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ABSTRACT
Understanding and predicting outbreaks of epidemics has become a major

focus since COVID-19. Researchers have explored various methods, from

basic curve fitting to complex machine learning techniques, to predict how

the virus spreads. One promising method is the Network Inference-based

PredictionAlgorithm (NIPA), which uses the SIR-model and the least absolute

shrinkage and selection operator to estimate how the infections spread over

different regions. However, fine-tuning the regularization parameter of NIPA

can be complicated because of the time-consuming process and sub-optimal

result of k-fold Cross-Validation (CV). To overcome this, we suggest using

Simulated Annealing (SA) to optimize NIPA’s regularization parameter. Our

study aims to combine SA with NIPA to make the process of choosing the

optimal value for the parameter more effective. The results of the research

show that the accuracy is improved and therefore indicate that SA is an

acceptable alternative to CV, regardless of the computation time being higher.

This research has found a method that can benefit epidemic modeling and

prediction efforts.

Additional Key Words and Phrases: Hyper-parameter optimization, Regu-

larization parameter optimization, Least Absolute Shrinkage and Selection

Operator (LASSO), Network Inference-based Prediction Algorithm (NIPA),

Simulated Annealing (SA)

1 INTRODUCTION
Since COVID-19 spread around the world, many research has been

conducted in predicting the spread of the pandemic. Predicting how

the spread of a virus will evolve is difficult, as it is comparable to

weather forecasts and subject to fundamental limits [14]. Although

it is challenging, it is not impossible. Many researchers have de-

veloped methods to try to predict the spread of COVID-19. This

research ranges from simple approaches, such as fitting the number

of infections to a sigmoid curve, to using statistical approaches,

network-based approaches, machine learning algorithms, and pa-

rameter estimations in compartmental models such as the SIR-model

[1]. In 2022, Achterberg et al. compared the precision of different

network-based techniques to predict cases of COVID-19. The pre-

diction algorithms that were compared in the paper were long short-

term memory, Gompertz function, Hill function, logistic function

and Network Inference-based Prediction Algorithm (NIPA). In the

end, the NIPA proved to be the algorithm with the best accuracy. [1].

The well-performing NIPA algorithm uses the Susceptible, In-

fected and Recovered (SIR) model to predict the spread of COVID-19.

The NIPA first infers a matrix that is used as the infection proba-

bility between regions when individuals come in contact. After the

infection probability matrix is inferred, the NIPA will iterate over
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each time step and calculates the fraction of susceptible, infected

and recovered individuals against the population. Every individual

is put in one of the three compartments Susceptible (S), Infected (I)

or Recovered (R), where the recovered individuals can not infect

other susceptible individuals. For every city 𝑖 at time 𝑘 , we obtain

the SIR viral state by 𝑣𝑖 (𝑘) = (S𝑖 (𝑘),I𝑖 (𝑘),R𝑖 (𝑘))𝑇 [16], where S𝑖
corresponds to the fraction of susceptible people in region 𝑖 ,I𝑖 to the
fraction of infectious and R𝑖 to the fraction of recovered individuals.

The network that NIPA is estimating is the matrix 𝐵 of infection

probabilities from the SIR viral state observations 𝑣𝑖 (1), ..., 𝑣𝑖 (𝑛).
The task of NIPA is to estimate each infection probability 𝛽𝑖 𝑗 of the

infected people of region 𝑗 to susceptible people in region 𝑖 . To infer

the network of infections between regions, NIPA uses the Least

Absolute Shrinkage and Selection Operator (LASSO). For inferring

the network, we have to solve the LASSO for each row 𝑖 to find the

vector of weights, in NIPA’s case the infection probabilities matrix

𝐵, that minimizes the quadratic error of the linear system:

min

𝛽𝑖

𝑦𝑖 − 𝑋𝑖𝛽𝑖2
2

subject to

∑︁
𝑖

|𝛽𝑖 | ≤ 𝑐 (1)

where 𝑦𝑖 are the responses, 𝑋𝑖 are the predicted variables, 𝛽𝑖
are the LASSO estimates, which the sum of these estimates are

subjected to a constrained 𝑐 [18]. This equation can be written in

the orthonomal design as:

min

𝛽𝑖

𝑦𝑖 − 𝑋𝑖𝛽𝑖2
2

+ 𝜌
∑︁
𝑖

|𝛽𝑖 | (2)

Where 𝜌 is the regularization parameter and for every 𝑐 of the

constraint of Equation 1, there exists a corresponding value for 𝜌 .

Equation 2 can be divided into two parts, the Ordinary Least Square

(OLS) estimate

𝑦𝑖 − 𝑋𝑖𝛽𝑖2
2

and the penalty function 𝜌
∑
𝑖 |𝛽𝑖 |, for

𝜌 ≥ 0.

