease
Mild liver disease
Congestive heart failure
Peptic ulcer disease
Cerebrovascular disease
Diabetes, without chronic complications
Rheumatic disease

2 Hemiplegia
Renal disease
Malignancy, except skin neoplasms
Diabetes, with chronic complications

3 Moderate/severe liver disease
6 Metastatic solid tumor

AIDS/HIV

EHRs. This section will now briefly cover three code systems that are commonly used in
either financial reporting or clinical documentation and reporting.

3.2.1 SNOMED CT

SNOMED CT is a comprehensive clinical terminology system geared towards documen-
tation and data analysis in support of clinical decision making and research. It models
clinical concepts at multiple levels of granularity across 19 hierarchies, with each hierarchy
covering a distinct category of clinical concepts such as clinical findings, body structures,
procedures or events. The design of SNOMED CT was conceived with a set of desirable
qualities for medical terminology systems, as laid out by James J. Simino[12], in mind.
Two of these desiderata, a poly-hierarchical structure and the existence of multiple con-
sistent views, are especially notable as they cause SNOMED CT to function significantly
differently from other coding systems such as ICD.

Polyhierarchy
Within the 19 SNOMED CT hierarchies any concept may have more than one parent
concept, parent child connections are modeled through hierarchical IS A relationships.
When limited to concepts and hierarchical relationships the SNOMED CT data model
forms a directed acyclic graph, figure 3.2 shows an example of this structure. A concrete
example of polyhierarchy in SNOMED CT is the concept "Myocardial Infarction" (id:
22298006), which has two parent concepts: "Ischemic heart disease (414545008)" and
"Myocardial necrosis" (id: 251061000).1

Multiple consistent views
Multiple consistent views refers to the requirement that concepts are accessible through

1For exploring these concepts and SNOMED CT in general see the official browsing tool.
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Figure 3.2: Example of a polyhierarchy

different paths in the data structure, but the choice of path should not influence the
representation, meaning or interpretation of the concept. This applies to traversing the
acyclic polyhierarchy but also in a broader sense as, in addition to IS A relationships,
SNOMED CT contains attribute relationships which link nodes across hierarchies in a
non-hierarchical manner and are used to represent certain aspects of the meaning of con-
cepts. Examples of attribute relationships include the finding site relationship linking
clinical findings and body structures, and the procedure site direct relationship linking
procedures to body structures.

We return to the example of the concept "Myocardial Infarction" (id: 22298006), and
consider multiple queries that would return this concept. For example: a query for all
children of one of the parents of "Myocardial Infarction", another query asking for all
ancestors of "Acute Myocardial Infarction (id: 57054005)" which is a child of "Myocardial
Infarction" and a query asking for all clinical findings with "Myocardium structure (id:
74281007)" as a finding site. The notion of multiple consistent views means that the
representation and interpretation of the concept is stand-alone and does not depend of the
chosen query.

Processing and practical use
SNOMED CT is designed to be computer processable and query-able, allowing it to be
incorporated into information systems to support analytical tasks, support documentation
and allow for querying data artifacts. Native tools support querying with the Expression
Constraint Language (ECL), however the release format is compatible with other technolo-
gies such as relational or graph databases. Defining subsets from SNOMED CT through
queries with tools such as the ECL is called intensional subset definition, while subsets
presented as lists of individual SNOMED IDs are said to be extensionally defined.

3.2.2 ICD

ICD is a family of medical coding systems designed to be uses as a statistical classification
managed by the United Nations System. The primary use case for ICD is in reporting and
statistical analysis, but it has also found widespread use in clinical coding. ICD is designed
to be mono-hierarchical, thus any concept has a single parent an can only be found at one
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location in the coding system. This is in order to support statistical reporting as a concept
being a member of multiple statistical categories makes reporting more complex and less
transparent, however it requires strict design decisions to be made, such as whether to
place "Tuberculosis of lung" under "Infectious diseases" or "Diseases of the respiratory
system". This can make locating concepts that could fit in multiple categories difficult.

3.2.3 DBC

The standard for clinical coding for financial systems and reimbursement in the Nether-
lands is the diagnose-behandelcombinatie (DBC). DBC encodes combinations of diagnoses,
treatments, medications and consults into 9-digit codes. DBC codes are assigned prices
according to a country-wide standard, charged to patients that receive the associated set
of treatments.

3.3 Weak Supervision

With the advent of large deep learning models and large language models the availabil-
ity of labeled training data of sufficient quality has increasingly become a bottleneck in
practical machine learning applications. Weak supervision is a machine learning paradigm
that attempts to address this issue, it encompasses a range of methods that generate la-
bels for unlabeled data in a cheap manner; at little time cost to individual experts and
researchers. Labels generated by weak supervision methods are generally noisier and of
lower quality than those created by experts, more specifically they may be incomplete,
inexact or inaccurate [80].

Common methods that fall under the weak supervision paradigm include: Active learn-
ing, an approach in which a machine learning model can query a human user for input in
labeling a set of samples. Typically the samples presented to the user are the set of most
informative or difficult samples as identified by some heuristic. Multiple instance learning,
a learning approach in which data samples are arranged in groups, called bags, and labels
are assigned at a bag level. This allows for the creation of inexact labels at significantly
reduced labeling cost. Programmatic labeling is an approach in which new samples are
labeled based on some prior defined rule or heuristic, such as the presence of a certain
word, or variables passing some combination of threshold values. Ratner et al.[56] intro-
duce a programmatic approach called Data Programming, which allows an expert or user
to define heuristics called labeling functions, and trains a generative model that accounts
for interdependencies and conflicts among these labeling functions. The data programming
paradigm can be applied using the Snorkel[57] tool.
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Chapter 4

Related Work

4.1 Medical Coding

Numerous machine learning methods have been applied to the ICD coding problem, ranging
from more traditional methods to state-of-the-art transformer-based architectures. Tradi-
tional methods have shown decent performance on shorter text descriptions, for example,
Atutxa et al. [2] attempt to classify short diagnostic summaries across 1676 Spanish ICD
codes. The diagnostic summaries were normalized in a number of different ways, based on
SNOMED and web resources, and similarity features to a standard vocabulary are calcu-
lated for each normalization. Random forests (RFs) for each individual feature vector, RFs
for concatenations of feature vectors, and weighted voting based on the individual RFs are
then compared in their classification performance. Best performance was obtained by clas-
sifying based on the concatenation of all individual feature vectors, achieving a precision
and recall of 0.92.

Xu et al. [77] take a multi-modal ensemble approach to multi-label classification for 32
common ICD codes, incorporating a structured modality, a short diagnostic text modal-
ity like those used by Atutxa et al. [2] and a unstructured text modality of full clinical
notes. For their short diagnostic modality Xu et al. [77] use a character-level CNN for
word representation combined with a bi-directional LSTM for encoding the sequence. The
unstructured modality was processed using a CNN, of which the output features were sub-
sequently enriched with TF-IFD features for relevant key words before being passed to a
fully connected network. A decision tree was applied to the structured modality. Best
performance was achieved by combining all three modalities with label smoothing regu-
larization, which was introduced to adjust for the class imbalance in ICD codes and thus
improve performance on rarer ICD codes.

Beyond regularization techniques like the one used by Xu et al. [77], code descriptions
are often leveraged to improve performance for rare ICD codes. For example, Chapman et
al. [9] introduce an approach for handling class imbalance that computes word-level atten-
tion between clinical documents and code descriptions using BERT-like encoders, resulting
in an improvement in classifying uncommon ICD codes compared to a baseline of BERT
and a fully connected classification layer.

Mullenbach et al. [42] perform multi-label classification on the ICD-9 codeset using
a CNN combined with a per-class attention mechanism. They leverage code descriptions
by adding a regularization term dependent on similarity of text embeddings to description
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embeddings, the term scales with the frequency of true code occurrence such that similarity
to descriptions is more important for rare codes.

Gao et al. [25] introduce KeyClass, a weakly-supervised approach for text classification
based on solely on the class descriptions. It is trained on a number of common classification
tasks, including assigning ICD-9 codes. Gao et al. [25] first create class vocabularies based
on code descriptions, then key phrases in the corpus are identified and mapped to the most
semantically similar class. Labeling functions are then created for each key phrase. These
labeling functions vote for the associated class if the keyword is in the document, else they
abstain. The vote distributions of these labeling functions are then used to probabilisti-
cally label documents. The downstream classifier is trained based on these probabilistic
lables. KeyClass shows decent performance compared to other weakly-supervised and fully
supervised models, however there is room for improvement with regards to precision and
performance on low-frequency codes in the task of classifying clinical notes.

4.2 Classification tasks

Machine learning with EHRs offers opportunities for a wealth of classification tasks be-
sides coding problems. A common example is predictive tasks, these are generally binary
classification problems where the goal is to predict whether some medical outcome will
occur. Target outcomes for prediction include mortality, hospital stay length and hospital
readmission or specific medical problems like heart failure and cancer recurrence [36].

Poulain et al. [52] introduce CEHR-GAN-BERT, a model that leverages BERT for
creating EHR representations, and train a downstream predictive model in a generative-
adverserial setting in order to allow out-of cohort patients to be included when learning
the representations. While they use BERT and Masked Language Modeling for extracting
temporal relations in their data, a common approach in NLP, their work does not include
a truly unstructured text modality, instead relying on sequences of tokens representing
medical conditions and procedures for their input embedding, these have been obtained
from pre-coded medical records [50]. CEHR-GAN-BERT seems to outperform other state-
of-the-art models on a number of predictive tasks especially in problems with small patient
cohorts.

Lovelace et al. [38] approach predictive problems through the avenue of medical coding,
training a CNN augmented by an attention mechanism to extract intermediate "problem
lists" from clinical notes. These problem lists consist of rolled up ICD-9 codes and phe-
codes1 and serve a as human-understandable features for a downstream classifier.

An example of a non-predictive classification task on EHRs is the work by Si et al.
[59], who introduce an adaptation of BioBERT that incorporates label embeddings for
automatic triage using messages extracted from the EHR. Similarly to Chapman et al. [9],
cross attention between class descriptions and input is considered as a way to give tokens
relevant to a class a larger attention score.

1Phecodes: "Manually curated groups of ICD codes intended to capture clinically meaningful concepts
for research." [4]

11



Chapter 5

Methodology

This chapter introduces the methodology applied during this research. First, section 5.1
touches upon the Agile approach we applied during this work, and how it affected the
structure of this work. We then cover common methodological aspects: our framing of
the task at hand (5.2), dataset and data annotation (5.3), and validation approach (5.4).
Finally section 5.5 provides an overview of some problems we encountered during the course
of this project, mostly related to working with real-world data.

5.1 Agile

The overarching goal of this project is design-focused: we wish to deliver a machine learn-
ing artifact or approach that allows for the extraction of comorbidities in clinical practice
and clinical research projects. Given this goal of the delivery of an artifact, and the fixed
time and resource constraints associated with this work, a traditional top-down research
approach is likely not suitable for this project. Such a top-down approach would require
the definition of rigid set of requirements and experiments and design of an "optimal solu-
tion" beforehand, something we do not believe to be possible. Rather, we believe that an
iterative design approach which allows us to add complexity to our solution incrementally
and steer the design process based on interim results is more suitable for this project. We
therefore believe that Agile, a set of practices from software development is a good fit for
this project.

Agile is a set of project management practices and principles created after the intro-
duction of the Agile Manifesto[5] at the start of the century, largely as a reaction to the
shortcomings of the dominant top-down Waterfall development approach of that time. The
goal in Agile is to work in short development sequences in order to facilitate frequent de-
livery to customers, flexibility and management of changing and emerging requirements.

We have treated this research project as a case study on using Agile methodologies in
research. We have re-framed elements from Agile and the related Scrum framework[62]
from a software development context to a research context and analyzed their usefulness
during this project. This thesis will not discuss this matter in detail, but it is important
to note that we worked in sprints: time-boxed iterations of three weeks with a pre-defined
set of tasks, each sprint ending with retrospective meeting, as depicted in figure 5.1. This
approach resulted in this work breaking up into two clearly seperable phases, the first
phase being a general exploration of the problem at hand, methods, and machine learn-
ing models and the second phase addressing a specific limitation of the machine learning
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Figure 5.1: Depiction of the sprint process.

models observed during the fist phase. The rest of this document will present these phases
seperately. For a full treatment of Agile and our experiences in using it during this project,
we refer to appendix F.

5.2 Target Variable

The problem of obtaining comorbidities from clinical notes can be framed in two ways: as
an entity extraction problem in which the goal is identify individual comorbidities in-text,
or as a multi-label classification problem in which we pre-define classes of relevant comor-
bidities and assign document-level labels. We have chosen to adhere to the classification
perspective on the problem as it is more compatible with accepted comorbidity measures
like the CCI, firstly because multi-labels can map one-to-one to a score such as the CCI
and secondly because several categories may be indicated by evidence spread throughout
a note, rather than being stated as a single entity. Some concrete examples include:

• The CCI category "congestive heart failure" may be indicated by a combination of
factors which, taken individually, are not problematic enough to be considered a co-
morbidity, like heart palpitations, an enlarged heart or valve insufficiency.

• Diabetes and relevant complications may be stated separately in a note. A classi-
fication between complicated and uncomplicated diabetes should thus be done at a
document level.

• Certain medical procedures and medications may be strong indicators of comorbidity,
but are not considered in a NER setting as they are not clinical findings. For example,
stents and dotter procedures may indicate peripheral vascular disease, and insulin
use may indicate diabetes.
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We take the 17 categories of the Deyo adaptation[18] of the CCI as our target classes.
Note that in the rest of this document the terms "category" and "class" will be used
interchangeably when referring to these. The task at hand thus is a multi-label classification
problem, with one caveat: the mutually exclusive classes as mentioned in section 3.1.1. We
will handle these mutually exclusive classes by first approaching the task a pure multi-label
problem and resolving conflicts post-prediction, i.e. if both classes have been predicted we
will remove the predicted label for the less severe class.

hoofdklacht: pijnlijke r heup

anamnese:
patiënt is vanochtend in de trap gevallen op rechterzij, sindsdien niet meer op kunnen
lopen. met hoofd tegen treden gekomen, geen bewustzijnsverlies. geen nekklachten, geen
andere klachten.

medische geschiedenis:
dm type 2, hypertensie
[DATE] kniefractuur
[DATE] cataractoperatie extracapsulair phaco links
[DATE] cataractoperatie extracapsulair phaco rechts
[DATE] dementie

allergieën: geen

medicatie:
insuline
zolpidem [x]mg/dag
omeprazol [x]mg/dag
propanolol [x]mg/dag

lichamelijk onderzoek: r been verkort, in exorotatie.

lab:
hemoglobine [x]mmol/l; hematocriet [x]l/l; c-reactive protein [x]mg/l; leukocyten [x]/l;
kreatinine [x]umol/l; bloedgroep -volgt-; antistof scr -volgt;
x-heup: collumfractuur rechts

diagnose: collumfractuur rechts

beleid:
-opname
-pijnstilling
-nuchter
-morgenochtend ok

Figure 5.2: Artificial example of a clinical note.
Note: for the sake of brevity this example is incomplete, it does not contain all
elements of real ED notes.
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5.3 Dataset

The training data used in this study consists of intake notes for patients with a fracture
due to trauma from the emergency department (ED) at the ZGT locations in Hengelo and
Almelo, collected from January of 2008 onward. Only documents concerning patients aged
70 and up and presenting with possible fractures have been included. Figure 5.2 shows an
artificial example of what an ED intake note may look like. The documents are split into
two datasets: one containing all notes for patients with hip fractures (DATA-HIP) and
the other containing documents for all other fractures (DATA-REST). The documents
in DATA-HIP hip have been annotated and serve as a golden standard to be used for
learning and evaluation. DATA-REST has not been annotated, as these documents were
included at a later stage in this study and are used for weak supervision. Weak supervision
and the exact use of DATA-REST are discussed in section 7.2.1. We have limited our
data to documents for fracture patients mainly because it fits within the project context
as laid out in chapter 2, but it was also considered that fracture documents introduce
little bias towards any individual CCI category, as opposed to the inclusion of e.g. cardiac
patients.

