
Exploiting a cross-layer design for network performance improvement
through Deep Reinforcement Learning
JORIS KUIPER, University of Twente, The Netherlands

The increase in industrial IoT has brought many different connectivity re-
quirements such as latency, packet loss and throughput. With this rise of
connected devices, Quality of Service (QoS) has become more important to
ensure these requirements are met by the network. However, initial QoS in
Wi-Fi has only been managed by the MAC layer, limiting the application of
QoS. More diverse QoS requirements must be met for Industrial Internet of
Things (IIOT) networks currently not supported by QoS. Since QoS is also
affected by parameters on the other layers of the OSI Stack, we deployed a
cross-layer design to improve the QoS using Deep Reinforcement Learning
(DRL). We achieved similar throughput, decreased latency by 9.47% and
decreased packet loss by 24.90% compared to Minstrel using a DDQN DRL
model.

Additional Key Words and Phrases: WiFi, SDN, QoS, Quality of Service, IoT,
Internet of Things, ns-3, DRL, Deep Reinforcement Learning, cross-layer,
minstrel

1 INTRODUCTION
In recent years, the Internet of Things has seen a massive increase
in adoption. Networks have been rapidly expanding, and the expec-
tations are that the number of connected devices will double from
roughly 15 billion in 2023 to 30 billion in 2030 [26].

This rise of connected devices can also be found in Industrial IoT
(IIoT) networks. From existing factories introducing more automa-
tion and monitoring to fully automated warehouses, IIoT networks
have seen a diverse landscape of use cases, such as sensors, au-
tonomous mobile robots, safety controls, and other applications.
Some of these applications can be found in Figure 1 [8]. Each use
case and its applications come with a diverse set of connectivity
requirements, which the employed network access technology tries
to satisfy through its Quality of Service (QoS) tools [22]. However,
these QoS requirements are diverse and hard to meet [7].

TScIT 41, July 05, 2024, Enschede, NL
© 2024 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Fig. 1. Industrial IoT use-cases

Although various communi-
cation methods (e.g. LoRaWan,
WirelessHART) have been pro-
posed and used in IIoT networks
[24]. This research will focus
on the technology of IIoT net-
works combinedwithWi-Fi (also
known as IEEE 802.11) as its ac-
cess technology since Wi-Fi is
more commonly used in IoT net-
works.

WiFi employs multiple tech-
niques at MAC and PHY layers
to handle the increased traffic and QoS requirements. In the MAC
layer, a contention-based scheme called Distributed Coordinated
Function (DCF) exists. In DCF, the devices connected to an Access
Point (AP) scan the air interface to determine the availability of the
channel. If this channel is idle, the connected device starts trans-
mitting. However, a collision occurs if the channel is busy or two
devices start transmitting. To prevent this, Wi-Fi uses Carrier Sense
Multiple Access/Collision Avoidance (CSMA/CA) [5].

To meet the QoS needs of users, WiFi uses an Enhanced Dis-
tributed Channel Access (EDCA) scheme. EDCA creates four Access
Categories (AC): background, best effort, video, and voice. These
ACs are then mapped to a transmit queue. Each AC has four pa-
rameters to control them, and these are the minimum contention
window size, the maximum contention window size, the transmis-
sion opportunity limit, and the arbitration inter-frame spacing [30].
Using these four parameters, EDCA can prioritise one channel over
the other so that the QoS of these categories can be met. However, if
a high-priority AC constantly transmits, a lower-priority AC might
not be able to access the channel and transmit.

However, this method of QoS is limited due to the diverse needs
of modern IIoT networks. Other research in QoS improvements has
mainly contained themselves to a single layer, and a necessity has
been identified for a more cross-layer design to meet these require-
ments [25].

1



TScIT 41, July 05, 2024, Enschede, NL Joris Kuiper

Metric Unit Description
Latency ms The time it takes for a data packet to

travel from the source to the destina-
tion.

Jitter ms The variation in packet arrival time. It
is a measure of the stability and pre-
dictability of the network.

Packet Loss % The percentage of packets that are lost
during transmission.

Throughput Mbps The rate at which data is successfully
transmitted over the network.