Due to this ℓ1-norm penalty function, LASSO is able to shrink

the OLS estimators (𝛽𝑖 ) to zero. For this reason, LASSO can be re-

garded as a variable selection method with 𝜌 as the shrinkage factor

or the regularization parameter [12]. To find an optimal value for

the regularization parameter, k-fold cross-validation or just Cross-

Validation (CV) is often used. CV is a method to split the dataset

into 𝑃 amount of sets and for each set, divide it into a train and test

set (often 80% and 20% respectively). The model is then trained on

the train set and the evaluated on the test set. Although CV is the

standard, the resulting value can result in unstable predictions and

is computationally expensive to run [15].

In this paper, we propose using the Simulated Annealing (SA) [3]

algorithm to find an optimal value for the regularization parameter

without using the CV technique which has been used in the imple-

mentations of NIPA [1, 16]. LASSO in combination with SA does not
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have as much research as other regularization parameter optimiza-

tion algorithms. However, in the research that has been done, the

combination with SA has shown promising results against standard

LASSO [20, 24]. For this reason, we are researching whether SA can

be implemented for the NIPA as well. This results in the following

research questions:

RQ1. How can simulated annealing be incorporated into the network
inference-based prediction algorithm to effectively search for
an optimal value for the regularization parameter?

RQ2. How does NIPA with simulated annealing optimization, imple-
mented in RQ1, compare to NIPA with k-fold cross-validation
in prediction ability and computation time?

We aim to contribute to the scientific community in three ways.

First, we will create a framework to use SA with LASSO. Secondly,

we will have implemented an algorithm to more accurately choose

an optimal value for the regularization parameter. At last, due to

the second contribution, there will be a more accurate prediction of

COVID-19 cases with the NIPA.

The structure of the research paper will be as follows: In Section

2 we will discuss previous and related research on the use of SA

for hyper-parameter optimization and in combination with LASSO.

Section 3 will first describe the algorithms and definitions used in

the research and secondly, we will describe the approach taken to

get the results. The results of the research, will be presented in

Section 4. In Section 5, we discuss the limitations of the research

and what would be interesting to take into consideration for further

research. At last, in Section 6 the conclusion of the research is given.

2 RELATED WORK
In this section we go over previous and related work of other re-

searchers.

Finding optimal values for hyper-parameters by using SA has been

researched for some time. In 2007, Lin et al. [13] proposed a SA

method to determine parameters in a support vector machine. This

method aims to search for the optimal value of the parameters to

maximize the accuracy rate. This approach resulted in a higher clas-

sification accuracy rate than performing grid search when finding

values for the parameters.

A proposedmethod called Evolutionary SimulatingAnnealing LASSO

Logistic Regression (ESALOR) was proposed by Tutun et al. in 2016

[20]. This method uses a hybrid meta-heuristic optimization ap-

proach, where they prevent over-fitting of the coefficients of lo-

gistic regression by using regularization (LASSO) and to optimize

these coefficients they use the evolutionary strategy of SA. It shows

promising results, being more accurate in classifying readmission of

diabetic patients than the other methods (support vector machines,

artificial neural networks, naive Bayes algorithm and logistic re-

gression). The researchers did not compare their method with other

LASSO techniques, meaning that there is no proof if ESALOR is as

accurate as LASSO without SA.

Another paper from 2016, from Zhang et al. [24] proposed a method

in which they describe the dynamic shrinking of LASSO resem-

bling an annealing process. Due to this relation, their method inte-

grates a similar type of regularization optimization by using adaptive

weights and this results in their solution path being different than

the traditional LASSO solution path.

An interesting research about hyper-parameter optimization came

from Bertrand et al. in 2020 [2]. It discusses how difficult setting

the regularization parameter of LASSO-type estimators is. The pa-

per then dives into the differentiation of the LASSO which allows

the researchers to select the hyper-parameter through standard

gradient-descent. This method can also scale to a high number of

hyper-parameters.

With regards to approaching SA, Guilmeau et al. [7] reviewed dif-

ferent types of SA algorithms and also proposed a new technique

which combines two previous SA methods, Fast Simulated Anneal-

ing (FSA) [17] and sequential Monte Carlo Simulated Annealing

(SMC-SA) [25]. This combination should allow better state space

exploration from FSA while remaining the meaningful exchange

between particles from the SMC-SA.

3 DEFINITIONS AND METHODS
In this section, the definitions, algorithms and the approach of the

research will be explained and discussed.