5.3.1 Document pre-processing

A number of pre-processing steps were applied to all documents before they were used
in further analysis and training. Most importantly an automatic anonymization process
was applied to the documents in order to remove all mentions of personally identifiable
information like names and addresses. Other pre-processing steps concerned maintaining
consistent formatting across all documents, in order to accomplish this a number of special
characters were removed or converted and document line termination was standardized to
CRLF. Finally all texts were converted to lowercase.

5.3.2 Annotation Process

The task of hand-annotating the over 3000 documents in the DATA-HIP dataset with
the 17 CCI categories requires a significant time investment. The complexity of the task,
however, is rather limited given the short, structured and to the point nature of emergency
department notes. Given these factors, it was decided to have the author label the doc-
uments based on a protocol agreed upon by a medical expert rather than burden clinical
practitioners with a low complexity yet time consuming task.

The core of the labeling protocol is a terminology list containing conditions that should
be included under each target class. In section 3.1 we have mentioned a number of works
linking the CCI to medical ontologies, these may serve in constructing a terminology list.
We have chosen to use the work of Fortin et al.[22] as a base reference during the anno-
tation process, as it is based on the adaptation of the CCI used for the target variables,
and provides a more fine grained list of conditions than the works of Deyo et al.[18] and
Quan et al.[53].1 The list of SNOMED CT codes provided by Fortin et al. was converted
to a list of Dutch terms based on the SNOMED CT instance installed in ZGT systems
and the Unified Medical Language System[64]. While the resulting list was quite compre-
hensive, it was decided to make a number of additional inclusions. These inclusions are
conditions, encountered during the labeling process, that we consider to fall under or be

1Note that the original article included an incorrect code list, we used the list from the associated
correction[23].
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indicative of a CCI category, but were not included in the stricter definition of Fortin et
al. Also included were certain medical procedures which, while not strictly comorbidities,
are sufficiently indicative of a CCI class to warrant labeling the document with said class.
The full overview of additional inclusions can be found in appendix B.

It stands to reason that negated terms, e.g. Patient does not have X., should not
be considered in labeling, as the condition X does not actually contribute to patient
comorbidity in this case. Beyond negation, we take a rather strict position on when
a condition should be considered, namely that documents should only be labeled if the
mention of a relevant condition can conceivably be interpreted as a clinical diagnosis. This
means that we not only exclude negations, but also conditions that are stated with some
level of uncertainty, warnings of possible conditions and differential diagnoses. Table 5.1
provides an overview of words that would lead to a mentioned condition not being labeled.

Table 5.1: List of terms treated as negation.

Term Interpretation
geen no
niet not
mogelijk possible
cave caveat (warning)
dd / dd. / d.d. differential diagnosis
verdacht / verdenking suspicious / suspicion
zonder without
suspect suspect

5.3.3 Comparing the Datasets

Table 5.2: Statistics on dataset size and note length.

Total number of notes (N) 24187

DATA-HIP
Number of notes (Nh) 3290
Mean length (µh) 220
Standard deviation (σh) 112

DATA-REST
Number of notes (Nr) 20897
Mean length (µr) 219
Standard deviation (σr) 144

Given that DATA-HIP and DATA-REST contain documents for different patient
populations, it would be good to assert whether the data is similar across the two datasets.
More specifically we would like to know whether medical histories as described in the clin-
ical notes are similar between the two datasets, as this is the section likely to contain most
information on comorbidities. We believe the rest of the document is more likely to vary
between different types of fractures. If the contents of the medical history section differs
greatly between DATA-HIP and DATA-REST, then the inclusion of DATA-REST in
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training will mostly introduce noise. Table 5.2 shows basic statistics on note size and the
number of notes in each set, revealing consistent note length across the datasets. Non hip-
fracture documents show more variability in length, likely due to the remaining contents
of the documents varying dependent on the fracture type, as we previously theorized.

Cosine similarity

A simple manner of evaluating the similarity between the two sets of documents is to
isolate the medical histories form the documents, and encode the two datasets as vectors
containing the word counts of all words in the isolated medical histories. We can then
determine the cosine similarity between the resulting vectors. This results in a cosine
similarity score of 0.98, indicating a high degree of similarity between the medical histories
in DATA-HIP and DATA-REST. DATA-REST should thus be suitable for training
a classifier.

5.4 Validation

Multiple models for classification may be developed during this project, in order to vali-
date these models and compare their performances, a set of metrics is required. Once a
comprehensive set of metrics has been defined we will evaluate model performance through
a k -fold cross validations over the hand labeled data.

5.4.1 Metrics

Figure 5.3: Confusion Matrix and associated metrics.

We can evaluate our model based on two views on model performance: evaluation
at class level, and aggregated document-level evaluation. Traditionally, machine learning
classification models are evaluated based on metrics derived from a confusion matrix, figure
5.3 depicts a binary confusion matrix along with several common derived metrics. We
are dealing with a multi-label problem, which can be treated as one binary classification
problem for each class. This view allows us to evaluate performance for each individual
category in the CCI, which makes it possible to identify patterns across the categories
and identify class-specific problems. We will use the f1 score as our main metric in this
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per-class view, the f1 score is the harmonic mean of the precision and recall scores depicted
in figure 5.3 and is calculated as given in equation 5.1.

f1 = 2
Precision ∗Recall

Precision+Recall
(5.1)

The second view on performance is to not consider individual classes but evaluate the
models at a document level. The most important metric in this view is the classification
accuracy, i.e. the fraction of documents for which all categories are predicted correctly. This
approach is valuable as it provides a higher level overview of model performance that ties
more closely to clinical practice compared to individual class performances. We can then
also evaluate the ability to predict the correct CCI score for a given document, disregarding
the exact labels. Comparing this precision in the CCI to the classification accuracy should
give some insight into the likelihood of "flipped labels" resulting in a correct CCI score
despite a wrong classification. For additional insight we will also determine the 1-off
precision, that is the percentage of notes within 1 point of the correct CCI score, and
provide a mean absolute error for the CCI, as calculated as in 5.2.

MAE =
1

N

N∑
i=1

|CCItruei − CCIpredictedi | (5.2)

5.4.2 Cross validation

Model performance will be evaluated in a k -fold cross validation (CV), over DATA-HIP.
K -fold CV randomly divides the dataset into k subsets and subsequently trains k models,
leaving out one subset for evaluation each time. We thus obtain k sets of results based on
the metrics introduced in section 5.4.1, allowing us to present either the whole spread of
results, or aggregated results with a standard deviation. This approach will give a better
insight into model variance than evaluation based on a single test-train split. Figure 5.4
shows a visualization of the process.

Figure 5.4: Example of a 5-fold cross validation.
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In this work we have chosen to set k = 10 for model evaluation in all experiments,
this value was chosen as it is large enough to get a decent interpretation of the spread of
results and model variance but small enough for the test set to contain a decent amount of
positive samples for most classes. Time was also a factor in our choice as each fold requires
re-training, thus doubling the amount of folds approximately doubles the experiment time
cost. In the experiments in chapter 7, where DATA-REST was included, DATA-REST
was simply merged with the training folds in each iteration of the 10-fold validation over
DATA-HIP.

5.5 Problem Identification

A persistent matter in the data science and artificial intelligence research community is the
prevalence of work based on improving benchmarks, idealized problems and clean, accu-
rate data. While this type of research is invaluable in driving innovation and prototyping
models and approaches, it fails to take into account the imperfections of real world prob-
lems and the limitations of AI operating within the boundaries of complex human-centric
domain. This often leads to AI-methods failing or performing sub-par when moved from
the idealized situation to a real-world problem. Van der Schaar and Rashbass call these
idealized methods petri-dish AI, as opposed to reality-centric AI[58]. Van der Schaar and
Rashbass highlight five essential "pillars" for developing AI solutions that function in the
real world, many of these concern model lifetime, deployment and operations, factors we
are not concerned with at this stage. However they also highlight the necessity of model
being able to operate on real-world data. On that topic, we would like to elaborate on
several challenges relating to data quality in our dataset. Many of these challenges are
common in applied clinical NLP and classification, and need to be considered during the
rest of this work.

5.5.1 Class Imbalance

Imbalanced datasets are common in machine learning and NLP tasks, especially within the
medical domain as most people are healthy and incidence rates can vary greatly between
conditions. Imbalance can be problematic for machine learning tasks, as many machine
learning methods will favour predicting majority classes due to being optimized for average
performance metrics over a dataset.

The dataset in this study and the categories of the CCI exhibit such a class imbalance;
table 5.3 shows the percentage of documents from DATA-HIP that have been labeled
with each category from the CCI. It can be observed that the occurrence rates between the
most common and rarest occurring classes differ by nearly two orders of magnitude, and
the category AIDS / HIV is not present in the dataset at all. We will later see that the low
occurrence rate for the rarer classes has a significant impact on classification performance.

5.5.2 Domain-specific Language

Domain-specific use of language is a common problem in NLP, different industries often
have their own jargon, shorthand and distributions of words and language structures. Sig-
nificant differences in language can affect the performance and generalizablity of NLP
methods across application domains, thus different domains may require different process-
ing and re-training of models. In recent years, the requirement for adaptation to a domain
is clearly indicated by the rise of domain-specific language models, such as BioBERT[34] for
biomedical text mining or BloombergGPT[75] for a variety of tasks on finance literature.
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Table 5.3: Occurrence rates of CCI categories in DATA-HIP

Category Occurrence rate
Cerebrovascular disease 0.188
Dementia 0.170
Congestive heart failure 0.153
Diabetes, without chronic complications 0.147
Malignancy, except skin neoplasms 0.146
Chronic pulmonary disease 0.136
Peripheral vascular disease 0.121
Renal disease 0.089
Rheumatic disease 0.086
Myocardial infarction 0.078
Diabetes, with chronic complications 0.047
Hemiplegia / paraplegia 0.024
Metastatic solid tumor 0.020
Peptic ulcer disease 0.020
Mild liver disease 0.009
Moderate / severe liver disease 0.003
AIDS / HIV 0.000

The healthcare industry is a prime example of an industry in which the use of jargon
is particularly pervasive. The nature of the industry leads to the use of diagnostic and
scientific terms which rarely occur in general language, each of which may have a number of
associated abbreviations. Additionally, differences in language can be observed within the
healthcare domain as reporting practices, certain terms and the interpretation abbreviation
may differ between medical disciplines.

In this study the most problematic observed domain-specific language issues relate to
the use of ambiguous abbreviations and limited context due to emergency department
reporting practices.

Abbreviations and ambiguity

The use of abbreviations without expanded definition is common in clinical documenta-
tion[76]. This poses a problem for clinical NLP tasks as the interpretation of abbreviations
can be context-dependent or ambiguous, and in some cases abbreviations can not be dis-
tinguished based on context at all[6]. Table 5.4 shows some examples of abbreviations with
two interpretations, of which only one belongs to a CCI category. All of these examples
were found in the DATA-HIP dataset.

Table 5.4: Abbreviations with CCI and non-CCI interpretations.

Abbreviation CCI interpretation Non-CCI interpretation
mi myocardial infarction mitral valve insufficiency
pta dotterprocedure staging for bladder cancer
hf heart failure heart frequency
all acute lymphoblastic leukemia allergies
ra rheumatoid arthritis right atrium
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Limited context in ED notes

Documentation in the emergency department is generally short and to the point. As seen
in table 5.2, the mean length of the used clinical notes was 220 words, which is only about
half a page worth of text. This concise nature of the documentation is reflected in the
way relevant medical conditions and procedures that could be considered as comorbidities
are mentioned in the clinical notes. The majority of these features are captured under
a medical history section of the note where they are presented in a list-wise or comma-
separated manner. Complex conditions and more involved procedures may be given as
a single sentence, but typically only a diagnostic term or procedure name is given. This
means that most mentions of comorbid conditions are devoid of context, indicated by
a single word or phrase. While this is not necessarily problematic in cases where clear
diagnostic terms are used, it may complicate the disambiguation of ambiguous terms and
abbreviations. It may also affect the performance of certain model types, as we may expect
generative and context-sensitive models to offer little advantage in identifying context-free
mentions of comorbidities.

Misspellings

Misspellings and typing errors are a pervasive problem in NLP tasks regardless of applica-
tion domain, as an important feature being spelled incorrectly can lead to misclassification.
NLP offers a number of approaches for dealing with the problem of misspelling, most based
on fuzzy (inexact) matching to account for small differences in spelling. We will evaluate
whether this is necessary in this study.
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Chapter 6

Phase 1: Fully Supervised Learning

During the fist phase of this study we had two primary goals, both explorative in nature.
Our first goal was to identify machine learning architectures that could serve as a platform
for a final solution. Our second goal was to analyse the clinical documents with respect to
their inherent structure in order to answer RQ1 b).

6.1 Model Selection

With the goal of identifying a suitable base model in mind, we will compare the perfor-
mances of four common machine learning models when applied to the problem of classifying
clinical notes in a fully supervised learning scheme. The chosen models for this experiment
are: Multinomial Naive Bayes, Random Forest, Gradient Boosted Trees and Transformer
encoder architectures in the BERT family. All of these models are commonly applied to
text classification tasks and are in theory suitable for the task at hand.

6.1.1 Tokenization and text representation

In natural language processing, tokenization is the process of breaking down text into
smaller pieces. These pieces can be individual words, sequences of n words (n-grams), or
even parts of words or syllables. The resulting pieces, referred to as tokens, subsequently
serve in creating the input features for machine learning models.

Bag-of-Words vectorization

For all but one model architecture in this study, we have used a bag-of-words approach in
creating input features. In the bag-of-words approach texts are tokenized into words or
n-grams and then encoded as a vector of the occurrence counts of each vocabulary word in
the text. We have also experimented with using TF-IDF as our vectorization approach, but
found in preliminary experiments that this led to a significant bias towards not assigning
any positive labels, therefore we chose to stick with bag-of-words early on during the
research process. While this finding is informal on our part, it seems to be supported by
some of the conclusions of Padurariu and Braeban[49] regarding the performance of various
text representations with linear and decision tree models.

We have used the CountVectorizer implementation from scikit-learn[51]. We initially
included a parameter search over the CountVectorizer hyperparameters in our further
analysis, but it quickly became apparent that these converged to a single set of parameters
regardless of the choice in model so we will report them here. Table 6.1 lists the found
parameters for the vectorizer. In summary: our models mostly consider individual words,
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Table 6.1: Found optimal parameters for the bag-of-words CountVectorizer

Parameter Value
n-gram range (1, 1)
binary False
minimum document frequency 0.0
maximum document frequency 1.0

not larger n-grams and do not seem to discriminate based on word frequency across the
documents.

Tokenization in transformers

Transformer models provide their own tokenization and embedding mechanisms, based on
byte-pair encoding over the pre-training vocabulary of these models. This means that we
do not need to tokenize our documents before passing them to a transformer model.

6.1.2 Models

As mentioned in section 5.2, the task at hand is a multi-label classification problem. From
our four selected model architectures, Naive Bayes, Gradient Boosting and Random Forest
do not inherently support multi-label tasks. We therefore need to use these architectures
in a setup where we train a binary classifiers for each CCI category and then bundle the
17 classifiers for the full model. For these three models we will use implementations from
scikit-learn[51].

Naive Bayes

Naive Bayes is a simple machine learning algorithm that models the i.i.d. probabilities of
input features, in our case tokens, conditioned on each class and then selects the class that
maximizes Bayes’ theorem, which is given by equation 6.1. The prior class probability for
a given class c ∈ C is given by the fraction of documents in the training data that have
the label for c assigned. The feature likelihood P (D|C = c) can be calculated based on
the occurrence rates of tokens in the subset of documents that belong to class c.

P (C|D) =
P (D|C)P (C)

P (D)
∝ P (D|C)P (C) (6.1)

Naive Bayes does not have any parameters to search over, only the tokenizer parameter
search we reported on in section 6.1.1 was performed for this model.

Gradient Boosting

Gradient Boosting is a ensemble machine learning method in which a sequence of "weak"
classifiers are trained. Each successive classifier is trained to correct some of the residual
errors of the previous classifier. A final prediction is then made by summing over the log-
odds predictions of the weak classifiers, weighted by a learning rate. The most commonly
used weak classifier is a shallow decision tree, this is what we will use.

Table 6.2 shows the parameter search space used for gradient boosting. We used the
default setting of 100 weak learners and lr = 0.1 as a baseline and varied around these.
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The range of number of estimators is capped at 400, as gradient boosting classifiers have
a tendency to over-fit for large numbers of weak learners.