Availability % The percentage of time the network is
available for use.

Table 1. Quality of Service (QoS) Metrics for WiFi

Some researchers proposed Network Slicing in Wi-Fi using SDN
technology to improve QoS in IoT networks [3]. Network Slicing
brings flexibility in QoS delivery as any number of slices can be
created and managed in the network; however, most works focus on
only MAC layer parameters like CW, AIFSN and Queue Quantum
to control slice resources, which is not sufficient to create reliable
slice differentiation. Since QoS is being managed at all layers of the
OSI stack in any access technology, Cross-Layer Design targeting
parameters of all layers possess significant potential to improve the
QoS in the network.
Researchers have employed cross-layer design by targeting a

combination of the MAC and Network layers and the MAC and
PHY layers; however, their work remains limited to only a few
parameters due to the complexity of the problem. Most previous
work targeted one or two layers of the OSI model. However, with
the advancements in AI and ML, algorithms can now handle much
higher complexities; therefore, we aim to employ DRL to develop a
cross-layer design-based QoS solution that targets parameters from
transport, network, MAC and PHY layers together, thus combining
various layers into this complex problem. Since QoS optimization
will improve network throughput by managing network resources
efficiently, we aim to analyze the effects of our DRL solution on the
throughput in the network compared to other data rate managers
such as minstrel [16].

2 RELATED WORK
Early research regarding a cross-layer design in Wi-Fi networks to
improve QoS has proposed a cross-layer scheduler Liu et al. [14].
Each connection would be assigned a priority updated dynamically
based on the channel quality, QoS satisfaction, and service priority.
Then, the scheduler would always schedule the highest priority
first. The scheduler provided diverse QoS guarantees using the
transmission mode at the PHY layer based on their requirements at
the MAC layer. However, further research was needed to evaluate
the scheduler better because it negatively affects bandwidth and
has performance degradation on lower-priority connections.

Another QoS management system with a cross-layer design was
proposed in Chen et al. [6]. The authors created an algorithm using
the Received Signal Strength Indicator (RSSI) value and channel

sensing in the link layer and the QoS in the application layer to pro-
vide the QoS in the network. The QoS algorithm classifies the data
flows and selects the best parameters to improve the QoS. However,
in this algorithm, the quality of various classes is reduced when the
network becomes busy.

Another way of improving QoS is by using software-defined net-
working (SDN). The Open Networking Foundation [9] states that
"In the SDN architecture, the control and data planes are decoupled,
network intelligence and state are logically centralized, and the un-
derlying network infrastructure is abstracted from the applications".
This decoupling makes it easier to manage the network resources,
efficiency, and quality of service while also being easy to program.
SDNs have made it possible to define network flows, which has
helped improve the QoS. [12]

SDNs are used in Amur et al. [3] and in Richart et al. [20] to build
network slices in SDN to improve the QoS in IoT networks. With
slicing, network flows that share similar requirements are grouped
and ensure the QoS of the services in the slice regardless of the
resources [20]. The slices have proved to be an effective technique
to improve the QoS in a network with various requirements for QoS.
However, these slices in WiFi are only controlled through the MAC
layer. The potential to control them more reliably exists through a
cross-layer design utilizing more than one or two layers.

Some research works employing AI and ML for Cross-Layer De-
sign have also been proposed in literature [31]. Here, the authors
investigated the possibilities of AI and ML for building reliable QoS
in a cross-layer design for a dense IoT network. In Zia et al. [31], the
authors have identified that Open System Interconnect (OSI) model
stack parameters can be used to improve the QoS in IoT networks.
However, the authors have proposed that further research is needed
in optimizing QoS with a cross-layer design through AI & ML.

Deep Reinforcement Learning (DRL) has been used in Wang et al.
[28] to build a more energy-efficient 5G wireless network while
achieving a good QoS. Although this work focuses on 5G technol-
ogy, similar work on Wi-Fi technology is missing in the literature
and can bring significant improvements. Due to the technology
difference between 5G and Wi-Fi, it is interesting to see if these
results can be replicated in Wi-Fi networks. Pundir and Sandhu [18]
discussed the current state of AI and QoS. The authors classified the
QoS across the OSI layers and investigated future research direc-
tions. They recommend an ML-integrated approach to improve QoS
further. This integrated approach was investigated in Abbasi et al.
[1]; the authors used DRL to improve QoS at the MAC layer. They
specifically investigated spectrum access, joint user association and
adaptive data rate control. However, the authors only investigated
DRL with the MAC layer and did not use a cross-layer design.