3.1 Algorithms & Definitions
3.1.1 NIPA. The NIPA is based on the SIR-model, where every in-

dividual is in one of three groups: susceptible, infected or recovered.
The first group consists of individuals who have not yet been in-

fected and will go from susceptible to infected when they come in

contact with infectious individuals from the second group [16]. The

third group consists of people that can not infect others, therefore

it is often called removed. For every city 𝑖 at any discrete time 𝑘 we

denote the 3 × 1 viral state by:

𝑣𝑖 (𝑘) =
©«
S𝑖 (𝑘)
I𝑖 (𝑘)
R𝑖 (𝑘)

ª®¬ (3)

In the equation above, it holds that S𝑖 (𝑘) + I𝑖 (𝑘) + R𝑖 (𝑘) = 1 due

to the components of the equation corresponding to the fraction of

susceptible, infected and recovered people, respectively. To predict

the amount of infected individuals, the viral state is updated each

time step 𝑘 according to:

I𝑖 (𝑘 + 1) = (1 − 𝛿𝑖 )I𝑖 (𝑘) + (1 − I𝑖 (𝑘) − R𝑖 (𝑘))
𝑁∑︁
𝑗=1

𝛽𝑖 𝑗I𝑗 (𝑘) (4)

R𝑖 (𝑘 + 1) = R𝑖 (𝑘) + 𝛿𝑖I𝑖 (𝑘) (5)

S𝑖 (𝑘 + 1) = 1 − I𝑖 (𝑘) − R𝑖 (𝑘) (6)

In Equation 4, 𝛽𝑖 𝑗 denotes the infection probability between re-

gions 𝑖 and 𝑗 . The 𝛿𝑖 in Equations 4 and 5 denotes the curing prob-

ability of region 𝑖 . These two probabilities are unknown and are
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based on the viral state 𝑣𝑖 (1), ...𝑣𝑖 (𝑛), the estimations
ˆ𝛿𝑖 and ˆ𝛽𝑖 𝑗 can

be found by using CV and LASSO [16]. The infection probability

𝛽𝑖 𝑗 specifies the probability of getting infected when infected indi-

viduals in region 𝑗 come in contact with susceptible individuals in

region 𝑖 , where the infection probability matrix between regions is

given by an 𝑁 × 𝑁 matrix

𝐵 =
©«
𝛽11 𝛽12 . . . 𝛽1𝑁
.
.
.

.

.

.
. . .

.

.

.

𝛽𝑁 1 𝛽𝑁 2 . . . 𝛽𝑁𝑁

ª®®¬ (7)

where each element represents a probability 0 ≤ 𝛽𝑖 𝑗 ≤ 1. Thismatrix

is estimated by the LASSO [18]. The network inference approach is

suitable for the compartmental epidemic models like the SIR-model.

In the equations of the SIR-model (4, 5, 6), it appears that 𝛽𝑖 𝑗 is

linear, but S𝑖 , I𝑖 and R𝑖 do not. From these equation, the infection

probabilities 𝛽𝑖 𝑗 satisfy

𝑉𝑖 = 𝐹𝑖
©«
𝛽𝑖1
.
.
.

𝛽𝑖𝑁

ª®®¬ (8)

for all cities 𝑖 = 1, ..., 𝑁 . The matrix 𝑉𝑖 (𝑛 − 1 × 1) and 𝐹𝑖 (𝑛 − 1 × 𝑁 )

are given by

𝑉𝑖 =
©«

I𝑖 (2) − (1 − 𝛿𝑖 )I𝑖 (1)
.
.
.

I𝑖 (𝑛) − (1 − 𝛿𝑖 )I𝑛−1 (1)

ª®®¬ (9)

and

𝐹𝑖 =
©«

S𝑖 (1)I1 (1) . . . S𝑖 (1)I𝑁 (1)
.
.
.

. . .
.
.
.

S𝑖 (𝑛 − 1)I1 (𝑛 − 1) . . . S𝑖 (𝑛 − 1)I𝑁 (𝑛 − 1)

ª®®¬ (10)

To infer the network based on the equations above, we use the

LASSO (Equation 2)

min

𝛽𝑖1,...,𝛽𝑖𝑁

𝑉𝑖 − 𝐹𝑖 ©«
𝛽𝑖1
.
.
.

𝛽𝑖𝑁

ª®®¬

2

2

+ 𝜌𝑖
𝑁∑︁

𝑗=1, 𝑗≠𝑖

𝛽𝑖 𝑗

s.t. 0 ≤ 𝛽𝑖 𝑗 ≤ 1, 𝑗 = 1, ..., 𝑁

(11)

where for each region 𝑖 there exists an optimal regularization param-

eter 𝜌𝑖 . With the LASSO, we can estimate the infection probabilities

by using regression. The LASSO works by minimising the OLS with

an ℓ1-norm constraint given by the 𝜌𝑖
∑𝑁
𝑗=1, 𝑗≠𝑖 𝛽𝑖 𝑗 part of Equation

11. The regularization parameter 𝜌𝑖 determines how many values

in the resulting 𝑁 × 𝑁 matrix go to zero.