Table 6.2: Hyperparameter search space for Gradient Boosting

Parameter Search Space
Number of weak learners [50, 100, 200, 400]
Learning rate [0.05, 0.1, 0.2, 0.4]

Random Forest

Random Forest is an ensemble method that trains multiple decision trees classifiers in
parallel, with each tree using a random subset of features and data samples during training.
Given our model input is a bag-of-words, this means each decision tree only considers a
subset of the full vocabulary during training and trains on a random sample of documents
rather than all training data. The predictions of the individual trees are then aggregated
to come to a final prediction.

Table 6.3 shows the parameter search space for random forests. We put the range of
number of individual estimators significantly higher compared to gradient boosting as this
is less likely to result in over-fitting in random forests due to the independent, parallel
construction of the estimators. The number of features selected for each decision tree was
kept at the default setting, which is the square root of the vocabulary size.

Table 6.3: Hyperparameter search space for Random Forest

Parameter Search Space
Number of decision trees [100, 250, 500, 750]
Bootstrap sample size [0.5, 0.75, 1]

Transformers

First introduced by Vaswani et al.[68], transformers are powerful deep learning architec-
tures that are well known for their generative capabilities, but can also be applied to
traditional NLP tasks like NER, sentiment analysis and text classification. A commonly-
used branch of transformer models are those in the BERT[17]/RoBERTa[37] family, these
models consist of only the encoder half of the full transformer architecture and have become
very successful in non-generative NLP tasks.

A downside of transformer models is that they are "data-hungry", meaning that they
require extensive pre-training to develop and internal model of language structures, even
before being fine-tuned on specific tasks. It is generally beneficial if the documents used
in pre-training are from the domain in which the ultimate NLP task takes place, this
has led to the creation of a wide range of domain-specific language models. We have
compared a number of pre-trained BERT-based models for the problem at hand, in the
rest of this chapter we will only present the results for the best performing variant, which
was MedRoBERTa.nl[69]. An overview of the tested variants can be found in appendix D.

Table 6.4 shows the parameter search-space for the used transformer model. Following
the work of Devlin et al.[17] we defaulted to a learning rate of 2e−5 and batch size of 16,
and decided to try a variation on the learning rate in both directions. The lower batch
rate was tried as it may result in better accuracy and training stability, at the cost of a
longer training time.

24



Table 6.4: Hyperparameter search space for Transformer models

Parameter Search Space
Batch size [8, 16]
Learning rate [5e-5, 2e-5, 1e-5]

6.1.3 Parameter Selection

Hyperparameter tuning and model performance evaluation should be separated, as com-
bining these tasks may lead to hyperparameter over-fitting which would lead to a poor
generalization performance not reflected in the evaluation results[8]. We separate the two
tasks by adapting the cross-validation approach described in section 5.4.2 into a nested
cross-validation; for each iteration in the cross validation we perform a second cross valida-
tion over the training data. The inner validation is used to find hyperparameters, training
and validation for the outer cross validation is then performed as normal using the found
parameters. We have set the number of folds for the inner cross validation to kinner = 5.

6.2 Analysis of Note Structures

During the annotation process of the DATA-HIP set, we observed that the clinical notes
a sort of quasi-structure: medical professionals use headings to segment the clinical notes
into sections. We have attempted to reflect this structure in the artificial example in figure
5.2. While types of sections observed are fairly consistent across the dataset, headings are
not standardized and there is no strict order. The presence of this quasi-structure may
offer possibilities for improving model performance and filtering, as the various sections
may contribute differently to the set of comorbidities. We explore this inherent structure
through the following process.

1. Identify commonly used headings.
The general pattern observed for headings in the DATA-HIP set is as follows:
\r\n[heading_text][symbol]\r\n, where [heading_text] is the name of the section and
[symbol] is a punctuation symbol, most commonly a semicolon or forward slash. Us-
ing a regular expression (regex) pattern, we can search the clinical documents for
strings of text that match this pattern and aggregate all matches to find common
heading text strings. While headings without punctuation were observed, we con-
sider the terminating punctuation symbol non-optional during this step, as making it
optional would result in commonly occurring list items, such as certain common med-
ical conditions or medications, showing up in the results. It was also decided to adapt
the regex pattern in order to account for two observed factors: firstly headings may
consist of two words separated by a space or slash, secondly strings containing the
terms (consult) or (hoofdbehandelaar) before the terminating symbol are matched,
but these two terms are ignored in the match results. Accounting for these factors,
the resulting regex pattern is as follows:

\r\n(\w+[ |/]∗\w+?)\s?(?:\(consult\)|\(hoofdbehandelaar\))?[:|\\|/]\r\n

2. Group headings indicating the same section type.
As the headings are not standardized, a variety of headings can be used to indicate
the same section across different documents. For example, the heading for a medical
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history section can be medische geschiedenis: or alternatively voorgeschiedenis:. We
group these headings such that further analysis will only have to consider the type of
section rather than individual headings. During this step we only consider headings
from step 1 for which we found at least 30 matches, that is, all headings that have
an occurrence rate of 1% or higher, under the assumption that headings occur only
once in a given text.

3. Segment clinical notes.
The sections identified in step 2 will be extracted from the documents in DATA-
HIP, such that further analysis can be done on a per-section basis.

4. Determine per-section feature importance.
We will determine the distribution of summed feature importance scores over the
sections that were isolated in step 3. The tree-based classifiers are inherently inter-
pretable, and feature importance scores can be derived directly from the decrease in
purity for each feature during the training phase. For the transformer-based models
feature importances may be derived based on the integrated gradients[61] approach.
We use the implementation for the Gini importance for the Gradient Boosted model
as provided by scikit-learn1, and integrated gradients for MedRoBERTa.nl based on
the transformers-interpret package2.

6.3 Results

This section covers the results from the experiments described in sections 6.1 and 6.2. We
will first discuss the obtained hyperparameters and model performance, and cover the note
structure analysis second.

6.3.1 Model Selection Results

Found paramaters

The found optimal hyperparameters for the tested models are listed in table 6.5. The
optimal number of estimators for the Random Forest model fluctuated across the validation
folds, varying between the 250, 500 and 750 settings. As 500 was the most common value,
and is a compromise value between the two other settings, we have chosen to use it in
further experiments. All other found parameters were fully consistent across all cross
validation folds.

Table 6.5: Found optimal parameters for each model type.

Model Optimal Parameters
Gradient Boosting {learning rate: 0.1, N learners: 400}
Random Forest {max samples: 1.0, N estimators: 500}
Transformer {batch size: 8, learning rate: 5e−5}

For the gradient boosting model it was found that the highest setting for number of
learners performed best, this indicates that our search range for this parameter may have
been somewhat conservative. With an even higher setting for the number of learners
gradient boosting may see an increase in performance compared to our results, but we

1https://scikit-learn.org/
2https://pypi.org/project/transformers-interpret/0.3.0/
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doubt that this would be very significant. Random forest notably performed best when
all training samples were included for every estimator, meaning that no bootstrapping was
used. For the transformer model we see a preference for a small batch size and a larger
leaning rate, these findings are expected and go hand-in-hand, as an increase in training
stability due to using smaller batches allows for the larger learning rate.

Model performance

Figure 6.1: f1 score distributions for fully supervised models. Categories have
been ordered by prevalence from the top left to the bottom right.

Figure 6.1 graphs the f1 scores resulting from the 10-fold outer validation for the four
chosen models. Naive Bayes performs poorly across all classes. The other three models
all show similar performance patterns, random forests has a slight edge in the majority of
classes but is outperformed by a decent margin by transformer models for a select few cat-
egories. Overall it can be observed that the performance for RF, GB and TF is promising
for all categories with a prevalence of over 5%, that is all categories up to Myocardial in-
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farction. After this threshold performance drops off significantly to near zero for the rarest
present category, Moderate/severe liver disease. It can also be observed that performance
variance is significantly larger for the rarer categories, that is, the model is inconsistent
across training folds. Note that the last listed category, AIDS/HIV, does not occur in our
dataset at all, we chose to represent this as a 0 performance, this will remain the same in
the other experiments in this thesis.

Table 6.6 shows the model performances at a document level, confirming the results we
observer in the per-class analysis: Random Forest, Gradient Boosting and the transformer
perform very similarly, all having an overall classification accuracy around 70%, with a
slight edge for the random forest, as reflected in the mean absolute error. It is notable that
there is only a 0.01 difference between the percentage of correctly classified notes, and the
percentage of correct CCI scores, this indicates that there are few cases of "flipped" labels,
that is, few documents for which a correct label was missed and replaced by another label.

Table 6.6: Document-level metrics (mean±std over 10 folds)

model CCI MAE Classification accuracy % CCI correct % CCI within 1
NB 2.19± 0.13 0.28± 0.02 0.32± 0.02 0.54± 0.02
RF 0.44± 0.04 0.71± 0.03 0.72± 0.03 0.89± 0.01
GB 0.47± 0.05 0.69± 0.04 0.70± 0.04 0.88± 0.01
TF 0.46± 0.05 0.71± 0.02 0.72± 0.03 0.89± 0.01

6.3.2 Note structure analysis

Table 6.7: Identified section coverage in clinical notes.

Heading (English) Coverage
medical history 85%
additional examination 99%
physical examination 97%
anamnesis 99%
chief complaint 69%
diagnosis 57%
laboratory results 77%
medication 81%
policy/therapy 96%
vitals 22%
allergies 36%
ECG 58%
radiology 82%

Based on steps 1 and 2 from section 6.2, we have identified 13 commonly occurring
sections. The identified sections are listed in table 6.7, along with the percentage of docu-
ments in which they could be found. An overview of the headings included for each section
and the match counts for these headings can be found in appendix A. It can be observed
that most sections are present in a significant number of notes. With sections which one
would expect to contain important information regarding comorbidities, such as medical
history and physical examination being present in more or less all notes. Notable outliers
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with relatively low coverage are diagnosis, vitals, allergies and ECG.

Figure 6.2 shows the distribution of feature importance scores derived from the Gradient
Boosted model in step 4 of 6.2. The medical history section contributes the most feature
weight, about 45% of the summed feature importance over the DATA-HIP set. The
remaining feature weight is spread out more evenly, with the second most important section,
anamnesis contributing only about 10%. It can also be observed that the distribution
in the number of informative features is completely different, with the medical history
contributing under 10%. This indicates that the medical history section is made up of
a relatively small amount of highly informative features, and the rest of the document
contains mostly features of a lower importance.

Figure 6.2: Summed feature importance and feature counts per section

While the integrated gradients method we attempted for the transformer model re-
turned relevant results for individual sections, correctly identifying important features
when they were present, it did not allow for interpretable aggregation of results. The
scaling of the integrated gradient scores was not consistent when comparing two isolated
sections; an isolated section containing words that indicate a comorbidity can be assigned
the same score as an isolated section that contain no relevant text at all.

6.4 Discussion

6.4.1 Model performance

With the exception of Naive Bayes, all tested classifiers showed good performance on the
more common classes in the Charlson comorbidity index, with the median f1 score be-
ing over 0.8 in nearly all cases for categories with a prevalence of over 5%. After this
5% threshold median performance dropped rapidly and variability increased significantly.
While the rarity of these poor performing classes meant that mean performance in terms of
the CCI score was decent, it should be noted that these rare classes are mostly categories
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with higher (> 1) weights in the CCI, that is, the set of most severe comorbidities. There-
fore our performance is lowest on documents for the most fragile set of patients. This is
problematic in a research setting, as high comorbidity patients are a subset which is some
cases may be studied separately or be considered the most important sub-population, and
even more so in a care setting, where we do not want to structurally under-report the
comorbidity load for fragile patients. We therefore believe that the low performance for
rare categories should be addressed.

We believe that the poor overall performance for Naive Bayes is due to the large amount
of feature noise present in the documents; comorbidities are indicated by a handful of highly
indicative words in each document, with the great majority of text being noise, Naive Bayes
seems to deal with this especially poorly. Regarding the comparative performance of the
other three classifiers: a slight edge in performance in favour of the tree-based model
over the transformer architecture can be observed for most categories. This may in part
be due to most comorbidities being stated as stand alone entities within the documents.
The power of transformer based models lie in their ability to consider entire sentences
and textual context, however in the absence of such context this may result in spurious
correlations. This seems to be confirmed by the fact that the category for which the
transformer does outperform the tree based models significantly: Malignancy, except skin
neoplasms, is somewhat contextual. To illustrate this point, consider a document that
contains the sentence "carcinoom van de huid" (carcinoma of the skin), but no mentions of
other cancers. The transformer model is able to process this phrase in it’s entirety, taking
into account the fact that "carcinoom" and "huid" are part of the same phrase. The tree-
based classifiers however, use 1-gram BoW vectorization, and consider the words in the
phrase as completely independent input features. It is therefore plausible that tree-based
models are more likely to erroneously label the document under Malignancy, except skin
neoplasms.

6.4.2 Note structure analysis

Based on conversations with medical experts at ZGT, we can anecdotally confirm that the
results in table 6.7 is as expected based on the reporting practice for ED intake notes at
ZGT. The five most common headers — medical history, anamnesis, physical examination,
additional examination, and policy/therapy — are elements that should always be reported
on in ED intake notes. Other sections may be missing from any given report, either because
the relevant information is not yet known or because the information is reported elsewhere.
Examples of information that may not yet be known are medication, which may have to
be obtained from a general practitioner, or an ECG which may not have been taken yet.
Laboratory results and vitals are examples of data recorded elsewhere, as these are regis-
tered in structured form in the EHR thus stating these result in the clinical note is double
reporting. After visual inspection, we believe that the observed lower occurrence rate of
the diagnosis section is due to the diagnosis frequently being merged into policy/therapy,
rather than being given separately.

The observed pattern for feature importance and informative feature counts lines up
with our expectations based on manual inspection of the documents and patterns observed
during the labeling process. The medical history sections in the clinical notes contained
the most relevant terms during the labeling process by a wide margin, and this section
was often stated in the form of a list of stand-alone diagnostic terms or short sentences.
This observation for the medical history agrees with the observed result of a high feature
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importance based on relatively few features in figure 6.2.

The observed distribution for feature importance scores makes it difficult to make any
recommendations as to improving model performance or efficiency based on the document
structure. The medical history is generally structured as a list, a possible approach would
be to evaluate whether the items in this list are relevant comorbidities on a item-by-item
basis. However, we doubt that this would lead to significant performance gains over clas-
sifying the document as a whole especially in the case of the context insensitive, classifiers
such as Random Forests and Gradient Boosting, given that the list items are largely context
free. Also, while the medical history is the most important section by a margin, it con-
tains under 50% of the overall feature weight, and the remaining feature weight is spread
out, making it difficult to trim documents significantly without compromising classifier
performance.
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Chapter 7

Phase 2: Weak Supervision

The second phase of this study is concerned with addressing the issue of low performance
for rare classes. Following the agile methodology this phase consisted of five sprints cov-
ering an exploration of options for addressing the issue, gathering of resources and set-up,
refinement of the chosen approach, and execution. Figure 7.1 shows an overview of the
process, the various design decision made and gives the main rationalization for each de-
sign decision. Section 7.1 briefly covers three approaches that were considered. Section 7.2
covers the general principle and methods of the chosen approach. 7.3 discusses a number
of refinements of the chosen approach, addressing some of the issues mentioned in section
5.5 and resulting in a number of the design decisions in figure 7.1. Finally 7.4 provides an
overview of the fully composed approach.

7.1 Exploration options

Three options for improving performance for rare classes were explored: resampling, data
augmentation using random insertion and weak supervision. We performed performed
some informal, exploratory experiments to assess the viability of these approaches. For
the sake of brevity we will only discuss the conclusions and our ultimate choice of method
rather than giving these experiments a full treatment.

7.1.1 Resampling

Resampling is the practice of changing the number of samples available per class in order
to achieve a better class balance in a training dataset. Common schemes for resampling
include: random under-sampling which excludes a random subset of a majority class from
training, random over-sampling which duplicates random samples from a minority class,
and SMOTE[11], a technique that creates synthetic minority samples.