Many other works have investigated a cross-layer design. In
Qu et al. [19], the authors investigated a cross-layer design for
optimizing video traffic by proposing a new packet scheme and
changing the video encoder to optimize the network. However,
they did not modify any parameters in the channel to improve
conditions. Furthermore, their solution needed specific conditions
and requirements to be in place for it to work, whichmight not be the

2



Exploiting a cross-layer design for network performance improvement through Deep Reinforcement Learning TScIT 41, July 05, 2024, Enschede, NL

case in every network. More works have been investigated; however,
they remain limited due to the complexity of the problem [15]. Some
research such as Nie et al. [17] has investigated singular layers of
the OSI model regarding the OSI stack. The authors mainly used
the TCP Initial Window with Reinforcement Learning. However,
due to the nature of the OSI model, more parameters and different
layers of the OSI stack can and will influence the stability of QoS.

3 NETWORK MODEL
The Industrial IoT network comprises various sensors, AGVs, Cam-
eras, robotic arms, etc., deployed across different floors in a factory
4.0 environment. All devices are interconnected through different
access technologies, including Wi-Fi. To simulate such a factory
environment, we have employed a widely used discrete event-based
Network Simulator called NS-3.
NS-3 is a network simulator built in C++ which aims to be a

platform to test devices and implementations when moving from
simulation to experiment [21]. As a successor to NS-2, it tries to be
easier to debug and easier to use. The simulator models network
nodes (e.g. IoT devices) that use network devices (e.g. WiFi APs,
Base Stations) to connect to communications channels through
communications protocols, protocol headers and network packets,
thus simulating a network [21].
For our network model, we simulated 𝑛 nodes and distributed

them over 40 square meters around the AP. For simplicity, static
nodes were considered in an industrial environment; however, mo-
bility can be added to certain nodes to simulate Automated Guided
Vehicles (AGV). In the nodes, we defined four applications they
could use: best effort, control data for Automated Robotic Arms,
real-time machine monitoring and CCTV. For each application we
defined a data rate it would use, these can be found in Table 2.
For the real-time monitoring application, we chose 25 Mbps and
4 Mbps for the CCTV application. This was chosen because it is
important that most details can be seen for real-time monitoring.
For CCTV, the sharpness of the image is less important, and some
quality can be sacrificed. The control data would use small packets
and need to arrive consistently; thus, a smaller data rate of 0.512
was selected. For all other use cases, we grouped them under the
best-effort application and gave them a data rate of 0.256 Mbps.
During the simulation, the nodes would only be receiving data from
the AP in a manner similar to the UDP protocol.

To simulate the wireless conditions of an indoor factory envi-
ronment, we used two propagation loss models: the Log-distance
Path Loss Model and the Nakagami Propagation Loss Model. The
Log-distance Path Loss Model is a model that is well suited for ur-
ban and industrial environments [2] and thus well-suited for our
industrial setting. The Nakagami Propagation Loss Model makes it
possible to simulate environments with no direct line of sight to the
AP, which is the case in our industrial environment, where there
might be walls or other machinery between the node and the AP.
Due to these extra parameters and propagation loss models, we can
define our industrial environment more fine-grained [23].

Fig. 2. Network model example

Description Data Rate (Mbps) Amount of users
Best effort 0.256 𝑛 − 𝑛_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑛_𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔 − 𝑛_𝑐𝑐𝑡𝑣
Control data 0.512 𝑛_𝑐𝑜𝑛𝑡𝑟𝑜𝑙
Real-time monitoring 25 𝑛_𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑖𝑛𝑔

CCTV 4 𝑛_𝑐𝑐𝑡𝑣
Table 2. Data Rates and amount of users for Various Applications

4 REINFORCEMENT LEARNING MODEL
To optimise our network model, we decided to deploy Deep Reinfor-
ment Learning (DRL). DRL is well suited for environments where
you have a relatively small set of features of a complex state where
these choices can and will affect later states [4] and optimizing
our network is an example of such an environment. DRL can be
described as a Markov Decision Process (MDP). In MDP, there is a
set of states, a set of actions, and a reward function that tries to find
an optimal policy that will yield a maximum expected return from
the states [4].