3.1.2 Cross-Validation. In previous research of the NIPA, the reg-

ularization parameter was selected by CV [16, 1]. The researchers

have probably chosen this technique because CV is the most com-

mon technique for deciding the value of the regularization param-

eter [12]. The procedure of CV starts by defining a set of possible

choices for the regularization parameter. For NIPA, a set Θ𝑖 with
100 logarithmically equidistant values from a range based of 𝑉𝑖 and

𝐹𝑖 [16, 1]. The second step is dividing the data into 𝑃 equal-sized

parts (non-overlapping) with approximate 𝑠 individuals in each part.

Each part is then taken as the validation data denoted by 𝑥𝑣 and

𝑦𝑣 (𝑣 ∈ {1, ..., 𝑃}), the remaining parts 𝑃 − 1 we denote as training

data 𝑥𝑡 and 𝑦𝑡 . Per value in Θ𝑖 , we train the model on the training

data and then try to predict 𝑦𝑣 as 𝑦𝑣 (𝜌𝑖 ) with the validation data.

The predictive ability is then evaluated and the optimal regular-

ization parameter 𝜌𝑖,𝑜𝑝𝑡 , which minimizes a certain metric of the

prediction accuracy, is chosen to be the regularization parameter

[12].

3.1.3 Simulated Annealing. The SA algorithm is inspired by the

physical process of metallurgy and uses terminology coming from

the fields of physics. Atoms in metal experience large disordedmove-

ments when the metal is heated. When the metal is cooled down

steadily, the movement weakens and the atoms stabilize around a

certain position where the energy is minimal. This process of slow

cooling the metal is called annealing [6]. To understand this intu-

itively, and therefore also the algorithm: at high temperature, the

search (atoms) go through large randommovements, resulting in ex-

ploration of a wide range of possible configurations, even with high

energy. Due to these large random movements, high-energy config-

urations can be reached even though it might not be the preferred

position. When the temperature lessens, the amount of movements

also reduces, meaning that the search will prefer low-energy config-

urations and finally "freezes" into a low-energy minimumwhich can

be a global minimum, although this is not guaranteed. Kirkpatrick

et al. came up with the idea in 1983 to use this physics process to

search for the global optimum and since then, SA, also called Classic

Simulated Annealing (CSA), has been used in many optimization

problems [9].

The CSA algorithm is surprisingly simple to implement. The

pseudocode of the SA algorithm can be found in Algorithm 1. The

algorithm utilizes an objective function of an optimization problem.

For each iteration, the algorithm chooses a new location based on

the visiting distribution, assumed to be Gaussian (local search) and

computes the energy 𝐸 at that location. If the energy is lower com-

pared to the previous location, the move is always accepted. When

the move results in a higher energy, a probability will be calculated

that determines if the move will be accepted. This probability is

given as follows:

𝑃 = 1 − 𝑒
Δ𝐸
𝑇𝑘 (12)

where 𝑃 is the acceptance probability, Δ𝐸 is the difference of energy

between the new and the old location and 𝑇𝑘 is the temperature

at step 𝑘 [4]. When 𝑇 is high, it is more likely that a move to a

location with a higher energy is accepted. Through the iterations the

temperature𝑇 will decrease and eventually reach zero. The formula

for the decreasing temperature can be linearly, although there has

been much research in CSA with non-linear cooling schedules [4].

SA is a widely used global optimization method and much research

has been done on SA which led to many versions of the algorithm.

The first modified SA was four years after its introduction in 1983

[17]. The proposal of Szu uses a Cauchy-Lorentz distribution (semi-
local search) as the visiting distribution that moves the location often

3
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Algorithm 1: Simulated Annealing

1 Initialization of 𝑥0

2 for 𝑘 = 1, ... do
3 Generate a candidate 𝑦𝑘 ∼ 𝐺 (𝑥𝑘 , 𝑑𝑦)

4 Compute the acceptance probability 𝑝𝑘 = 𝑒
Δ𝐸
𝑇𝑘

5 Set 𝑥𝑘+1 =

{
𝑦𝑘 with probability 𝑝𝑘

𝑥𝑘 with probability 1 − 𝑝𝑘
6 end for

in local search space but can occasionally jump to a point further

away. With this addition, Szu and Hartly showed that the cooling

schedule could be much faster and therefore this algorithm was

called Fast Simulated Annealing (FSA). To decrease the temperature

at a faster rate, FSA generalizes the accept-reject rule (see Equation

12) to any acceptance function 𝑞 [7]:

𝑃𝑘 = 𝑞(𝑝𝑘 ), where 𝑝𝑘 := (Δ𝐸
𝑇𝑘

) (13)

with this generalization, SA is allowed to decrease more slowly and

the convergence will happen with a faster cooling schedule.