We investigated the use of random over- and under-sampling to improve classifica-
tion performance for our use case by retraining classifiers after resampling and comparing
performance to model performance in phase 1. It should be noted that the transformer
architecture was not included in this exploration as resampling for a true multi-label clas-
sifier is significantly more complex compared to resampling for the 17 binary architectures
used for Naïve Bayes, Gradient Boosting and Random Forest.

We found that while resampling affected performance, it did not strictly improve it.
Under-sampling resulted in increased recall for several categories at the cost of of a drop
in precision, conversely over-sampling resulted in increased precision for rare categories
at a significant penalty in recall. Given that we err on the side of precision over recall
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Use weak supervision as main approach for improving performance for
rare classes.

• The primary limiting factor for performance is data availability.

• The current number of positive samples for rare classes is too small for effective
re-balancing and augmentation approaches.

Extend dataset with non-hip fracture documents for patients in the same
age cohort.

• No more documents for hip fracture patients were available at ZGT.

• Medical histories for patients in the same cohort with different fractures are
sufficiently similar to provide useful information in training.

Programmatic weak supervision using aggregated terminologies.

• Most comorbidities are indicated in-text a limited set of key terms, which can
likely be found in ontologies / terminologies.

• The Fortin et al.[22] code list insufficiently matches language used in practice.

Disambiguate abbreviations using active labeling and random forests.

• Abbreviations are prone to mislabeling, due to having multiple context-
dependant interpretations.

Explicitly exclude skin cancers.

• Malignancy, except skin neoplasms has a subset excluded from its definition.

• Terms for concepts higher in the SNOMED hierarchy may label more fine-
grained concepts, thus we require an extra check for the fine grained concepts.

Do not perform fuzzy matching or misspelling correction.

• The occurrence rate of misspellings is fairly low.

• Naive fuzzy matching or misspelling correction may introduce new errors.

Augment weak labels with pseudo labels generated by random forest.

• The amount of weakly-labeled data is significantly larger than the amount of
hand-labeled data.

• Poor recall of the label model for a given category will drown out the hand-
labeled positive samples for that class.

Figure 7.1: Design decisions and rationalization.
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in this study we ruled out the use of under-sampling based on these results. We are
also reluctant to rely on over-sampling as our main avenue for addressing class imbalance,
while it increased precision for rare classes the penalty in recall was significant. We also
have significant doubts regarding the generalization of model performance when trained
on over-sampled data based on a very limited amount of positive samples.

7.1.2 Augmentation

Augmentation is the process of increasing the amount and diversity of available training
data by modifying existing samples. We explored a simple augmentation technique based
on random insertion of class-indicative terms: we created new positive samples by randomly
injecting terms indicative of rare classes from the Fortin et al.[22] code list into copies of
existing samples. The classifiers were retrained after extending the training dataset with
the artificial examples and subsequent performance was compared to performance in phase
1. This process was performed for various amounts of artificial examples and imputation
into random samples and exclusively existing positive samples.

While we noted increased recall for vary rare classes, i.e. those with near zero per-
formance in phase 1, performance for other classes was negatively impacted, results were
also inconsistent and very sensitive to the random choices of injected terms. We again
have doubts regarding model generalization when using this technique, as we are implic-
itly performing over-sampling by creating copies of existing samples and as it would require
generating very large amounts of artificial examples to cover the full range of terms that
can be injected.

7.1.3 Weak supervision

Unlike resampling and augmentation, weak supervision could not be evaluated using an
ad-hoc experiment that fit within a sprint. Nonetheless, considering the exploratory re-
sults for resampling and augmentation and taking into account that the primary limiting
factor in phase 1 was availability of samples for rare classes we believe weak supervision
to be the most promising option. As mentioned in section 3.3 a wide range of weak su-
pervision methods exist, given the wealth of existing medical terminologies and ontologies
and inspired by Snorkel[57] and KeyClass[25] we see potential in programmatic labeling
approach that leverages those terminologies.

7.2 General approach and methods

We take a programmatic approach to assigning weak labels, this normally requires subject
matter experts to design labeling heuristics. We attempt to bypass this requirement by
leveraging medical coding- and terminology systems. A natural labeling heuristic would be
to check for the occurrence of terms that correspond to a target class within each document.
For each relevant term t ∈ LC where LC is the constructed lexicon for CCI category C,
a function of the form in listing 7.1 is created, where V OTE indicates a vote for class
C, such a function is called a labeling function. All labeling functions for each class are
then applied to the documents and we assign a document the class label C if a sufficient
number of labeling functions vote for said class. The check as to whether a t occurs in the
document is done by performing a regular expression match.

Snorkel provides a generative label model over the labeling function votes, considering
the true label as a latent variable, this should allow the generation of probabilistic labels
based on the entire set of labeling functions[57][60]. However the open-source version of
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Snorkel does not support multi-label problem out of the box. We experimented with binary
label models for each class, but found that in almost all cases this results in a document
being labeled if any labeling function for a given class votes.

f unc t i on labe l ing_funct ion_t ( document ){
i f ( t in document ) {

re turn VOTE;
} e l s e {

re turn ABSTAIN;
}

}
Listing 7.1: Labeling function prototype.

7.2.1 Dataset

A weakly supervised approach required collection of additional unlabeled samples, this
posed a minor issue as the DATA-HIP set contained all ED intake documents for geri-
atric hip fracture patients that were available at ZGT at the time of this research. As an
alternative we have chosen to include documents for patients with any other type of frac-
ture, subject to the same constraint of patients being aged 70 years and up. The resulting
documents form the DATA-REST dataset. We have limited the additional documents
to traumatic fracture patients under the assumption that doing so should not introduce
significant bias towards any of the comorbidities in the CCI, this is an assumption we
could not make if we had included patients listed under other disciplines such as cardi-
ology or nephrology. We also assume that given the age constraint, medical histories for
all fracture patients should be sufficiently similar for the additional documents to provide
useful information in training, this assumption is supported by the high cosine similarity
found in section 5.3.3. We do realize that hip fracture patients are typically more fragile
than the average patient, therefore we expect somewhat lower incidence of comorbidities
in DATA-REST compared to DATA-HIP.

7.2.2 External Knowledge sources

One may note that the weak labeling approach described at the start of this section is
analogous to the manual labeling process performed for DATA-HIP, as during manual
labeling the documents were matched against the code list created by Fortin et al.[22]
which is ultimately derived from SNOMED-CT. However the Fortin et al. code list is
not exhaustive in terms of synonyms, does not include all descendant elements for every
higher-level SNOMED-CT concept included, and the language in the chosen SNOMED-
CT definitions does not map perfectly onto the language used in clinical practice. During
manual labeling these issues can be easily resolved through human judgement, but this is
not the case in programmatic labeling. In order to alleviate these issues as best possible
it was decided to aggregate multiple external knowledge sources, and extract the relevant
terms from the aggregation, rather than to rely on solely the Fortin et al. code list.

We have chosen to use the December of 2023 International Edition of SNOMED-CT
as a skeleton system onto which other knowledge sources are mapped. SNOMED-CT is
the most comprehensive terminology system available and its polyhierarchical structure
and attribute model offer excellent support for querying and subset definition, making
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it the best choice for a core terminology system. Dutch language terms from the Dutch
SNOMED-CT reference set was available via ZGT systems.

The US National Library of Medicine offer access to a number of medical vocabularies
through the UMLS[64], and where available it also provides mappings onto SNOMED-CT
concepts. From the UMLS a number of Dutch vocabularies were obtained and mapped
onto the SNOMED-CT. Table 7.1 lists the vocabularies that were included.

Table 7.1: List of vocabularies obtained from the UMLS.

UMLS code Vocabulary name
ICD10DUT ICD, 10th revision, Dutch Translation
ICPCDUT International Classification of Primary Care, Dutch Translation
ICPC2EDUT International Classification of Primary Care, 2nd Edition, Dutch Translation
LNC-LN-NL Logical Observation, Identifiers, Names and Codes (LOINC), Dutch
MDRDUT Medical Dictionary for Regulatory Activities (MedDRA), Dutch
MSHDUT Medical Subject Headings (MeSH), Dutch

The mentioned knowledge sources are all freely available either on a UMLS licence1

or a licence with official distributors in SNOMED member countries2 In addition to these
resources a proprietary list of synonyms for common medical terms was supplied by ZGT.
Model performance with the inclusion of the proprietary list in the weak labeling pipeline
is relevant to ZGT as a stakeholder, we realise that this would make our experiments
non-reproducible therefore we will also report results without inclusion of the list3.

7.2.3 Storage and querying

The SNOMED-CT International Edition was loaded into a Neo4j[43] graph database in-
stance. The SNOMED data model is inherently a graph thus this is a natural fit; every
SNOMED concept is represented as a node, labeled according to its SNOMED hierarchy,
and hierarchical (is a) and attribute relationships are the edges between these nodes. Each
node contains an unique SNOMED id and descriptions of the concept as properties. This
makes the process of adding terms from other vocabularies to the graph simple: for each
term for which UMLS provides a mapping to SNOMED, the correct node is identified by
its id and the term is added to the properties of the node.

The aggregated graph model can be queried using the CYPHER query language for
Neo4j. This is equivalent to intensional subset definition using the SNOMED-CT Expres-
sion Constraint Language (ECL), thus for every ECL query, a equivalent Cypher query
can be constructed. As an example, figure 7.2 shows the CYPHER and ECL queries this
study uses for the myocardial infarction CCI category. The list of ECL queries for all 17
categories and a reference to the CYPHER queries can be found in Appendix C, equiva-
lency of the CYPHER and ECL queries was asserted by comparing the number of nodes
returned in Neo4j to the number of concepts returned by the ECL query in the IHTSDO
SNOMED Browser[32].

1Can be obtained from the US National Library of Congress[64].
2In the the Netherlands SNOMED CT is distributed by Nictiz[45].
3See the result for the NO-PROP run in section 7.5.2
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//Find descendants of Myocardial infarctions
MATCH (mi:ClinicalFinding)-[:IS_A*0..]->(:ClinicalFinding {id:22298006})
//Find descendants of Acute ischemic heart disease
MATCH (aihd:ClinicalFinding)-[:IS_A*0..]->(:ClinicalFinding {id:413439005})
WITH collect(mi) + collect(aihd) AS results_list
UNWIND results_list as results
RETURN DISTINCT results;

<<22298006 | Myocardial i n f a r c t i o n ( d i s o rd e r ) |
OR
<<413439005 | Acute i s chemic heart d i s e a s e ( d i s o rd e r ) |

Figure 7.2: CYPHER and equivalent ECL queries for the Myocardial Infarction
class.

7.3 Refinement

As described at the start of this chapter, we iterated on our solution for weak labeling
evaluating and adding a number of refinements. This section covers the elements we
evaluated.

7.3.1 Misspelling correction

The first element we want to mention concerns the problem of misspellings. We experi-
mented with fuzzy matching methods in order to account for potential misspellings in our
dataset, but ultimately decided not to include it in our final approach. This is because
we found that inexact matching introduced more erroneous labels than it fixed. A notable
example of an introduced error concerns the terms neuropathie and nefropathie, the first
is not necessarily relevant to any of our CCI-categories, while the second is part of Renal
disease. Because there is only one letter difference between the two terms, fuzzy match-
ing at the strictest possible setting .allowing for an edit distance of 1. would mislabel all
occurrences of neuropathie as Renal disease.

7.3.2 Filtering Terminology

The class lexicons resulting from our queries on the graph database were rather extensive,
containing several thousands of concept descriptions for some classes. Cross referencing
these thousands of terms with the over 20000 documents in DATA-REST is a compu-
tationally intensive task, which we had to execute multiple times while iterating on this
work. In order to streamline this process we applied a number of filters to the lexicons.

First of all we chose to remove concept description that consisted of more than five
tokens after undergoing the tokenization and stop word removal process that was also
applied to the documents. We believe that we can apply this filter without significant loss
of power for our approach, as the longer descriptions removed by this filter are unlikely to
occur in the concise ED notes, clinicians will likely use a shorted description for the same
concept instead. Secondly we apply a process in which we "fold up" the class lexicons, that
is we remove descriptions which are a superset of another description also present in the
lexicon. For example, the lexicon for the class Myocardial infarction contained the terms
"hartinfarct" and "acuut hartinfarct", we remove the latter because any occurrence of the
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latter term in a document would also be labeled by the former. Finally we observed that
the lexicons of some mutually exclusive classes contained a limited number of identical
descriptions, we resolved this by only keeping these descriptions for the less severe of the
two CCI categories.

7.3.3 Exclusions

Two mechanisms for excluding a term from being labeled under a class lexicon LC can
be identified. The first and rather obvious way is to not include the term in LC to begin
with, we will call this an implicit exclusion. While implicit exclusion is sufficient in most
cases, another mechanism is required when a target class is defined as being some set of
medical concepts minus a narrowly defined subset. In order to clarify this point consider
again the poly-hierarchical structure of SNOMED CT depicted in figure 7.3 and say we
have defined some class to consist of concept C and all its descendant except for concept
H. If we choose to rely only on implicit exclusion, then it has to be taken into account
that terms associated with higher-level in the hierarchy are more general and may also
label concepts lower in the hierarchy, thus we may have to exclude terms associated with
concepts C and E from our lexicon to avoid labeling concept H.

Figure 7.3: Polyhierarchy with defined class (C minus H).

A solution to this issue is to explicitly exclude concept H, meaning that whenever a
document is identified as containing a term belonging to C or its descendants a check is
performed to assert that the term is not a term for H. It should be noted that explicit
exclusion should be used sparely as it slows down labeling by significantly increasing the
number of requited matching operations.

In this study we use explicit exclusion to remove skin cancers form the class malignancy,
except skin neoplasms as generic terms have significant labeling power for this class but
would erroneously label skin cancers, for example: "carcinoma" would label "basal cell
carcinoma".

7.3.4 Negation handling

As was the case during the manual annotation process for DATA-HIP, negated terms
should be ignored by the weak labeling approach. Programmatic labeling, being a rule-
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based approach is insensitive to context cues like negation, therefore we need to manually
correct for negation. We do so by prepending tokens between a negation and the next
punctuation mark with "NOT_" and capitalizing these token, this excludes these tokens
from being labeled by any labeling function. We extend this behaviour to cover the terms
from table 5.1 that indicate a differential diagnosis, an unsure diagnosis or a suspicion, as
was the case for the manual annotation process.

7.3.5 Disambiguation of abbreviations

In table 5.4 we provided a number of examples of abbreviations with multiple interpre-
tations, identified in the DATA-HIP set. These types of abbreviations are also present
in the final lexicons for several CCI categories. This is problematic for the chosen weak
labeling approach as the associated labeling functions do not account for context and thus
will be prone to mislabeling. In order to disambiguate labeling functions for abbreviations,
we add a second stage to the labeling process in which potentially problematic labeling
function are reevaluated based on active input from a user.

We have limited the labeling functions that should be reevaluated to those with a
keyword consisting of four or fewer character that vote for the associated class on more
than 50 documents. These thresholds were chosen such that the most problematic cases
are caught, while the number of labeling functions that need reevaluation is kept limited.
Each labeling function that fits these criteria is replaced through the following process:

Given a labeling function λt for term t belonging to class C, where #votesλt > 50 and
|t| < 5:

1. The set of contexts for t is identified by extracting the sentences containing t from
the documents for which λt votes.

2. N = 20 contexts are sampled randomly.

3. A user is prompted to provide active input as to whether t indicates C in each of the
20 contexts.

4. A small instance of a random forest classifier is fit to the hand labeled examples.

5. λt is replaced with a function that identifies sentences containing t and then performs
inference over the sentence using the random forest classifier.

After all problematic labeling functions have been replaced, the new labeling functions
are applied to all documents. While we realise that a sample size of 20 is very small we are
not too concerned with the classifier over-fitting for the purposes of this study. In most
cases only one interpretation of an abbreviation was present in the dataset, in these cases
the random forest will always provide the correct label. When multiple interpretations
were present in significant proportions, the context were generally distinct, so the classifier
should be suitable. Furthermore we have a preference for precision over recall in the weak
labeling process, in that regard the classifier is very unlikely to perform worse compared
to the stage 1 labeling function.