4.1 States
To describe our environment, our states would be modelled by
using the following variables as input: average throughput, average
latency, average packet loss ratio, average queue fill-up, average
signal-to-noise ratio, and average collision for each timestep of the
simulator. Average throughput is a key indication of the network’s
performance. A low throughput indicates that less data is coming
through, thus increasing other variables. Thus, network throughput
is a key metric for the performance of our network. Latency is the
delay in the sending and receiving of data packets. A high latency
indicates that the network is performing poorly and since we are
working with applications that need real-time performance, latency
is a good indicator next to throughput.

Packet loss tells whether the network is reliable or whether pack-
ets are dropping or colliding, which leads to re-transmissions and
reduced network efficiency. Since we need a reliable network for

3



TScIT 41, July 05, 2024, Enschede, NL Joris Kuiper

our applications, packet loss is a good metric to model our states
with.

A high queue fill-up indicates that a lot of data is in the network
buffer and suggests that network performance is decreasing. There-
fore, it is a good indicator of congestion in the network, which we
are trying to avoid.
Signal-to-noise (SNR) measures the signal quality compared to

the background noise and is an important measurement regarding
the reliability of data transmission. Without keeping track of the
signal-to-noise ratio, it is harder to identify what is causing the
higher packet-loss or the higher latency. Since SNR is used to select
the proper Modulation Coding Scheme (MCS) and Transmit power
which are both possible actions in our DRL model, it is important
to use SNR as one of the variables in our states.
The average collision rate is the final variable we used to model

the network’s state. It measures the number of collisions and, if man-
aged effectively, can lead to a smoother and more reliable network.
Since the rate of collisions is used to identify a better Contention
Window (CW), it is a key metric for our states.

Together, these variables are able to give a good overview of
the environment of our network without cluttering the DRL model
with too much information when it is trying to select an action to
perform.

4.2 Actions
For actions to perform, we selected three variables to be modified
by our DRL model. These are the Contention Window (CW), the
Modulation and Coding Scheme (MCS), and the transmit power.

The CW controls the time nodes wait before attempting to access
the network, influencing collision rates and overall throughput. Re-
search has shown that the CW can be optimized effectively through
the use of DRL [29] and its effects on collision rate, which in turn
affects the re-transmissions and throughput, makes it a good action
to include in our DRL model.
Selecting different MCS can be an important action for our DRL

model. Each MCS has different properties (such as amplitude, fre-
quency, and base) which are more effective in different conditions. If
the network conditions are optimal, a different MCS would perform
with a better throughput than when the conditions are poor. Since
our DRL model will be able to react in real-time, changing the MCS
will be a very important action it could take.

Another action we selected was changing the transmit power.
The transmit power defines the amount of power used to transmit
packets over the network. A strong signal might get a better SNR
while creating more interference (or collisions). A low signal might
result in fewer collisions but a lower SNR, which results in dropped
packets needing retransmission. Thus, changing the transmit power
is another important action when optimising the network.
For each of these actions, we gave the DRL model three choices:

either increase the variable, decrease it or not change it at all. Since
the choice can be independent for each variable, this resulted in an
action space of 27 possible combinations from which the DRL can
choose.

4.3 Reward
The reward function is one of the most important parts of Reinforce-
ment Learning (and, by extension, DRL). The environment rewards
the agent as the agent performs actions on the state and continues
to the next state. The agent’s goal is to take actions that result in
receiving a bigger (or increasing) reward [4]. However, this process
is trial and error; thus, every interaction makes the agent learn more
about the environment if the reward function is properly defined.
Many different reward functions were tested for our DRL setup.