In 1996, Tsallis and Strariolo published their research on gener-

alizing each part of the SA algorithm [19]. With the equations in

their research, it was possible to obtain the CSA and FSA as well

as a faster convergence with certain values for the Generalized

Simulated Annealing (GSA) [19]. The GSA uses two artificial tem-

peratures instead of the one temperature in CSA and FSA, where the

shape of the distorted Cauchy-Lorentz distribution is controlled by

𝑞𝑣 and the acceptance probability is controlled by 𝑞𝑎 . The visiting

distribution is as follows:

𝑔𝑞𝑣 (Δ𝑥 (𝑡)) ∝
(𝑇𝑞𝑣 (𝑡))−𝐷/(3−𝑞𝑣 )

[1 + (𝑞𝑣 − 1) (Δ𝑥 (𝑡))2/(𝑇𝑞𝑣 (𝑡))2/(3−𝑞𝑣 ) ]1/(𝑞𝑣−1)+(𝐷−1)/2

(14)

where𝐷 is the dimension of the variable space and𝑇𝑞𝑣 is the visiting

temperature. The parameter 𝑞𝑣 also controls the rate of cooling:

𝑇𝑞𝑣 (𝑡) = 𝑇𝑞𝑣 (1)
2
𝑞𝑣−1 − 1

(1 + 𝑡)𝑞𝑣−1 − 1

(15)

𝑞𝑎 controls the acceptance probability which is a generalized Me-

tropolis algorithm [22]:

𝑃𝑞𝑎 = min{1, (1 − (1 − 𝑞𝑎)𝛽Δ𝐸)1/1−𝑞𝑎 } (16)

where 𝛽 = 1

𝐾𝑇𝑞𝑎
. To get CSA and FSA from this generalized form,

we set 𝑞𝑣 = 1 and 𝑞𝑎 = 1 to get CSA and to get FSA, we set 𝑞𝑣 =

2 and 𝑞𝑎 = 1.

3.1.4 Evaluation. To evaluate the performance of the prediction

ability of NIPA with CV and NIPA with SA, we must define the

evaluation metric. Measurement of performance for forecasting is

not an easy task; researchers and forecasters have not yet agreed on a

measurement technique that should be preferred [10]. Each method

of evaluation has its own strengths and weaknesses, making the

measurement technique different for each problem. Much research

has been conducted on the accuracy of the prediction, as it is the

most important criterion to select a prediction technique. Most

forecast methods use point forecast which is why researchers are

focused on identifying measures to show the accuracy of point

forecasts [8].

Popular metrics for forecast evaluation is the mean square error

(MSE), the mean absolute percentage error (MAPE) and the symmet-

ric mean absolute percentage error (sMAPE). Where MSE penalizes

large errors but is sensitive to outliers and can not handle multiple

time series, MAPE handles these drawbacks but creates another. If

the true values of the forecast go to zero, we get a large number and

it is possible for MAPE to become undefined [10]. To counteract this,

the sMAPE can be used. sMAPE is also commonly used by forecast

researchers to quantify the predictions [8, 1]. After some discussion

and consideration, we have chosen to evaluate our results according

to the mean square error which is defined as:

𝑒MSE (𝑡) =
1

𝑁

𝑁∑︁
𝑖=1

(𝑌𝑖 (𝑘) − 𝑌𝑖 )2 (17)

where 𝑌𝑖 is the true data and 𝑌𝑖 is the predicted data.

3.2 Approach
3.2.1 LASSO. To understand how to optimize the NIPA [16], we

first have to understand NIPA by examining the working of the

algorithm. The NIPA finds its base functionality in the LASSO [18]

(Equation 2). With this algorithm we are minimising the sum of

squared elements which is subjected to an ℓ1-norm penalty. By using

this constraint in the equation, it is possible for LASSO to shrink

coefficients to zero, creating a sparse matrix of the coefficients and

because of this, it can also be regarded as a variable selection method

[12].

LASSO can achieve the shrinkage to zero because of the penalty

function 𝜌
∑
𝑖 |𝛽𝑖 | which results in a constraint with sharp edges

(see Figure 1). When 𝜌 is large, all the coefficients will go to zero

and when 𝜌 goes to zero, the constraint will be non-existent and

the coefficients will equal the OLS estimation.

3.2.2 NIPA. How LASSO is integrated into NIPA has been shortly

introduced in Section 3.1.1.Where for each region 𝑖 there is a specific

regularization parameter 𝜌𝑖 . As mentioned in the previous section,

when this parameter is too high, it will result in all infection proba-

bilities 𝛽𝑖 𝑗 for regions 𝑖 and 𝑗 to be zero and when 𝜌𝑖 is too small, the

resulting matrix will not be a sparse representation of the infection

probabilities between the regions. To confirm the correct regular-

ization parameter is chosen without overfitting the model, Prasse et

al. established a range where 10
−4 (2| |𝐹𝑇

𝑖
𝑉𝑖 | |∞) ≤ 𝜌𝑖 ≤ 2| |𝐹𝑇

𝑖
𝑉𝑖 | |∞

[16]. Within this range, it is possible for all coefficients to go to zero

and at the same time preventing the infection probabilities to be

above zero for every 𝛽𝑖 𝑗 .