7.3.6 Pseudo-labeling

While we have tried to improve the recall of the label of the weak labeling pipeline by
including multiple available terminologies, a mismatch between the language used in prac-
tice and the terms obtained from the medical terminologies may still exist. This can be
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due to a variety of factors, such as the use of more informal terms for certain conditions or
because more complex description are broken up or written in some other word order than
the associated term in medical terminologies. We observe the first factor for the Hemiple-
gia / paraplegia category, as common indicative terms for this category include "hemibeeld
l/r" "zwakte l/r" and "hemi l/r", but these terms are absent from all used terminologies.
We observe the second factor very strongly for Diabetes, with chronic complications, as
diabetes and the associated complication are regularly mentioned in different lines in the
clinical documents, and to a lesser degree for Peripheral, vascular disease, Malignancy,
except skin neoplasms and Renal disease.

As our training data consists of significantly more weakly-labeled than hand-labeled
documents, low recall for the weak labels will likely have an impact on model performance.
We address this issue by augmenting the weak labels with pseudo-labels. Pseudo-labels are
generated by inferencing a fully supervised classifier over DATA-REST, and using the
resulting predictions as labels in training. We use the Random Forest classifier trained in
phase 1 for generating pseudo-labels, while performance for this classifier was not perfect
by any stretch, it encodes a substantial amount of information regarding informal en non-
standard terms used for comorbidities in the more common categories, and should be
suitable for augmenting the weak labels. The weak- and pseudo-labels for each document
are merged by taking the logical OR of the two labels.

7.4 Overview of full approach

Figure 7.4 A shows an overview of the full training pipeline including weak supervision
for DATA-REST. As illustrated DATA-HIP, and it’s associated manual labels are used
twice: they are included in training the final classifier, and used to train a supervised
classifier for pseudo-labeling. Labels for DATE-REST are created in two ways: using the
supervised classifier, and based on the class lexicons from SNOMED CT and the UMLS.
These labels are merged and subsequently included in training the final classifier.

Figure 7.4 B zooms in on the weak labeling element of the pipeline, illustrating it
for a single CCI-category, this process is applied independently for all 17 categories. The
labeling functions that simply check for the presence of terminology from class lexicons are
first applied to all unlabeled documents, resulting in a matrix of labeling function votes.
Based on this vote matrix we identify the labeling functions for short labels that label
often. The labeling functions that are flagged based on our chosen thresholds of a term
length under 5 character, and 50 minimum votes are then replaced by a Random Forest
classifier as specified in section 7.3.5. We then determine the new vote matrix which can
be converted to document labels for the given CCI-category. With our chosen thresholds
and requirement for labeling 20 samples, the overall time required for the active input step
when executing this process for all 17 categories is 10-15 minutes.

7.5 Experiments & Results

To validate our proposed weak labeling approach we performed two experiments, first we
compare the performance of weakly supervised classifiers to the performance of the fully
supervised classifiers from chapter 6 and second we assess the impact of design elements
in our weak labeling pipeline on the classifier performance.
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Figure 7.4:
A: Training pipeline for final classifier.

B: Weak labeling pipeline.

7.5.1 Experiment 1: Comparison with full supervision

We re-trained the two best performing classifiers from chapter 6, Random Forests and
MedroBERTa.nl, on the combination of DATA-HIP with manually created labels and
DATA-REST with weak labels generated by the full weak labeling pipeline as described
by section 7.4. As before, the models are validated using a 10-fold validation over DATA-
HIP, thus for each of the ten folds the training data consists of 90% of the documents
in DATA-HIP and all of DATA-REST. We do not perform a nested cross-validation
in this case, as we copy over the found optimal hyperparameters from the experiments in
chapter 6. We believe that it is acceptable to copy the hyperparameters as the problem
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domain, types of documents and model architectures do not change. To allow for the best
possible comparison, the 10-fold split applied to DATA-HIP is identical to the split used
in chapter 6.

Figure 7.5: Performance of fully and weakly supervised random forest and
MedRoBERTa.nl.

Figure 7.5 graphs the per-class f1 score of the weakly- and fully-supervised Random
Forest and MedRoBERTa.nl models. For both architectures, the weakly supervised scheme
outperforms full supervision for CCI categories with occurrence rates below 5%, and minor
increases in average performance can be observed for the more common categories. The
comparative performance of Random Forests and MedRoBERTa.nl under the weakly su-
pervised scheme is similar to what was observed under the supervised scheme: the random
forests have a slight edge in most categories and perform significantly better in the two
rarest categories present.
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Table 7.2 shows the document-level results for the weakly- and fully-supervised Random
Forest and MedRoBERTa.nl models. A notable result here is that while the classification
accuracy rate for Random Forest improved by 4%, we see no significant improvement
for MedRoBERTa.nl, despite the noted increases in f1 score for several categories for
MedRoBERTa.nl, this is also reflected in the mean absolute errors. This may be due to
two factors: first of all improvements in classifying rarer categories are not well reflected in
the overall accuracy rate, precisely because these conditions are rare, and secondly in figure
7.5 we see larger performance gains on common categories for Random Forest compared
to MedRoBERTa.nl. Again we note little difference between the classification accuracy
and the CCI precision, indicating that most correctly predicted CCI scores correspond to
correct predictions for all labels. It can also be observed that for the Random Forest, the
fraction of predicted CCI scores within 1 point of the correct CCI score increased from 0.89
to 0.92, this mirrors the increases observed for categories with a prevalence under 5%, 4
out of 6 of these categories have CCI weights larger than 1 assigned to them, thus wrongly
classifying these categories would affect this metric.

Table 7.2: Full vs. weak supervision: document-level metrics (mean±std over 10
folds)

model CCI MAE Classification accuracy % CCI correct % CCI within 1
RF full supervision 0.44± 0.04 0.71± 0.03 0.72± 0.03 0.89± 0.01

RF weak supervision 0.35± 0.03 0.75± 0.02 0.76± 0.02 0.92± 0.01
TF full supervision 0.46± 0.05 0.71± 0.02 0.72± 0.03 0.89± 0.01

TF weak supervision 0.46± 0.06 0.72± 0.02 0.73± 0.02 0.89± 0.02

7.5.2 Experiment 2: Labeling pipeline ablation testing

Table 7.3: Overview of runs in ablation testing

Run Description
FULL Full pipeline as described by section 7.4.
NO-PROP Proprietary list of synonyms has been excluded;

weak labeling only based on SNOMED-CT and
UMLS.

NO-SUP No supervised labels are used in training; weak
labeling pipeline has been applied to DATA-
HIP. N.B.: pseudo-labeling was not applied to
DATA-HIP as this would amount to data leak-
age given that the pseudo-labeling model was
trained on DATA-HIP

NO-ACTIVE Disambiguation of abbreviations / active input
is excluded.

NO-PSEUDO No augmentation with pseudo-labels; only weak
labels are used for DATA-REST.

We further evaluate our approach through "leave-one-out" ablation testing, that is, we
train a classifier multiple times, excluding one component from the labeling and training
approach each time. This process should help to understand the importance and con-
tribution of each tested component to the overall model performance. Table 7.3 lists an
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overview of all training runs performed in this experiment. The ablation tests have been
performed using random forests as a base model, as this was the best performing model
in all previous experiments. As before, a 10-fold validation over DATA-HIP is used for
experimental validation.

Figure 7.6: Ablation testing performance for random forest.

Figure 7.6 shows the per-class f1 score results in the ablation test. It can be observed
that both disambiguation through active input and pseudo-labeling have an impact on
the performance of specific categories. We find that the significant drops in performance
observed in the NO-ACTIVE run correlate with erroneous labeling functions observed
in the active labeling stage, i.e. those labeling functions for which almost none of the 20
prompts constituted real examples of the associated class, therefore this result is as ex-
pected. The results of the NO-PSEUDO run are also as expected, as the most significant
drops in performance line up with the categories for which we observed a mismatch in lan-
guage between terminologies and practice, as described in section 7.3.6. From the results
of the NO-PROP run it can be seen that exclusion of the proprietary list of synonyms
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has little impact on model performance, this is likely because samples the weak label-
ing pipeline would miss after exclusion of this list are accounted for by pseudo-labeling.
Replacement of the supervised labels with weak labels in NO-SUP resulted in minor de-
creases in performance for several classes, mostly lining up with the observed decreases
for NO-PSEUDO. We believe this is a strong indicator that pseudo-labeling based on a
reasonably accurate supervised classifier, and adding supervised data has largely the same
effect. In this instance the label quality of the classes for which we see a decrease in per-
formance has been diluted as DATA-HIP, which accounts for about 13% of data in any
training fold has been neither pseudo-labeled nor hand labeled.

Table 7.4 displays the results at a document level. It can be observed that NO-
ACTIVE and NO-PSEUDO have a significantly lowered classification accuracy rate
compared to the full training pipeline. In fact the achieved accuracy in these experiments
is lower than the accuracy we observed in chapter 6 for all fully supervised models except
Naive Bayes. This result highlights the necessity of the active disambiguation and pseudo-
labeling steps in bridging the language gap between medical terminologies and clinical
practice. Again we note little difference between the classification accuracy and the CCI
precision, though we see a larger discrepancy for NO-ACTIVE.

Table 7.4: Ablation test: document-level metrics (mean±std over 10 folds)

model CCI MAE Classification accuracy % CCI correct % CCI within 1
FULL 0.35± 0.03 0.75± 0.02 0.76± 0.02 0.92± 0.01

NO-PROP 0.35± 0.02 0.75± 0.02 0.76± 0.02 0.91± 0.01
NO-SUP 0.38± 0.03 0.72± 0.02 0.74± 0.02 0.91± 0.01

NO-ACTIVE 0.59± 0.04 0.61± 0.02 0.64± 0.02 0.85± 0.02
NO-PSEUDO 0.46± 0.04 0.69± 0.03 0.70± 0.02 0.89± 0.01
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Chapter 8

Discussion and Reflections

8.1 Model performance

We found that regardless of training approach, the approach using a binary random forest
per class was the most performant, outperforming even modern transformer-based language
models like BERT and RoBERTa. We theorise that the success of the random forest model
is in part due to nature of reporting in emergency department and the structure of the re-
sulting documents. The section of these documents describing patient history contains the
majority of information regarding comorbidities, and is generally structured in the form
of a list in which the individual entries are often context-free. The majority of comorbid
condition are therefore indicated by stand-alone keywords or n-grams in each documents,
which means that there is not much performance to be gained by using a context-sensitive
model such as a transformer. For that reason, we do not believe that more modern, larger,
transformer architectures would lead to significant performance gains either.

The introduced combined weak- and pseudo-labeling approach was effective at gener-
ating additional informative training samples, allowing us to improve classification perfor-
mance for rarer CCI categories considerably while achieving on-par or slightly improved
performance on the categories that were already performant under the fully supervised
scheme. As demonstrated in the ablation testing, the active input component of our weak
labeling approach is effective at mitigating the effects of problematic abbreviation in the
class lexicon, at the cost of a very small time investment to a user. Optionally, this ap-
proach can be made more powerful by broadening the thresholds and criteria for assessment
of a labeling function or increasing the number of labeled samples as desired. The aug-
mentation of our weak labels with pseudo-labels, generated by a classifier trained using a
set of supervised data, allowed us to "fill in" gaps between the language used in medical
terminologies and practice.

8.2 Clinical relevance and applications of our model

Keeping in mind that our purpose in creating a classifier was to allow for the identification
of comorbidities as features for clinical research, as well as to facilitate a more complete
view on patient comorbidity in ZGT information systems such as the EHR, we will now
discuss whether the achieved results are sufficient and relevant for these stated goals.
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We believe that our classifier is suitable for the task of feature extraction for clinical re-
search and predictive modeling. While there is still significant room for improvement over
our best achieved classification rate of 75%, the error in predicted CCI score is typically
small with on average 92% of test cases being within 1 point of the correct CCI score. As
was shown in figure 3.1, 1 point difference in the CCI score can translate to a significant
difference is estimated survival rate, but we have to consider that without a system to
identify comorbidity features, the CCI score for many patients will be missing or set to 0.
In older patient populations with, on average, a larger number of comorbidities, such as
the patient populations treated by the CvGT, setting many such 0 values will very likely
be further from the truth than the CCI score predicted by our system.

We are significantly more cautious regarding the use of our classifier in clinical practice,
and integration into information systems or electronic health records. The achieved 75%
classification rate is likely insufficient for completing structured modalities or generating
problem lists of individual conditions in the EHR, given that the chance of missing con-
ditions, or more problematically assigning incorrect conditions is significant. Using the
classifier in the EHR to provide some overall measure of comorbidity such as the aggre-
gated CCI score or a color-coded warning system for high comorbidity is a more acceptable
implementation.

8.3 Limitations

The presented work and solutions for comorbidity identification are subject to a number
of limitations, arising from the assumptions and design decisions made during the course
of this work. We would like to now discuss the most important of these limitations.

Generalizability of our solution

The main limitation of this work concerns the generalizability of the methods and solutions
in this work. While our solution is theoretically applicable to a broader set of medical doc-
uments, we have restricted the application domain in two ways: firstly by constraining the
patients in our dataset to elderly traumatic fracture patients, and secondly by constraining
the used document types to emergency department intake notes.

The first constraints impacts the distribution of comorbid conditions on our dataset,
which is evident from the complete absence of the HIV/AIDS category in our datasets,
indicating a prevalence much lower than the ±1% prevalence in the general Dutch pop-
ulation[33]. It also impacts the choice of which conditions are considered relevant, the
Charlson index is typically used for general elderly patient populations, other condition
may be relevant in younger population or populations with certain specific index condi-
tions. Note that while this first constraint affects the generalizability of specifically our
final model, we believe that the overall approach does generalize to different patient pop-
ulations, conditions and comorbdidity indices.

The second mentioned constraint is more impactful as to the overall approach. Emer-
gency department notes are short and, as previously mentioned, have a somewhat consis-
tent structure, style and use of language. Document from different disciplines and depart-
ments are likely structured differently, and may give rise to language-related issues that
are not present or not evident in our dataset. Possible issues include: more widespread
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use of informal descriptions, mixed interpretations for an abbreviation in a single docu-
ment, or more complex and contextual sentence structures complicating keyword-based
programmatic labeling.

Limited power of validation for rare classes

The prevalence of the rarest CCI categories in our dataset is such that there are only a
handful of samples available for these classes. This limits the value of our validation for
these categories for a number of reasons. Firstly, our dataset may not cover the full range
of conditions in these categories. Secondly, a very low number of samples means that
validation performance may be impacted significantly by the choice of cross-validation
folds.

Post-hoc creation of queries

Another matter that should be noted is that the queries against the terminologies in the
weak labeling approach were created after the authors had seen all documents in the dataset
during manual annotation. We have attempted to keep the queries as general as possible
by constructing the queries based on the annotation protocol as described in section 5.3.2,
rather than on the observed samples and refraining from in-depth optimization of the weak
labels against the hand created labels. However, we cannot fully guarantee that the queries
have not been influenced by the fact that the authors observed the test samples. Ideally
the proposed weak labeling approach should be evaluated by isolating the two matters, for
example by having one person label test samples while a second person creates the queries
based on a given protocol or a separate set of data.

8.4 Future work

Investigating the generalizability of our approach is in our opinion the main avenue for
future research. Our work was limited to emergency department documents for fracture
patients, we strongly suggest evaluating the approach based on a larger dataset of docu-
ments from different medical disciplines, as the use of a more broader set of documents
may bring to light shortcomings of our approach and favour the use of different parameters
or base models. We also believe that training and evaluating based on a larger dataset
would significantly reduce the observed variability in results for rarer categories.

Application of our approach for a different target variable, for example the Elixhauser
Comorbidity Index, or identification of entirely different clinical concepts, such as medica-
tions or procedures, may also be explored.

Another possibility for future work would be to investigate whether a self-training ap-
proach, in which a classifier is iteratively trained and used for pseudo-labeling, rather than
pseudo-labeling occurring once based on a supervised classifier, could lead to performance
gains.