We started with a complex reward function where throughput,
latency, and packet loss were weighted and added to each other
through a rather complex formula, see Equation 1. The next reward
function was a simpler iteration of the first equation. In this reward
function, if the difference were positive for each of the variables
throughput, latency, and packet-loss, they would receive a +10. They
would be scored with a −10 if negative. Then, these values would be
weighted and added to each other. Unfortunately, we also did not
see any learning with this reward function, leading to us making
an even more simplified reward function. We used a dense reward
function and dropped the latency and packet loss for our final re-
ward function. The exact equation can be found in Equation 2. This
reward, combined with the DRL model discussed below, showed
learning and some improvements.

reward =

𝑤th
(
thdiff
thavg

)
−𝑤lat

(
latdiff
latavg

)
−𝑤plr

(
plrdiff
plravg

)
Txpwr

(1)

reward =



20 if throughput_diff > 5
10 if 2 < throughput_diff ≤ 5
0 if 0 < throughput_diff ≤ 2
−10 if − 2 < throughput_diff ≤ 0
−20 if throughput_diff ≤ −2

(2)

4.4 DRL Model
Due to the network simulated in ns-3 being a rather noisy envi-
ronment, we used the Double Deep Q Network (DDQN) algorithm.
DDQN solves the overestimation problem in regular Deep Q Net-
works (DQN) and performs better than a DQN model in this envi-
ronment. The DDQN algorithm uses 2 DQN agents, one to select
an action and the other to evaluate it. During the DDQN model’s
training phase, the weights of the selection agent are periodically
copied to the evaluation agent. This leads to less overestimation
than in regular DQN networks while still keeping computational
overhead low [27].

We implemented the Double Deep Q Network (DDQN) in ns-3
using ns-3 gym framework [10]. This extension of ns-3 combines it
with the OpenAI gym so that ns-3 can be used more easily for RL
research. Furthermore, ns-3 gym also comes with Python bindings
for ns-3, so experiments can easily be made and run with Python
instead of using C++ directly.

4



Exploiting a cross-layer design for network performance improvement through Deep Reinforcement Learning TScIT 41, July 05, 2024, Enschede, NL

4.5 Neural Network Architecture
The implementation was made using Keras and TensorFlow in
Python 3s. The parameters we used in the DDQN implementation
can be found in Table 3 and were determined after an empirical
search for a configuration that would result in a stable network.
The neural architecture of the DDQN model was 2 Dense layers
with 256 units and a ReLU activation function. These two layers
would then be followed by a third dense layer with 27 units that
map the results from the previous 2 layers into 27 possible actions.
The optimizer we used was Adam [13], and our loss function was
the Mean Square Error function.

Parameter Value
Learning rate 0.005

Epsilon 0.99
Gamma 0.6
Batch size 128

Epsilon decrement 0.998
Replace target 25

Table 3. Parameters of the DDQN network

5 RESULTS
To evaluate the performance our DDQN model, we ran two sce-
narios in the ns-3 simulator. The first scenario utilized the DDQN
model and configuration and ran the DDQN agent in the AP. The
second scenario used the Minstrel-HT [16] rate selection algorithm
in the AP. Both scenarios ran for 10.000 iterations with the same
network model in ns-3 with 33 nodes. Each iteration would take 0.2
seconds, and we would only send data over the downlink from the
AP to the nodes. To measure the performance of our simulations,
we kept track of three metrics: average throughput, average latency,
and average packet loss.

5.1 Average Throughput
Our first performance metric is that of the average throughput of
the network. It is crucial since it measures the overall capacity our
network is performing at. Furthermore, its results can immediately
indicate what is happening in the network. If the throughput is
high, then the network is performing optimally. However, if the
throughput is low or decreasing, there is a problem somewhere else
in the network. This can range from buffers overflowing or packets
being dropped either due to collision or noise. Thus, throughput is
an important metric for measuring performance.

The results from both scenarios were first averaged over time. In
Figure 3, we plotted the network’s average throughput over time.
Initially, the DDQN agent performs significantly less than Minstrel.
This is due to the trial and error phase of the DRL model. As the
simulation continues, the throughput increases until it is stable at
around 25 Mbps. The minstrel scenario initially starts stronger than
the DDQN agent. However, it experiences a drop in performance
until it just outperforms the DDQN agent by 0.61%.