3.2.3 Simulated Annealing. Instead of CV, which is often used for

determining the regularization parameter for LASSO [12], we pro-

pose using SA, introduced in Section 3.1.3, to find the optimal value

for the regularization parameter 𝜌𝑖 for every region 𝑖 . The first part

for answering RQ1 is whether to implement SA ourselves or use

a third-party library. Due to the scope and time-constraint of the

research, we have chosen for the latter. The implementation of the

SA algorithm has been done through the method dual_annealing
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Fig. 1. The LASSO ℓ1 constraint (red) in a two-dimensional parameter space
(𝑏1 and 𝑏2), where ˆ𝑏𝑂𝐿𝑆 is the (unconstrained) ordinary least square esti-
mate and the contours show the estimates of 𝑏 with equal variance in terms
of squared error loss. 𝑐 corresponds to the constraint in Equation 1.

of the SciPy library [21]. Dual annealing uses the generalization of

CSA and FSA and combines it with a local search on each accepted

location. As mentioned in Section 3.1.3, this implementation of SA

uses a distorted Cauchy-Lorentz visiting distribution (see Equation

14), where parameter 𝑞𝑣 also controls the temperature schedule as

seen in Equation 15. For the acceptance probability, it utilizes Equa-

tion 16. The second part of answering the first research question and

to make the implemented algorithm work as efficient as possible,

is determining correct values for the parameters 𝑞𝑣 , 𝑞𝑎 , the initial

temperature 𝑇0 and the starting point 𝑥0.

For the parameter 𝑞𝑣 , that controls the visiting distribution, it

is important that it is not too low (𝑞𝑣 ≤ 1), because the visiting

distribution will be confined to a local search space, as seen in the

upper panel of Figure 2. If 1 < 𝑞𝑣 ≤ 2 (FSA), we get a semi-local

search where the search is more efficient than CSA but getting

trapped at a local region can still occur (middle panel in Figure 2).

To search the space homogeneously, we set 𝑞𝑣 = 2.62 which creates

the Tsallis-Stariolo form of the Cauchy-Lorentz distribution. With

this form of the Cauchy-Lorentz, the search has the possibility of

long jumps even at low temperatures. Due to this characteristic,

it has a high probability of finding the global minimum instead of

being trapped at a local minimum [22].

The value of the parameter that controls the acceptance probabil-

ity, 𝑞𝑎 , is not of big importance, but this value determines the initial

value for the temperature. We have chosen for 𝑞𝑎 = −5 as this is
also proposed by Tsallis and Stariolo [19]. With this value we can

determine a suitable value for the initial temperature. The following

steps have been taken to calculate 𝑇0 [5, 6]:

(1) Perform 100 steps of the algorithm.

(2) Compute the average difference in energy (Δ̂𝐸).

Fig. 2. Two-dimensional visiting distribution at a low temperature. Gaussian
distribution for CSA (𝑞𝑣 = 1) in the upper panel, Cauchy-Lorentz distri-
bution for FSA (𝑞𝑣 = 2) in the middle panel, and Tsallis-Stariolo form of
Cauchy-Lorentz distribution for GSA (𝑞𝑣 = 2.62) in the lower panel. GSA
visits the phase space homogeneously [22].

(3) Choosing an initial acceptance probability.

(4) Calculate the initial temperature 𝑇0.

Where the initial acceptance probability has been chosen to be 0.8

as to allow the algorithm to make greater jumps at the start. If the

initial acceptance probability is lower, the algorithm will not be

able to make long jumps and when the probability is higher, it will

accept too many bad moves [11]. We have chosen for this initial

probability, because the starting point of the algorithm will be the

lower bound of the range for the regularization parameter given in

Section 3.2.2. This starting point has been picked due to the large

probability that the optimal value is in close proximity and that the

algorithm does not quickly go to the search space where all values

of the infection probability matrix go to zero.

Finally, we calculate the initial temperature by inserting the values

mentioned above into equation 16
1
. Due to the scope of the research,

we assume that 𝐾 = 1, preventing another optimization problem

that would take up valuable time. The algorithm is then run over the

NIPA model, the result is a local minimum, with a high probability

of being the global minimum.

4 RESULTS
To get the results, we have implemented the NIPA algorithm with

CV and the NIPA with SA with the parameters mentioned in Section

3.2.3.