From an applied point of view, we see opportunities for integrating a model trained
according to our approach into the EHR. We noted in section 8.2 that given our obtained
document-level accuracy it would be prudent to represent comorbidity as an aggregated
score. Given that our choice of model, the random forest, is inherently interpretable, a
score that can be linked to individual conditions mentioned in specific documents may also
be possible. We also believe that an automated version of the introduced weak labeling
pipeline could be useful, either within the context of another research project or as a tool

48



in its own right. We envision a tool with which people unfamiliar with SNOMED CT
and/or query languages can label sets of documents by simply selecting the desired sets of
conditions from a comprehensive menu.
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Chapter 9

Conclusions

The overarching goal of this work was to design a machine learning treatment that could
aid in the extraction of information regarding patient comorbidity from unstructured clin-
ical text in support of clinical research and clinical decision making. Literature shows
that the definition of the term "comorbidity" is complex and highly dependent on medical
perspective and professional interpretation, thus the problem of extracting comorbidities
could be as complex as identifying individual medical conditions in-text. We believe that
shifting the problem from identifying single conditions to identifying broader categories
from established comorbidity indices such as the Charlson Comorbidity Index is a good
compromise, as this significantly reduces the problem dimensionality while maintaining a
strong link with medical practice and research.

In the first part of this work we compared a number of machine learning methods for
classifying clinical notes of geriatric hip fracture patients according to the Charslon Comor-
bidity index in a fully supervised scheme. We found that given sufficient labeled training
data, both tree-based ensemble methods and transformer-based models show promising
performance. We observed f1 scores above 0.8 for our target classes with an occurrence
rate over 5%, but for classes under this threshold performance decreased significantly.
Overall classification accuracy is hampered by the fact that chance for prediction errors
cascades over the 17 categories; all categories need to be prediction correctly for a correct
classification. We found a best classification rate of 71% with the Random Forest model
in this supervised learning scheme. We also explored the inherent structure of the clin-
ical notes and the distribution of features over this structure. While we found that the
documents exhibit a clear structure, and that much of the feature mass was concentrated
in one section of the document, we were not able to incorporate this knowledge into our
classification approach.

In the second part of this work we presented a weak-labeling approach that leverages
existing medical terminologies. We used this approach to generate additional training
data from clinical documents of elderly patients with traumatic fractures other than hip
fracture. Our goal was to attempt to increase classification performance for classes under
the previously mentioned 5% occurrence rate threshold. We found that augmenting our
training data with these weakly supervised samples considerably increases performance for
these rare CCI categories, however care should be taken to bridge the gap in language
between medical terminologies and practice, we achieved this with a pseudo-labeling ap-
proach. Furthermore, issues arising due to the rule-based nature of the labeling approach,
such as mislabeling ambiguous abbreviations, should be addressed. We observed increases
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in the f1 score of 0.05-0.35 for categories under the 5% threshold, as well as minor im-
provements for more common classes. Overall we found a best classification rate of 75%
using the Random Forest model in the weakly supervised learning scheme.

9.1 Research Questions

RQ1 How can we design a machine learning solution for obtaining relevant comorbidities
from clinical notes?
A: When framing the problem as a multi-label classification problem, both tradi-
tional machine learning approaches such as Random Forests and Gradient Boosting
and more modern transformer-based models are very decent solutions, given sufficient
labeled training data. However, due to the inherent imbalance in the prevalence of
medical conditions, hand-labeling documents is prohibitively expensive if one wishes
to gather sufficient positive samples for rarer comorbidities. By pairing these base
classifiers with a weak-supervision scheme based on well-established medical termi-
nologies and ontologies, it is possible to create classifiers that are suitable for and
perform sufficiently well for research and, to a degree, for information management
tasks.

The best performing approach in our study consisted of binary Random Forest classi-
fiers for each category in the CCI, paired with the introduced weak labeling approach
including all introduced refinements: active disambiguation of abbreviations, pseudo-
labels based on a supervised classifier, and explicit exclusion of skin cancers.

(a) Which comorbid conditions are relevant?
A: In general the choice of conditions should be limited to chronic conditions
that significantly impact patient risk or complexity of clinical management. The
exact choice of conditions may vary dependent on the clinical context in which
the solution or model is deployed, as different index conditions will consider
different comorbid conditions relevant. In a general setting or setting with an
index condition with few index-condition specific comorbidities, for example hip
fractures, well established and scientifically validated comorbidity indices such
as the Charlson Comorbidity index or the Elixhouser comorbidity index are
excellent choices.

(b) How can the quasi-structure inherent to the clinical notes be leveraged for im-
proving model performance?
A: While the clinical notes exhibit a clear structure, and much of the important
information is concentrated in one section within that structure, we do not see
clear avenues for using this structure in order to improve performance. One
could imagine a solution in which the various sections are processed differently
according to the patterns observed for these sections, such as the tendency to
a list for the medical history section or the more narrative nature of the anam-
nesis. However, these patterns are not fully consistent, therefore it is dubious
whether such a tailored approach would lead to a significant performance gain,
especially given that application of the existing models to the full documents
without pre-processing involving the note structure was shown to already have
decent performance. Furthermore, the applicability of tailor-made solutions is
limited to the domain or specific document type for which they were designed,
in our case emergency department notes. A solution based on a classifier for
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the document as a whole is more likely to generalize to, for example, notes from
internal medicine. Also, we found that outside the medical history section, fea-
tures are spread throughout the document fairly evenly, thus there is no way of
trimming the documents without information loss.

RQ2 How can we leverage existing medical terminologies and ontologies in labeling suffi-
cient training data?

(a) What are the limitations of using training data labeled using medical termi-
nologies compared to handlabeled data?
A: The main limitations of training data labeled based on terminology sys-
tems arise from the language gap between those systems and the language used
in practice. In practice, clinicians regularly use diagnostic terms and abbre-
viations that can not be found in medical terminology systems. This results
in labeling mechanisms based on terminology systems missing occurrences of
comorbid condition where such "non-standard" language is used by clinicians.
Furthermore, labeling systems based on terminology systems can be prone to
mislabeling if terminology is ambiguous, as was the case for abbreviation in this
study, or when the terms extracted from the terminology system do not match
the intended target diagnosis group well.

(b) How can we mitigate these shortcomings?
A: The language gap between practice and terminology systems can be overcome
by including information derived from some amount of handlabeled data in the
labeling and training process. We achieved this by augmenting the terminology-
based weak labels with pseudo-labels generated by a supervised classifier. Other
option may include the direct inclusion of handlabeled data in training, with
oversampling applied for problematic classes, or maintaining a list of common
"non-standard" terms.

RQ3 How will adopting elements from Agile methodologies impact the research process in
terms of efficiency and effectiveness?
A: See appendix F.
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Appendix A

Identified Headings

Header # occurrences
anamnese 1990
aanvullend onderzoek 1896
lichamelijk onderzoek 1827
diagnose 1827
laboratorium onderzoek 1309
medicatie 1184
beleid/therapie 1070
medische geschiedenis 941
hoofdklacht 932
beleid / therapie 798
vitale functies 653
allergie 432
vervolgbeleid 374
thuismedicatie 255
voorgeschiedenis 211
vg 100
beleid 65
lab 64
reden consult 54
naam behandelaar 51
ecg 42
allergieën 40
radiologie 37

Table A.1: 20 most common headers
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Header English translation
voorgeschiedenis|vg|medische geschiedenis medical history
aanvullend onderzoek additional examination
lichamelijk onderzoek physical examination
anamnese anamnesis
hoofdklacht|reden consult chief complaint
diagnose diagnosis
laboratoriumonderzoek|lab laboratory results
medicatie|thuismedicatie medication
beleid/therapie|beleid / therapie|vervolgbeleid|beleid policy/therapy
vitale functies vitals
allergie|allergieën allergies
ecg ECG (electrocardiogram)
radiologie radiology

Table A.2: Identified headings and translations
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Appendix B

Additional CCI inclusions

B.1 Hemiplegia / Paraplegia

Conditions

• hemi-/paraparese

B.2 Peripheral Vascular Disease

Conditions

• chronische veneuze insufficiëntie

• spataderen / varices

• tromboflebitis

• trombose (peripheral), including:

– dvt

• ulcus criris

Procedures

• fem-pop

• broekprothese

• thoracic endovascular aortic repair (TEVAR)

B.3 Metastatic Solid Tumour

n/a

B.4 Dementia

n/a
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B.5 Renal Disease

Conditions

• nefrotisch syndroom

• schrompelnier

• cystenieren

Procedures

• dialyse

• nefrectomie

B.6 Myocardial Infarction

Conditions

• acuut coronair syndroom (acs)

B.7 Malignancy, Except Skin Neoplasms

Conditions

• myelodysplastisch sydroom, including

– RARS

Procedures

• prostatectomie

B.8 Chronic Pulmonary Disease

Conditions

• longembolieën

• small airway disease

• atelectase

• pleurale afwijkingen door asbestcontact

• respiratoire insufficiëntie

• restrictieve longfunctiestoornissen, including

– longfibroze
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B.9 Mild Liver Disease

Conditions

• hepatomegalie

B.10 AIDS / HIV

n/a

B.11 Congestive Heart Failure

Procedures

• PTCA/PCI

• CABG

B.12 Peptic Ulcer Disease

Conditions

• ulceratieve gastritis

• ulceratieve bulbitis

• cascademaag

• zollinger-ellison syndroom

B.13 Cerebrovascular Disease

Procedures

• carotis- endarteriëctomie (CEA)

B.14 Moderate / Severe Liver Disease

n/a

B.15 Diabetes, With Chronic Complications

n/a

B.16 Diabetes, Without Chronic Complications

n/a
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B.17 Rheumatic Disease

Conditions

• jicht

• pseudojicht

• jeugdreuma

• oligoarthritis

• ziekte van Bechterew
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Appendix C

Terminology Queries

This appendix provides the full SNOMED CT ECL queries for the definitions of the Charl-
son Comorbidity Index categories used in this work. The equivalent Neo4j Cypher queries,
as well as instruction for loading SNOMED CT into Neo4j can be found on the authors
Github page.1

C.1 Hemiplegia / Paraplegia

<<372310001 | Pa r a l y s i s due to l e s i o n o f s p i n a l cord ( d i s o rd e r ) |
OR
<<192970008 | Cauda equina syndrome ( d i s o rd e r ) |
OR
(
<<29426003 | Pa ra l y t i c syndrome ( d i s o rd e r ) | :

( (
[ 0 . . 0 ] 363698007 | Finding s i t e ( a t t r i b u t e ) | =

(
<<49549006 | St ruc ture o f v i s u a l system (body

s t r u c tu r e ) |
OR <<89837001 | Urinary bladder s t r u c tu r e ( body

s t r u c tu r e ) |
OR <<25238003 | Cran ia l nerve s t r u c tu r e ( body

s t r u c tu r e ) |
)

)
AND [ 0 . . 0 ] 371881003 | During ( a t t r i b u t e ) | = 236973005 |

De l ive ry procedure ( procedure ) |
AND [ 0 . . 0 ] 246454002 | Occurrence ( a t t r i b u t e ) | = 255407002

| Neonatal ( q u a l i f i e r va lue ) |
)

)

C.2 Peripheral Vascular Disease

1https://github.com/SylvainBrouwer/neo4j-snomed-cci
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(
<<27550009 | Disorder o f blood v e s s e l ( d i s o rd e r ) |
MINUS
(

(
<<404684003 | C l i n i c a l f i nd i n g ( f i nd i n g ) | :

116676008 | Assoc iated morphology ( a t t r i b u t e ) | =
(
<<12856003 | Uneven venous e c t a s i a (

morphologic abnormal ity ) |
OR
50960005 | Hemorrhage ( morphologic

abnormal ity ) |
)

)
OR
(
<<404684003 | C l i n i c a l f i nd i n g ( f i nd i n g ) | :

363698007 | Finding s i t e ( a t t r i b u t e ) | =
(
<<299717005 | St ruc ture o f c a r o t i d and/ or

c e r e b r a l and/ or subc lav ian a r t e ry (
body s t r u c tu r e ) |

OR
<<281232002 | Vascular s t r u c tu r e o f head

and/or neck ( body s t r u c tu r e ) |
OR
<<846601002 | St ruc ture o f blood v e s s e l o f

t ho r a c i c c ros s−s e c t i o n a l segment o f
trunk ( body s t r u c tu r e ) |

OR
15825003 | Aort i c s t r u c tu r e ( body

s t r u c tu r e ) |
)

)
)
)
OR
<<63491006 | In t e rm i t t en t c l a ud i c a t i o n ( f i nd i n g ) |
OR
(
(
<<71388002 | Procedure ( procedure ) | :

{
405813007 | Procedure s i t e − Direc t ( a t t r i b u t e ) | =

(
(
<<306954006 | Regional blood v e s s e l s t r u c tu r e (

body s t r u c tu r e ) |
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OR
<<51833009 | Pe r iphe ra l va s cu l a r system s t ru c tu r e

( body s t r u c tu r e ) |
)
MINUS
(
<<299717005 | St ruc ture o f c a r o t i d and/ or c e r e b r a l

and/ or subc lav ian a r t e ry ( body s t r u c tu r e ) |
OR
<<281232002 | Vascular s t r u c tu r e o f head and/or

neck ( body s t r u c tu r e ) |
OR
<<846601002 | St ruc ture o f blood v e s s e l o f

t ho r a c i c c ros s−s e c t i o n a l segment o f trunk (
body s t r u c tu r e ) |

OR
15825003 | Aort i c s t r u c tu r e ( body s t r u c tu r e ) |
)
) ,

260686004 | Method ( a t t r i b u t e ) | =
<<257903006 | Repair − ac t i on ( q u a l i f i e r va lue ) |

}
)
MINUS
(
<<71388002 | Procedure ( procedure ) | :

405813007 | Procedure s i t e − Direc t ( a t t r i b u t e ) | =
(
<<299717005 | St ruc ture o f c a r o t i d and/ or c e r e b r a l

and/ or subc lav ian a r t e ry ( body s t r u c tu r e ) |
OR
<<281232002 | Vascular s t r u c tu r e o f head and/or

neck ( body s t r u c tu r e ) |
OR
<<846601002 | St ruc ture o f blood v e s s e l o f

t ho r a c i c c ros s−s e c t i o n a l segment o f trunk (
body s t r u c tu r e ) |

OR
15825003 | Aort i c s t r u c tu r e ( body s t r u c tu r e ) |
)

)
)
OR
5431005 | Percutaneous t rans lumina l ang i op l a s ty ( procedure ) |

C.3 Metastatic Solid Tumour

<<14799000 | Neoplasm , metas ta t i c ( morphologic abnormal ity ) |
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OR
(
<<404684003 | C l i n i c a l f i nd i n g ( f i nd i n g ) | :

116676008 | Assoc iated morphology ( a t t r i b u t e ) | =
<<14799000 | Neoplasm , metas ta t i c ( morphologic abnormal ity

) |
)

C.4 Dementia

<< 52448006 | Dementia ( d i s o rd e r ) |

C.5 Renal Disease

(
<<90708001 | Kidney d i s e a s e ( d i s o rd e r ) |
MINUS
<<79131000119100 | Kidney l e s i o n ( d i s o rd e r ) |
)
OR
(
<<71388002 | Procedure ( procedure ) | :

363702006 | Has f ocus ( a t t r i b u t e ) | =
<<90708001 | Kidney d i s e a s e ( d i s o rd e r ) |

)
OR
<<175905003 | Total nephrectomy ( procedure ) |

C.6 Myocardial Infarction

<<22298006 | Myocardial i n f a r c t i o n ( d i s o rd e r ) |
OR
<<413439005 | Acute i s chemic heart d i s e a s e ( d i s o rd e r ) |

C.7 Malignancy, Except Skin Neoplasms

<<363346000 | Malignant n e op l a s t i c d i s e a s e ( d i s o rd e r ) | :
(
[ 0 . . 0 ] 363698007 | Finding s i t e ( a t t r i b u t e ) | =

<<39937001 | Skin s t r u c tu r e ( body s t r u c tu r e ) |
AND
[ 0 . . 0 ] 116676008 | Assoc iated morphology ( a t t r i b u t e ) | =

<<14799000 | Neoplasm , metas ta t i c ( morphologic abnormal ity
) |

)
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C.8 Chronic Pulmonary Disease

<<17097001 | Chronic d i s e a s e o f r e s p i r a t o r y system |
OR
<<24417004 | Environmental lung d i s e a s e ( d i s o rd e r ) |
OR
<<59282003 | Pulmonary embolism ( d i s o rd e r ) |
OR
<<195967001 | Asthma ( d i s o rd e r ) |