Fig. 3. Average Throughput

Fig. 4. Average Latency

5.2 Latency
Our next metric for measuring the scenario’s performance is latency.
Latency shows the time it took for a packet to be delivered at the
node. High latency suggests that the packet is stuck in the queue, it
is being dropped, or the throughput is low. Low latency indicates
either high throughput, low packet-loss, or small queues in the buffer.
Thus, high latency is another key metric we can use to evaluate the
performance of our scenario.
In Figure 4, the average latency for both scenarios is plotted.

The DDQN agent starts with a very high latency. However, this
drops significantly to a low latency as the agent learns. For the
minstrel scenario, the latency starts lower than compared to the
DDQN agent but stays fairly stable as the scenario keeps running.
At the end of the simulation, we can see that the DDQN agent has
9.47% lower latency than the Minstrel scenario. This result and a
similar throughput might indicate that another metric is performing
better, which results in this low latency.

5.3 Packet-Loss
Our third performance metric is packet-loss. Although latency can
indicate if significantly more packets are being dropped, we need
this third metric to confirm that. Packets being dropped can happen
under various circumstances: the buffer is overflowing, there is a low
SNR, or there is a high collision rate. Thus the average packet loss

5



TScIT 41, July 05, 2024, Enschede, NL Joris Kuiper

Fig. 5. Average Packet-Loss

can give a better understanding of the performance of our network
together with latency and throughput.
For the packet loss ratio, we can see in Figure 5 that the DDQN

agent starts with a significantly higher packet-loss. This decreases
sharply as the scenario continues. the minstrel scenario starts with
a lower packet- loss and has a small increase before becoming more
stable. Ultimately, the DDQN agent outperforms the minstrel sce-
nario with a 24.9%lower packet-loss ratio.

5.4 Analysis
To analyze our performance, we have identified three metrics. To-
gether, thesemetrics can give us a clear and concise understanding of
what is happening in our network. We can see that the DDQN agent
performs similarly to the Minstrel data rate manager in terms of
throughput. Furthermore, the DDQN agent performs better regard-
ing average latency and packet loss. In Minstrel, the only variable it
can change is the MCS, whereas our DDQN agent can change the
CW, MCS, and Transmit power. We noticed that in our simulations,
the DDQN agent was actively performing actions that would en-
able it to achieve the aforementioned results. This shows that the
DDQN agent can have more fine-grained control over the network
by reacting to the network conditions with the action that would
most affect the performance metrics.

6 FUTURE WORK
Our novel approach to improving the QoS of a network through
DRL has resulted in promising results. However, future work is still
needed to improve and further optimise the network performance
through DRL.

As mentioned before, the DDQN agent only changes variables in
the AP to optimize the network. Future work can be done to run the
DDQN agent on the nodes; this would require significantly more
monitoring and increase the complexity of the problem. However,
since our network only sent data from the AP to the nodes, this was
out of the scope of our research.

Automated Guiding Vehicles (AGV) are increasingly used in in-
dustrial IoT environments. These AGVs are moving around, and
thus, this is an important consideration for modelling the network.

In our network topology, we only used a network consisting of
static nodes due to the complexity the mobility in nodes brings to
the network. Future work can be done in applying our model to a
network topology with mobility added to the nodes. Initial attempts
have shown that mobility will introduce significant difficulties in
finding a stable DDQN agent capable of learning.

As the network is being used, small changes in earlier states can
influence the state of the network further down the line. These long-
term dependencies are hard to identify, and DDQN is unsuitable
for these environments. DDQN assumes that a new state can only
be influenced by the preceding state, thus missing the long-term
dependencies [4].

To capture these dependencies across multiple states, we recom-
mend investigating further the possibility of using the Long Short-
Term-Memory (LSTM) model. The LSTM architecture makes use of
memory cells and keep/forget gates. This allows the LSTM model
to selectively retain or discard information it learns throughout
training the model [11]. The LSTM model performs best in an envi-
ronment where sequential decision-making and delayed rewards
occur. This is also the case in our scenarios where the decisions are
made sequentially and can impact performance.

In our work, we tried to implement LSTM in our setup. However,
we were unable to configure a stable model that would learn. Thus,
we encourage future work to explore this promising possibility.