1𝑇0,𝑞𝑎 = 0.3693670547881299
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Regions Cross-Validation Dual Simulated Annealing

Wuhan 4.701e-11 1.130e-10

Huanggang 8.591e-09 4.408e-12

Jingzhou 3.537e-12 3.537e-12

Xiangyang 2.475e-12 2.475e-12

Xiaogan 1.266e-11 6.630e-12

Table 1. The regularization parameter that has been chosen by CV and by
the DSA algorithm rounded to three decimal places. For the five regions in
Figure 3c.

Regions Cross-Validation Dual Simulated Annealing

Wuhan 2.524e-01 2.322e-01

Huanggang 1.716e-01 6.363e-01

Jingzhou 8.990e-01 8.990e-01

Xiangyang 6.969e-01 6.969e-01

Xiaogan 6.363e-01 5.353e-01

Table 2. The curing probabilities that has the lowest MSE with the regu-
larization parameter chosen by CV and by the DSA algorithm rounded to
three decimal places. For the five regions in Figure 3c.

4.1 Hubei, China
The results will look at the difference in evaluation in the Chinese

province of Hubei. The first case was on January 21 and the data

lasts until February 14, since the local government changed their

diagnosing policy causing an erratic increase in the number of re-

ported cases on February 15 [1].

For the evaluation of both methods, we removed data points for

a fixed amount of days𝑚. The NIPA model with CV and with SA

are then iterated over these𝑚 days. How the disease truly evolves

(cumulative) can be seen in Figure 3 by the blue line. In the same

figure, the predictive ability of NIPA with CV and NIPA with SA

(red and green respectively) can be seen against each other. In Figure

3, it can be seen that both methods have approximately the same

predictive results. To clearly see what the differences are between

the twomethods, we look at the evaluationmetrics in Figure 4. These

graphs show that for most predictions there is a slight improvement

when NIPA is combined with the SA algorithm, except when the

NIPA needs to predict two days ahead (Figure 4b). The chosen

regularization values for the five regions in Figure 3 are in Table 1.

In Table 2, it is shown which curing probability was optimal for the

region with the chosen regularization parameter found in Table 1.

Besides the predictive ability of both methods, we also want to

look at the computational difference. We run the algorithm multiple

times with both optimization techniques. It took NIPA with CV, 1
minute and 7 seconds to infer the infection probability matrix of

Hubei, China. Using NIPA with SA, it took on average 28 minutes
and 17 seconds to infer the matrix. This big difference in computation

time can be attributed to the fact that CV can be executed in parallel

while SA has to wait for each iteration, to execute the next. This has

a big impact on the performance. The many iterations SA needs to

find the optimal value can be another reason why the computation

time for SA is higher. Where CV only tries an 𝑥 amount of values

within the range, SA will search throughout the range.

5 DISCUSSION AND FUTURE WORK
Due to a limited time frame for completing this research paper, parts

of the research could be extended or more thoroughly researched.

In this section, we are going to discuss what these parts are.

5.1 NIPA
As this research paper is a continuation of a previous bachelor

thesis, the assumption was made at the beginning that the NIPA

algorithm was already implemented and the research of this paper

could focus on the optimization of the algorithm through SA. This

was however not the case and due to this problem, the first weeks of

the research has been spend in the development and implementation

of the NIPA algorithm. There was an algorithm found online
2
and

after some research into the code, we found that the code did not

contain the constraints to which NIPA is subjected (0 ≤ 𝛽𝑖 𝑗 ≤ 1 and∑𝑁
𝑗,𝑗≠𝑖 𝛽𝑖 𝑗 ≤ 1). For these reasons, we have decided to first focus

on our own NIPA algorithm and when comparing our results with

other papers, we found a small difference. This can be attributed

to the parsing of the data, where the other papers used Matlab for

their implementation and we have used Python. For these reasons,

the assumption was made that our implementation was correct.

5.2 Optimization Method
At the beginning of the research, we have delved into two different

types of optimization for the LASSO algorithm, SA and Bayesian

optimization. At first, the latter was found to more appropriate

because of the way the LASSO estimates can be interpreted as a

posterior mode. Because of this relation, a Bayesian LASSO has been

proposed by Park and Casella [15]. In this approach, we could use

the marginal maximum likelihood or hyperpriors for choosing the

regularization parameter 𝜌𝑖 . We could even use a Gaussian process

(GP) to very closely approximate the optimal value for the Bayesian

LASSO which is called BO-GP [23]. We have not chosen for this

method as this would mean that we have to rewrite LASSO, NIPA

and then implement the BO-GP algorithm and since this research

paper has limited time and scope, we have decided to go for the SA

algorithm.

5.3 Further Optimization
The NIPA algorithm consists of two variables which are unknown

at the beginning of the model fitting. The regularization parameter

𝜌𝑖 and the curing probability 𝛿𝑖 for each region 𝑖 . SA is a good

algorithm to optimize problems with a parameter dimension bigger

than one, see Figure 2. This would also lessen the time it will take

for inferring the matrix, this comes from the fact that we are now

iterating and performing SA for every curing probability that is in

the set of possible curing probabilities. We have chosen to focus on

an one dimension parameter space (𝜌𝑖 ) due to the time limits of the

research.