C.9 Mild Liver Disease

(
<<235856003 | Disorder o f l i v e r ( d i s o rd e r ) |
OR
<<13920009 | Hepatic encephalopathy ( d i s o rd e r ) |
OR
<<75183008 | Abnormal l i v e r func t i on ( f i nd i n g ) |
OR
82403002 | Cho l ang i t i s ( d i s o rd e r ) |
)
MINUS
(
<<59927004 | Hepatic f a i l u r e ( d i s o rd e r ) |
OR
<<93870000 | Malignant neoplasm o f l i v e r ( d i s o rd e r ) |
)

C.10 AIDS / HIV

<<19030005 |Human immunodef ic iency v i r u s ( organism ) |
OR
(
<<404684003 | C l i n i c a l f i nd i n g ( f i nd i n g ) | :

246075003 | Causat ive agent ( a t t r i b u t e ) | =
<<19030005 |Human immunodef ic iency v i r u s ( organism ) |

)

C.11 Congestive Heart failure

<<84114007 | Heart f a i l u r e ( d i s o rd e r ) |
OR
(
<<71388002 | Procedure ( procedure ) | :

405813007 | Procedure s i t e − Direc t ( a t t r i b u t e ) | =
<<41801008 | Coronary a r t e ry s t r u c tu r e ( body s t r u c tu r e ) | ,
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260686004 | Method ( a t t r i b u t e ) | =
<<257903006 | Repair − ac t i on ( q u a l i f i e r va lue ) |

)

C.12 Peptic Ulcer Disease

<<13200003 | Pept ic u l c e r ( d i s o rd e r ) |
OR
54051005 | Cascade stomach ( d i s o rd e r ) |

C.13 Cerebrovascular Disease

<<62914000 | Cerebrovascu lar d i s e a s e ( d i s o rd e r ) |
OR
(
<<404684003 | C l i n i c a l f i nd i n g ( f i nd i n g ) | :

255234002 | After ( a t t r i b u t e ) | =
<<62914000 | Cerebrovascu lar d i s e a s e ( d i s o rd e r ) |

)
OR
(
<<404684003 | C l i n i c a l f i nd i n g ( f i nd i n g ) | :

42752001 | Due to ( a t t r i b u t e ) | =
<<62914000 | Cerebrovascu lar d i s e a s e ( d i s o rd e r ) |

)
OR
<<1386000 | I n t r a c r a n i a l hemorrhage ( d i s o rd e r ) |
OR
<<66951008 | Carot id endarterectomy ( procedure ) |

C.14 Moderate / Severe Liver Disease

<<59927004 | Hepatic f a i l u r e ( d i s o rd e r ) |
OR
<<34742003 | Porta l hypertens ion ( d i s o rd e r ) |
OR
<<91109007 | Gast r i c v a r i c e s ( d i s o rd e r ) |
OR
<<28670008 | Esophageal v a r i c e s ( d i s o rd e r ) |

C.15 Diabetes, With Chronic Complications

<<404684003 | C l i n i c a l f i nd i n g ( f i nd i n g ) | :
42752001 | Due to ( a t t r i b u t e ) | =
<<73211009 | Diabetes me l l i t u s ( d i s o rd e r ) |
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C.16 Diabetes, Without Chronic Complications

<<73211009 | Diabetes me l l i t u s ( d i s o rd e r ) |

C.17 Rheumatic Disease

(
<<85828009 | Autoimmune d i s e a s e ( d i s o rd e r ) | :

363698007 | Finding s i t e ( a t t r i b u t e ) | =
21793004 | Connective t i s s u e s t r u c tu r e ( body

s t r u c tu r e ) |
)
OR
(
<<404684003 | C l i n i c a l f i nd i n g ( f i nd i n g ) | :

42752001 | Due to ( a t t r i b u t e ) | =
55464009 | Systemic lupus erythematosus ( d i s o rd e r )

|
)
OR
<<3723001 | A r t h r i t i s ( d i s o rd e r ) |
OR
<<400130008 | Temporal a r t e r i t i s ( d i s o rd e r ) |
OR
<<52661003 | Extra−a r t i c u l a r rheumatoid proce s s ( d i s o rd e r ) |
OR
<<396230008 | Dermatomyosit is ( d i s o rd e r ) |
OR
<<31384009 | Po lymyos i t i s ( d i s o rd e r ) |
OR
<<65323003 | Polymyalgia rheumatica ( d i s o rd e r ) |
OR
<<276657008 | Overlap syndrome ( d i s o rd e r ) |
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Appendix D

Comparison of Transformer Variants

We compared the performance of five BERT and RoBERTa variants in a fully supervised
setting. The chosen variants are:

• MedRoBERa.nl[69]

• BERTje[72]

• RobBERT[15]

• ClinicalBERT[1]

• Multilingual BERT[16]

Figure D.1 shows the average per-class f1 scores for the tested models.

Figure D.1: BERT/RoBERTa variants
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Appendix E

Label model performance

Table E.1: Performance metrics for weak labeling stage as a rule-based model.

Category Occurrence rate Precision Recall
Cerebrovascular disease 0.188 0.92 0.85
Dementia 0.170 0.97 0.82
Congestive heart failure 0.153 0.94 0.88
Malignancy, except skin neoplasms 0.146 0.92 0.75
Diabetes, without chronic complications 0.147 0.79 0.93
Chronic pulmonary disease 0.136 0.84 0.88
Peripheral vascular disease 0.121 0.83 0.64
Renal disease 0.089 0.84 0.61
Rheumatic disease 0.086 0.82 0.79
Myocardial infarction 0.078 0.93 0.78
Diabetes, with chronic complications 0.047 0.88 0.29
Hemiplegia / paraplegia 0.024 0.81 0.31
Metastatic solid tumor 0.020 0.92 0.89
Peptic ulcer disease 0.020 1.0 0.64
Mild liver disease 0.009 0.69 0.67
Moderate / severe liver disease 0.003 1.0 0.70
AIDS / HIV 0.000 - -
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Appendix F

Agile: In depth treatment and
conclusions

F.1 Introduction

At the start of this thesis project, Ziekenhuisgroep Twente (ZGT) outlined a singular goal,
namely to work towards a solution for extracting comorbidities from clinical documenta-
tions. The desire for such a solution was driven by practical needs: the need for comorbidi-
ties as inputs for further clinical research, and the augmentation of structured information
in ZGTs electronic health record. While some details, such as the dataset to be used, were
implicit from the project context, i.e. the ongoing work regarding post-operative mortality
prediction for elderly hip fracture patients, the start of this project was mostly a blank
sheet; very few requirements for the solution were laid out, ZGT did not pose any prior
research questions on the topic, and there was no inkling as to what a suitable solution
could look like. As a result this project was mostly design-focused, contained a significant
exploratory aspect. This is not necessarily problematic for scientific research, but we found
that it complicates organizational aspects and management of research. We initially found
it difficult to define focused research questions, we had no idea of what problems we would
encounter, and thus could not clearly outline any future steps, experiments, or necessary
elements for a solution. This made following a traditional approach traditional approach
to structuring a research project rather difficult.

In an attempt to overcome the mentioned difficulties and to facilitate the exploratory
nature thesis project, we experimented with an iterative research approach inspired by
Agile practices from the software development industry. We used the this project on
comorbidity identification as a case study for trying out the approach. This appendix lays
out our motivation for borrowing from agile practices, our approach and our reflections.
In this case study we ask the following research question:

RQ1 How will adopting elements from Agile methodologies impact the research process in
terms of effectiveness and efficiency?

F.2 Background

F.2.1 The Iron Triangle and Scope

A core concept in project management is that of the Iron Triangle, or Triple Constraint,
as shown in Figure F.1. The central idea behind this concept is that project delivery

75



and quality is mainly constrained by three factors: scope, resources and time; these three
constraints are intertwined - changing one of the constraints affects the others [67]. For
example: bringing a project deadline forward and thus reducing the time constraint re-
quires that the scope of the project is reduced, that more resources are allocated (human,
financial, equipment), or both in order to maintain project quality.

Figure F.1: The Iron Triangle

In a given project, these constraints can be either fixed or have some degree of flexibil-
ity. It is common for one of the three constraints to be fixed, in that case this constraint is
the driver constraint of the project. A driver time constraint manifests itself as a short in-
flexible deadline, a driver resource constraint as a tight budget. Good examples of projects
with scope as a primary driver are construction projects like building a bridge or a road,
as these have rigid pre-defined requirements. In some cases two constraints may be fixed,
a small-scale example of this is student projects within the context of a course, these
often have a fixed deadline and limited human, financial and equipment resources, thus
care needs to be taken in managing the only flexible variable — scope — such that the
project can be completed. Attempting to fix all three requirements of a project up-front
is generally ill-advised, unless the set scope is very limited or the fixed resources and time
substantial.

Traditionally, research projects have a large focus on pre defining the scope of the re-
search, this is intimately tied to the process of defining research questions, which is vital
step in the research process [21][55]. Well-defined research questions frame the project and
inform the methodology and research design. Note that even when research scope is pre-
defined in this manner it is not necessarily fully fixed, in more complex real-world projects
a set of research questions may be altered during the process based on initial experimental
results and insights. Naturally real-world research project may also deal with fixed time
and resource constraints, in these cases one can define a desired scope and simply "see what
gets done". Alternatively one can choose an approach where a minimal scope is defined
and expanded continually.

The proposed project on extracting comorbidities is in fact fixed in time and resources.
As the desired output of the project is not just the answer to a research question, but
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a artifact or model that can extract comorbidities from clinical notes, framing this as
a project with a pre-defined desired scope requires us to design an "ultimate" solution
beforehand. This is not possible as unforeseen issues related to the problem at hand may
arise during the research process, and new insights into designing a better solution may
be gained. We thus feel the best way of approaching this project is with a continually
expanding scope. In short, one can say that this project is variable in scope, and fixed in
resources and time.

F.2.2 Research Design

Traditional research design aligns closely with the practice of pre-defining scope through
research questions that was mentioned in section F.2.1; research is often designed in a
top-down, waterfall like manner: based on a problem or knowledge gap, research questions
are defined, these then inform a methodology which is implemented by a (set of) exper-
iments. The entire research life-cycle can be imagined as a V-model, as shown in Figure
F.2: experimental results are discussed and linked back to the methodology to discuss
potential limitations, conclusions relating to the research question are then drawn, and
these conclusion together form a contributions to the problem domain [19][63]. Note that
the V-model constitutes a single pass through the scientific method for a set of clearly
defined research questions. As mentioned in section F.2.1, in real-world research projects
the set of research questions may evolve during the execution of the project, however for
each individual research question the V-model still applies, we can thus imaging such a
project consisting of multiple sequential or staggered V-models.

Figure F.2: V-model for question-based research, adapted from [7].

F.2.3 Why Choose an Agile Methodology?

A methodology based on Agile principles was chosen because we see parallels between the
dichotomy of top-down and iterative research design, as mentioned in section F.2.2, and
the evolution of software design methodologies. The early days of the software industry
was dominated by a waterfall model, the assumption was that strict software requirements
could be scoped during contract negotiation with clients, and based on these requirements
project cost and schedule could be estimated. This assumption was flawed when it came
to software development, as requirements could be misunderstood or change with time,
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thus leading to significant percentages of projects failing [35]. Agile is a set of method-
ologies that were created as reaction to the failings of the waterfall model, the overarch-
ing beliefs of these methodologies were defined in the Agile Manifesto in 2001 [5]. Agile
shifts the focus from plan- and process-driven development to responsive, collaborative
and teamwork-driven development. By working in short time-boxed iterations Agile flips
the triple constraint compared to the waterfall model: as illustrated in Figure F.3 scope
is now the estimated variable within a fixed-time and fixed-resource iteration, one is able
to estimate score for individual iterations, and adapt the scope of the entire project based
on the results achieved within an iteration[35].

We propose that given the variable-scope nature of the thesis project, Agile practices
will offer a better approach to executing this project as compared to a traditional waterfall
interpretation of the scientific method.

Figure F.3: Triple constraint: Waterfall vs. Agile [35]

F.3 Literature

F.3.1 Design science research

In his work Design Science Methodology [74], prof. R.J, Wieringa extensively discusses the
notion of design-focused or design science research, describing it as projects in where "the
object of study is an artifact in context, and its two major activities are designing and
investigating this artifact in context". Wieringa also notes that in design science research,
there are two types of research problems: design problems, the requirement for some so-
lution in the real world, and knowledge questions, which aim to bridge some knowledge
gap. While these concepts are closely knit, as attempting to solve a design problem may
create new knowledge questions and vice versa, Wieringa notes that they require fundamen-
tally different approaches. Design problems are solved through an "engineering cycle" of
investigation, design, validation and implementation steps, while knowledge questions are
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approached analytically or based on experimental validation. The overall process for design
science research is therefore an iteration over design problems and knowledge questions,
where the various iterations of the design problem and answers to knowledge questions are
stepping stones towards a ultimate "treatment" for the problem at hand.

When we evaluate the project in this case study through the lens of design science
research, we can see that we were initially presented with a design problem - design a system
for extracting comorbidities from clinical documents - but no knowledge questions. This
may explain why we initially found it difficult to define research questions and experiments,
as these are scientific tools more suited to answering empirical knowledge questions. While
Wieringa does not prescribe a specific execution process for the engineering cycle, he does
mention that the process is inherently iterative, and that a waterfall-approach is only
suitable if it is known in advance that only a single iteration will be performed. We believe
this supports our choice for an alternative, iterative approach to the project in this case
study.

F.3.2 Application of Agile in research

In the two decades since the formulation of the Agile Manifesto, Agile practices have found
adoption in projects outside software development [13]. However literature on the adop-
tion of Agile practices in a research context is rather sparse. We do find some adoption
in research which has a core software development aspect or as a part of an informatics
program [31][54][39], though we also see some adoption in a multidisciplinary and broader
research context[40][30][29]. Another identified use-case is student management and super-
vision [28][24]. A consistent thread throughout adaptation of Agile in a research context
is a strong focus on the social and teamwork aspect of Agile rather than on incremental
delivery and responsiveness. Improvements in communication and interpersonal dynamics
is often reported, as well as improvements in workflow and productivity. The lack of focus
on incremental methodology often comes with a loose adherence to some agile practices,
ceremonies like regular Scrum meetings, retrospectives and reviews are common however
aspects like backlog management and careful iteration planning are not as common.

F.4 Methodology: Research Process for this Project

As we noted at the end of section F.2.2, we believe this project would benefit from an
incremental approach built upon an expanding scope and frequent feedback. We believe
that Agile, a set of practices form software development is a good fit for this project. This
section discusses which Agile concepts and practices we plan on using, as well as how we
conceptualize these in the context of this project, at the end of this section a short overview
of the intended research process is given.

F.4.1 Sprint

The sprint is the core component of Agile, it is a time-boxed, self-contained iteration in
which a development teams aims to achieve a specific, limited set of goals. The overarching
idea is that at the end of each iteration a self contained increment of the project should
be completed. At the end of a sprint the output product is reviewed (Sprint Review),
subsequently the sprint process is reviewed as well (Sprint Retrospective). We aim to
adhere to this definition of a sprint fairly strictly, and propose structuring sprints in the
following manner:
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• Sprints consist of a are a three week time-box.

• Once a week an in-person status-meeting with a supervisor will take place. If deemed
necessary intermediate status meetings can be performed digitally (e-mail).

• Given the 1-person size of the "development team", as well as limited number of
stakeholders we propose merging sprint review, retrospective and planning into a
single meeting.

F.4.2 Research Questions as Features

Software features are services or behaviour provided by a system to meet a stakeholder need,
typically this is higher-level or more abstract system behaviour. Any software system can
be described in terms of its set of features, therefore they serve as excellent milestones for
Agile development teams to work towards and are the main deliverables in Agile release
planning. Agile teams are often feature-oriented, as features represent a vertical slice of a
full software solution this means that teams are responsible for the entire technology stack
in delivering their feature.[35]

We think that in a research setting, research questions are the correct analogue for
features under development. As with describing software by its features we can describe
any piece of completed research by a set of research questions with associated answers and
evidence. Furthermore, a research question with answer and evidence is a vertical slice of
a full research product as while there may be some overlapping steps in answering multiple
research questions, a single research question can stand on its own.