Another component worth further investigation is the reward
function. The reward equation is a piece-wise deep reward function
that rewards relative to the difference in throughput and no other
variables. We recommend investigating the possibility of including
latency and packet-loss as part of the reward function. However,
our initial attempts to include these performance metrics did not
yield a stable network. Furthermore, we believe that through a more
systematic investigation, finding a reward function using themetrics
will be possible.

Currently, our DRL agent is optimizing the overall network per-
formance using throughput, latency and packet-loss. However, fu-
ture research can be done in applying a multi agent DRL model in
the network and employing network slicing to optimize the QoS
and network performance for each specific application and service
running on the network.

7 CONCLUSION
With the rise of devices connected to IIoT networks, optimizing
the network’s performance has become a complex problem. Our
novel approach employed a DDQN model to optimize the network
performance through Deep Reinforcement Learning.
We simulated a static IoT network in an industrial environment

using ns-3. In the network, we deployed a set of nodes around the AP
to receive data from the AP in the downlink. We ran two scenarios,
one using the Minstrel data rate manager and the other using a
DDQN model in the Access Point.

Our DDQN agent has been shown to perform similarly toMinstrel
regarding the network’s overall throughput. However, at the end of

6



Exploiting a cross-layer design for network performance improvement through Deep Reinforcement Learning TScIT 41, July 05, 2024, Enschede, NL

the scenario, the DDQN agent performed slightly better in latency
and significantly better regarding packet loss.
Although these results have promising potential, future work is

needed to explore the feasibility of a DDQN agent to improve the
QoS of Industrial IoT networks. Furthermore, more parameters from
the TCP layer (e.g., congestion window or selective acknowledge-
ments) and MAC layer (e.g., frame aggregation or channel selection)
can be included in the DDQN agent to improve the Cross-Layer
Design.

8 ACKNOWLEDGEMENTS
I would like to thank my supervisor Kamran Zia MSc MRes for his
support, patience, and kindness throughout this research.

REFERENCES
[1] Mahmoud Abbasi, Amin Shahraki, Md. Jalil Piran, and Amir Taherkordi. 2021.

Deep Reinforcement Learning for QoS provisioning at the MAC layer: A Survey.
Engineering Applications of Artificial Intelligence 102 (2021), 104234. https://doi.
org/10.1016/j.engappai.2021.104234

[2] Robert Akl, Dinesh Tummala, and Xinrong Li. 2006. Indoor Propagation Modeling
at 2.4 GHz for IEEE 802.11 Networks. In wireless and optical communications. 1–6.

[3] Sri Harsh Amur, Kamran Zia, Alessandro Chiumento, and Paul Havinga. 2023.
Autonomous Network Slicing and Resource Management for Diverse QoS in
IoT Networks. In 2023 IEEE International Conference on Pervasive Computing
and Communications Workshops and other Affiliated Events (PerCom Workshops).
160–165. https://doi.org/10.1109/PerComWorkshops56833.2023.10150306

[4] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. 2017. Deep Reinforcement Learning: A Brief Survey. IEEE Signal Pro-
cessing Magazine 34, 6 (2017), 26–38. https://doi.org/10.1109/MSP.2017.2743240

[5] Sourangsu Banerji. 2013. On IEEE 802.11: Wireless LAN Technology. CoRR
abs/1307.2661 (2013). arXiv:1307.2661 http://arxiv.org/abs/1307.2661

[6] Jiann-Liang Chen, Shih-Wei Liu, Szu-Lin Wu, and Ming-Chiao Chen.
2011. Cross-layer and cognitive QoS management system for next-
generation networking. International Journal of Communication
Systems 24, 9 (2011), 1150–1162. https://doi.org/10.1002/dac.1218
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.1218

[7] Ren Duan, Xiaojiang Chen, and Tianzhang Xing. 2011. A QoS Architecture for
IOT. In 2011 International Conference on Internet of Things and 4th International
Conference on Cyber, Physical and Social Computing. 717–720. https://doi.org/10.
1109/iThings/CPSCom.2011.125

[8] WBA Wi-Fi 6/6E for IIOT Project team. 2022. Wi-Fi 6/6E for Industrial IOT
Enabling Wi-Fi determinism in an IOT world. https://wballiance.com/wi-fi-6-
6e-for-industrial-iot-whitepaper/

[9] Open Networking Foundation. 2012. Software-Defined Networking: The New Norm
for Networks. Technical Report. Open Networking Foundation.