2
https://github.com/DVL-Sejong/NIPA
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Fig. 3. The prediction of COVID-19 pandemic in Hubei by NIPA with CV and NIPA with SA. Here 𝑁 = 16, but only five are shown. The amount of days
predicted is in the title of the graph where 1 ≤ 𝑚 ≤ 6. Each point is the cumulative COVID-19 cases in Hubei.

Fig. 4. The evaluation metric of the predictive ability of NIPA with CV and NIPA with SA. The amount of predicted days which is evaluated can be found in
the title of the graph where 1 ≤ 𝑚 ≤ 6. Each point corresponds to the MSE between the predicted amount and the true amount of cases (lower is better).
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5.4 Parameter Tuning
Like the NIPA, the SA algorithm has parameters that can be tuned

for better and more efficient results. During this research we have

tuned these parameters according to research and some trial-and-

error. With more time, it would be possible to experiment more with

different values and combinations of these values.

5.5 Static and Dynamic NIPA
In this research, we have chosen to implement SA only for the origi-

nal NIPA. In previous research, by Achterberg et al., the formulation

of NIPA was extended to include knowledge of the underlying con-

tact network that was split into two algorithms, one where the prior

knowledge is static (NIPA static prior) and one where it is dynamic

(NIPA dynamic prior) [1].

5.6 Future Research
For future research, it would be interesting to see the results from

more countries as well as seeing the SA algorithm be implemented

for the NIPA static prior and the NIPA dynamic prior that were

introduced by Achterberg et al. in their research.

As mentioned above in Section 5.3, it is possible to optimize the

curing probability 𝛿𝑖 and to integrate this into the SA algorithm.

With this addition it could be possible to even further optimize the

NIPA.

6 CONCLUSION
In this research, we propose to use the NIPA prediction method

with SA. Based on previous research, one region has been chosen

to compare the results between NIPA with CV and NIPA with SA:

Hubei, China. The results for this region provided valuable infor-

mation about the use of NIPA with SA.

First, the incorporation of SA in the NIPA. As we can see in

the results, we can safely assume that the implemented SA works

accordingly. The values of the parameters chosen in Section 3.2.3 are

efficient enough to search for an optimal value for the regularization

parameter even though the computation time is slower compared

to CV.

The results that are shown in Section 4, show that the NIPA with

CV and the NIPA with SA show close predictive ability. Looking

closer at the predictions, the NIPA with SA has shown better ac-

curacy in predicting the cases of COVID-19. As can be seen in the

evaluation metrics in Figure 4, where we see that the NIPA with SA

has better evaluations for each of the results except for predicting

two days ahead. These results are dwarfed by the difference in com-

putation time, where the NIPA with CV is approximately 25× faster

than the NIPA with SA.

We have shown that the SA algorithm improves the prediction

ability against the CV technique which is used to choose a value

for the regularization parameter for the NIPA. Although it has a

better prediction accuracy, the computation time for the NIPA with

SA is remarkably slow in contrast to the NIPA with CV. To deter-

mine which needs to be used, is a trade-off between accuracy and

computation time.
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APPENDIXES

A LIST OF NOTATIONS

Notation Equation(s) Definition
𝑐 1 The constraint of the LASSO

𝜌 , 𝜌𝑖 2, 11 Regularization parameter (of

region 𝑖)

𝛽, 𝛽𝑖 1, 2, 11 The OLS estimates of the LASSO,

also known as the regression

coefficients (of region 𝑖)

𝑣𝑖 3 The viral state of the SIR-model

of region 𝑖

𝑁 4, 7, 11 The total amount of regions in

the dataset

I𝑖 3, 4, 9, 10 The fraction of infected

individuals of region 𝑖 in the

SIR-model

R𝑖 3, 4, 5 The fraction of recovered

individuals of region 𝑖 in the

SIR-model

S𝑖 3, 6, 9 The fraction of susceptible

individuals of region 𝑖 in the

SIR-model

𝛽𝑖 𝑗 4, 7, 8, 11 The infection probability

between region 𝑗 to region 𝑖

Δ𝐸 12, 13, 16 The difference in energy (cost)

between two locations in the SA

algorithm

𝑇𝑘 12, 13 The temperature of the SA

algorithm at time step 𝑘

𝑞𝑣 14, 15 The parameter that controls the

Cauchy-Lorentz distribution and

the rate of cooling in GSA

𝑇𝑞𝑣 14, 15 The artificial temperature of the

visiting distribution in GSA

𝑞𝑎 16 The parameter that controls the

acceptance probability in GSA

𝑇𝑞𝑎 16 The artificial temperature of the

acceptance probability in GSA
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