F.4.3 Stories

In Agile development system features are subdivided into smaller elements of functionality,
these elements are called user stories. Small features may consist of a single user story,
but they are often composed of multiple. These user stories are the main artifact used for
identifying system behaviour and value for stakeholders; the finer-grained nature of user
stories compared to features allows for discussion about requirements between developers
and customers. Still, a user story should not prescribe requirements for system behaviour,
it serves as a placeholder for these requirements and finer details to be discussed and de-
veloped. Usually a user story is stated in the form:

As a [role], I can [activity], so that [value].[35]

Unlike software development research is not generally done with a "user" perspective
in mind, therefore we will simply refer to the user story analogue in research as a story.
For the same reason we find the [role] aspect of the user story statement not to be very
important in research, however we think that the statement of intent in the sentence is
important, as it requires the researcher to assign a purpose to any action they perform. We
thus propose that any activities that are performed are first formulated in the following
story form:

[research activity], so that [value].

Here the [research activity] can be any research task: literature review of a particular
topic, implementing an additional method or experiment, labeling a dataset etc.. The
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[value] would be any contribution towards answering a research question or delivering a
complete research product, for example: theoretically supporting a method used, or ob-
taining results relevant to answering (part of) a research question.

The INVEST acronym is often used to describe the citeria for a good user story, which
are as follows: [73]

• Independent - The story should be able to be completed on its own and deliver value
independent from other stories. It should be kept in mind that the independent
user story is an ideal and that it is nearly impossible to remove all dependencies; in
software development some functionality may be built on top of other functionality
and in research a next step may be conditional on the outcome of an experiment.
Still, dependencies should be kept to a minimum, and if any do exist they should be
sequential and the order op execution should be obvious.

• Negotiable - As previously mentioned a stories should not be prescriptive; details re-
garding methods, tools and implementations should be negotiated with supervisors
and any other members of the research team. This criterion is natural to a collabo-
rative research setting, but in order to maintain flexibility in regard to the research
direction care should still be taken not to detail too much in advance. Ideally story
detail should be worked out in a just-in-time manner.

• Valuable - In software development this criterion is tied to the user story statement,
it reinforces the fact that a story should deliver some concrete business value to a
project stakeholder, the [role] in the user story statement, by delivering (part of) a
feature. It may seem that this criterion needs to be redefined for research as the [role]
aspect of user stories has been eliminated, however given that we’ve framed research
questions as features the original definition still holds. We consider a story to be
valuable if it contributes towards answering a research question, either by having an
output that offers insight or by facilitating the research process. The argument for
allowing facilitating stories is that Agile in software development allows for analogous
"Technical User Stories" which do not contribute towards functionality, but improve
the development process or some nonfunctional requirement, examples of this are
major code refactors and component upgrades.

• Estimable - A research team should be able to estimate the complexity and work
required for completion of a story.

• Small - The story should be able to be completed within an iteration.
• Testable - In software development this criterion refers to the fact that all created

software artifacts should be tested by comprehensive unit and feature tests. Code
is not considered completed if it hasn’t been tested, and stories that cannot be
tested are consider ill-defined. In research one may deal with stories that don’t
describe functionality, for example stories relating to literature research. In order to
accomodate these types of stories we suggest broadening this criterion to Evaluable.
All stories need a concrete output that can be evaluated in some fashion: for example,
a literature research story has a paragraph or chapter of writing as an output which
can be evaluated with regard to its quality and relevance, and an experiment has
results and an associated discussion as an output which can again be evaluated.

Examples of user stories:
• Implement classifier X, so that comparative performance with our baseline can be

obtained.
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• Research label embedding techniques, so that we know whether it can be incorpo-
rated in classifier X.

• Re-evaluate performance of classifier X with section type Y removed from dataset,
so that influence of section type Y on performance can be evaluated.

F.4.4 Backlog

We propose using a backlog in a standard Agile manner, this means that two separate
backlogs are maintained: a product backlog containing all defined stories in a prioritized
manner and sprint backlog serving as a "to-do" list for the current sprint. Sprint backlog
stories are pulled from the product backlog and further elaborated during sprint planning.
An elaborated story includes descriptions of tasks that need to be completed

F.4.5 Definition of done

The definition of done is a list of criteria a story must adhere to in order to be considered
"done". Considering that most research tasks are already fairly atomic, e.g. reporting on
an research experiment would never be considered "done" without a discussion we propose
defining done as follows:

Definition of Done:
• Defined story tasks completed.
• Story acceptance criteria met.
• Story output documented.
• Relevant writing integrated in an evolving draft.
• Documentation properly referenced.
• Documentation quality reviewed.

F.4.6 Acceptance criteria

In addition to the definition of done per-story acceptance criteria may be defined. Where
the definition of done relates mostly to steps in the research process, the acceptance criteria
define implementation-specific criteria stories need to adhere to in order to be considered
done.

Example Acceptance Criteria:
For Story: Re-evaluate performance of classifier X with section type Y removed from
dataset, so that influence of section type Y on performance can be evaluated.

• From the dataset D, the subset Ddel ∈ D of notes which contain a section Y has
been identified.

• The performance of classifier X over D and Ddel, before and after deletion of Y, has
been determined.

• Performance change over each comorbidity class, after deletion of Y of had been
computed.

Kanban and Limiting WIP

We will adopt the use of a Kanban board and limit concurrent WIP in order to maintain
focus and workflow during a sprint.
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F.4.7 Overview of Sprint Process

Figure F.4 shows an overview of the entire sprint process as performed in this project.
An overall product backlog with relevant research stories is kept. Grooming the backlog,
meaning prioritizing stories and deleting stories that are no longer relevant, is often done
at a distinct event, however this is not strictly Agile practice. In this project it is expected
that the product backlog will stay modest in size, thus it is more appropriate to maintain
it in an ad-hoc manner, rather than scheduling a meeting. The only constraint to backlog
grooming in this project is that it has to be done before sprint planning.

Sprint planning then takes place, during which stories relevant to the sprint goal are
pulled from the product backlog. Some refinement of these stories may already take place
during this stage, where stories are broken down into tasks and acceptance criteria are
defined. However the more intricate details of story implementation are refined in a just-
in-time manner during the sprint.

Once the stories have been executed they are documented in accordance with the defi-
nition of done. At the end of a sprint, stories from the sprint backlog are evaluated based
on the definition of done and specified acceptance criteria. The current research increment
is evaluated with regard to quality and performance on the classification task. Results of
these evaluations are used to generate ideas for improvement of the current product, which
can be used to create new stories.

Reflection on the research process during the previous sprint also takes place at the
end of each sprint. Based on this reflection, changes to the process as described here may
be made if deemed necessary.

Figure F.4: Sprint Process
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F.4.8 Agile Core Principles

Along with the Agile manifesto, twelve core Agile principles were defined, these principles
form the base on which all Agile frameworks (XP, Scrum, etc.) are built [5]. The twelve
original principles are geared towards software development but we can adapt them to fit
research projects, we will attempt to adhere to these as best possible:1

1. Our highest priority is to satisfy the customer through early and contin-
uous delivery of valuable software.
This principle remains the same, but research is the product and the customer is
the party for which the research is performed. This customer party may for exam-
ple be an examination board, supervisor, journal editor, research chair, third-party
company or the researchers themselves.

2. Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.
Welcome changes in direction, based on critique and critical review, even later into
the research process. This may improve the final product.

3. Working software is the primary measure of progress.
Evolving drafts are the primary measure of progress.

4. Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.
Deliver "publishable" drafts, associated deliverables regularly, where the work is
considered publishable in quality but not necessarily in scope, i.e. features can be
missing but not incomplete. Associated deliverables may include data, code and
documentation.

5. Business people and developers must work together daily throughout the
project.
Work closely with other disciplines, advisors and domain experts. Don’t be afraid to
ask questions.

6. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.
This principle remains the same for team-based research activities.

7. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.
Remains the same, where "development team" is the team of researchers including
advisors and supervisors .

8. Agile processes promote sustainable development. The sponsors, devel-
opers, and users should be able to maintain a constant pace indefinitely.
Maintain pace through sustainable research and use some system (e.g. Kanban) to
manage and track WIP. Finish tasks and avoid "research debt", i.e. increased future
workload due to active tasks not being handled appropriately, where possible.

9. Continuous attention to technical excellence and good design enhances
agility.

1Based on the adaptations from [27]
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This principle remains the same: think of excellence in experimental setup, reprod-
ucability, code quality and writing quality.

10. Simplicity–the art of maximizing the amount of work not done–is essential.
This principle remains largely the same: focus on the research goal, don’t over-
complicate.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.
Discuss methods and methodology frequently. An "ideal" approach can not be pre-
scribed, thus pivots may be necessary.

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.
This principle remains the same: reflect on the research process as much as you do
on the research results, tune the approach to streamline the process.

F.4.9 Validation of Agile methodology

In order to validate the proposed Agile methodology, the project on extracting comorbidi-
ties will be used as a case study. While the scope of this evaluation will be somewhat
limited, given the time frame of the project and the low number of people involved it will
allow for valuable initial insights to be gained into if the proposed methodology is suitable
to the class of research and will lead to a more efficient and effective research process. The
evaluation will be based on personal experience of the student and involved supervisor as
well as on a qualitative evaluation of the retrospective project timeline. This requires a
comprehensive overview of sprint plannings, meeting notes and log entries regarding prob-
lems encountered to be kept, wherein care should be taken to also include the feedback
and rationale supporting decisions on either the research direction or process. Artifacts
that are to be collected thus include:

Sprint Planning: An overview of refined stories that are to be completed in the given
sprint, clarifications on the constraints and assumptions for these stories, and any addi-
tional acceptance criteria that need to be adopted in addition to the definition of done as
given in section F.4.5. If any changes in research direction were made based on feedback
or problems previously encountered then these changes and argumentation will also be
provided.

Sprint Review: Overview of stories completed during the sprint, if planned stories were
not completed a reason should be given. Feedback regarding the current state of the
project and intermediate results and relevant updates to the product backlog, for example
new stories or a re-prioritization should be included.

Sprint Retrospective: Include a short summary of the research process during the last
sprint: What went well? What did not go well? What action can be taken to improve the
process for subsequent sprints? Are any changes to the framework necessary?

Log: Any additional issues that arise and research or design decisions that are made
during a sprint need to be logged so that they can be taken into account in the review,
retrospective and Agile validation.
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Collecting this information with the appropriate amount of detail will add some ad-
ministrative overhead to the project, however this workload should not be large enough
as to hinder the main research on clinical note classification as the collection of much of
this information gathering is inherent to executing a well-structured research project and
taking quality meeting notes. If collected appropriately this information should make it
possible to identify patterns and common hurdles and allow for a qualitative evaluation of
the methodology, both holistically and on the level of individual components and principles
borrowed from Agile methodologies.

F.5 Results & Discussion

The methodology described above was experimented with for 8 sprints in the period from
September 2023 until February 2024. Figure F.5 shows an example of the documentation
we kept, and includes all elements mentioned in section F.4.9, apart from the log which was
kept separately as a part of meeting notes. Figure F.5 was taken from our 4th sprint, and
shows the 5th story that was planned for that sprint, with a story-level review paragraph,
color coded according to whether it was completed. Also shown are a brief overview of the
sprint-level review and retrospective.

F.5.1 Changes made to initial approach

We initially adhered strictly to all the elements and principles described in section F.4,
however the process evolved quite significantly based on the retrospectives of early sprints,
and settled into a more lightweight approach around sprint 4. The most notable change
with respect to what was laid out in section F.4 is that we dropped the requirement to
maintain an evolving draft of "publishable" quality and consequently slimmed down our
definition of done. We found that maintaining a "publishable" document required an in-
vestment of time and effort far beyond what we considered reasonable, as multiple days
needed to be set aside towards the end of a sprint simply to maintain the quality of this
draft document. Furthermore, early sprint outputs were often exploratory or non-final and
therefore unlikely to end up in the final product, documenting these results extensively
thus amounted to a lot of unnecessary work that would likely be removed from the draft
at a later stage. We therefore changed to a lightweight approach in which we maintain-
ing a structured overview of completed work for a given sprint by compiling all relevant
resources, outputs and findings into an organized directory and reporting on the result
using a slide deck during sprint review. Towards the end of the project, results that were
relevant for the final thesis were picked out of this overview.

Another notable change is the fact that we de-prioritized comprehensive story definition
and refinement. While we stuck to stating stories in the form described in section F.4.3 and
kept in mind the INVEST throughout, it quickly became apparent that nearly all stories
reduced to a limited number of tasks with self-evident acceptance criteria, and therefore
put less effort into defining these during later stints.

F.5.2 Discussion of Agile elements

We believe that working in time-boxed sprints worked well for our project, especially in
conjunction with the use of an immutable sprint backlog. We found that it required us

86



to make conscious choices of what methods and experiments to include in our research,
limiting the time spent of "dead-end" exploration and experimentation. This allowed us
to experiment with different models and potential elements for our solution (e.g. augmen-
tation, resampling and pseudo-labeling), and not get stuck in premature or unnecessary
optimization. We should note that towards the end of the project, when our solution had
calcified, iteration became less valuable and we transitioned to finalization and writing
phase that did not involve sprint planning or review.

The hybrid sprint review, retrospective and planning sessions were effective, and gen-
erally well-received by both the student and involved supervisors. The sessions typically
started out with a brief 20-minutes overview of stories completed with relevant results
before continuing into a discussion of next steps and required changes to the process. De-
cisions on how to continue were straightforward based on the results of the completed
sprints and suggestions by supervisors. We recommend keeping review, retrospective and
planning merged for projects of similar scope, as we were able to complete all three in
under 45 minutes in all cases.

One notable complication of the iterative process was that it led to the project con-
sisting of discernible and mostly separate phases. In our case the two phases dealt with
full and weak supervision respectively. Many choices and assumptions in the latter stage
depended on the results of the former, making it difficult to present the project in a tra-
ditional scientific format containing one encompassing methodology. This required us to
break up our report and report the phases separately, and only introduce the methodolog-
ical aspects that apply to both in the prior methodology chapter. All in all we believe it
made the writing process more difficult.

As previously mentioned, maintaining a backlog of tasks and outlining an immutable
sprint backlog for each iteration worked well. However, we found little added value is
detailed tracking of backlog status using tools like Kanban. The number of items in the
backlog at any time was limited, and tracking status was not an issue as one person worked
on all stories.

We found story definition to be somewhat tedious, and as mentioned in section F.5.1 we
moved away from detailing tasks and acceptance criteria. Most stories as we defined them
were stand-alone pieces of research or experiments, and did not need complex integration
with other completed work, this as opposed to the integration of newly developed features
into a larger system in software development. This resulted in most acceptance criteria
being steps or criteria that are self-evident for correctly defined scientific experiments (e.g.
"Results for model A have been compared to results for model B."), or requirements for
documentation. We would suggest simply keeping a backlog of a list of tasks or to-dos
rather than fully defined stories, in our experience stories that were large enough to war-
rant fully defined acceptance criteria, were too large to fit in a single sprint and should be
broken up.

Overall we would recommend a sprint-based research approach for explorative and
design-focused research projects, but would not recommend the fine-grained Agile artifacts
like detailed stories and backlog tracking. Yet it should be taken into account that our
qualms with these artifacts may arise from the studied case being a one person project.
Larger research projects involving multiple researchers are likely to benefit more from these
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artifacts as they are tools for documentation as they are tools for centralized planning,
documentation and communication.

F.6 Conclusions

RQ1 How will adopting elements from Agile methodologies impact the research process in
terms of effectiveness and efficiency?

A: The high-level concept of time-boxed iteration followed by a review and retro-
spective was useful in facilitating a flexible yet focused research process, it resulted in
effective decision making and limited the time spent on work that would go unused in
the final thesis. A downside of the iterative approach is that it resulted in the project
going through multiple discernible phases, resulting in a somewhat fragmented body
of results that were difficult to compile into a single comprehensive work that adheres
to the structure of a scientific report or paper, slowing down the writing process a
considerable amount. The incorporation of more fine-grained elements like active
backlog status management, story definition and continuous delivery of a "publish-
able draft" were not successful as these required a significant time investment while
adding little value to a research project with one active researcher, though we believe
these artifact may be useful in larger projects involving multiple researchers.
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Figure F.5: Example of documentation of Agile process.
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