[10] Piotr Gawłowicz and Anatolij Zubow. 2019. ns-3 meets OpenAI Gym: The Play-
ground for Machine Learning in Networking Research. In ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM) (Miami Beach, USA). http://www.tkn.tu-berlin.de/fileadmin/fg112/
Papers/2019/gawlowicz19_mswim.pdf

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-TermMemory. Neural
Computation 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[12] Murat Karakus and Arjan Durresi. 2017. Quality of Service (QoS) in Software De-
fined Networking (SDN): A survey. Journal of Network and Computer Applications
80 (2017), 200–218. https://doi.org/10.1016/j.jnca.2016.12.019

[13] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[14] Qingwen Liu, Xin Wang, and G.B. Giannakis. 2006. A cross-layer scheduling
algorithm with QoS support in wireless networks. IEEE Transactions on Vehicular
Technology 55, 3 (2006), 839–847. https://doi.org/10.1109/TVT.2006.873832

[15] Aqsa Malik, Junaid Qadir, Basharat Ahmad, Kok-Lim Alvin Yau, and Ubaid Ullah.
2015. QoS in IEEE 802.11-based wireless networks: A contemporary review.
Journal of Network and Computer Applications 55 (2015), 24–46. https://doi.org/
10.1016/j.jnca.2015.04.016

[16] Andrew Mcgregor and Derek Smithies. 2010. Rate adaptation for 802.11 wireless
networks: Minstrel. Submitted to ACM SIGCOMM (2010).

[17] Xiaohui Nie, Youjian Zhao, Dan Pei, Guo Chen, Kaixin Sui, and Jiyang Zhang.
2018. Reducing Web Latency Through Dynamically Setting TCP Initial Window
with Reinforcement Learning. In 2018 IEEE/ACM 26th International Symposium on
Quality of Service (IWQoS). 1–10. https://doi.org/10.1109/IWQoS.2018.8624175

[18] Meena Pundir and Jasminder Kaur Sandhu. 2021. A Systematic Review of Quality
of Service in Wireless Sensor Networks using Machine Learning: Recent Trend
and Future Vision. Journal of Network and Computer Applications 188 (2021),
103084. https://doi.org/10.1016/j.jnca.2021.103084

[19] Qi Qu, Yong Pei, James WModestino, and Xusheng Tian. 2006. Source-adaptation-
based wireless video transport: a cross-layer approach. EURASIP Journal on
Advances in Signal Processing 2006, 1 (2006), 028919.

[20] Matías Richart, Javier Baliosian, Joan Serrat, Juan-Luis Gorricho, and Ramón
Agüero. 2020. Slicing With Guaranteed Quality of Service in WiFi Networks.
IEEE Transactions on Network and Service Management 17, 3 (2020), 1822–1837.
https://doi.org/10.1109/TNSM.2020.3005594

[21] George F. Riley and Thomas R. Henderson. 2010. The ns-3 Network Simulator.
Springer Berlin Heidelberg, Berlin, Heidelberg, 15–34. https://doi.org/10.1007/
978-3-642-12331-3_2

[22] Manisha Singh and Gaurav Baranwal. 2018. Quality of Service (QoS) in Internet of
Things. In 2018 3rd International Conference On Internet of Things: Smart Innovation
and Usages (IoT-SIU). 1–6. https://doi.org/10.1109/IoT-SIU.2018.8519862

[23] Pranav Kumar Singh. 2012. Influences of TwoRayGround and Nakagami propaga-
tion model for the performance of adhoc routing protocol in VANET. International
Journal of Computer Applications 45, 22 (2012), 1–6.

[24] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael Gid-
lund. 2018. Industrial Internet of Things: Challenges, Opportunities, and Di-
rections. IEEE Transactions on Industrial Informatics 14, 11 (2018), 4724–4734.
https://doi.org/10.1109/TII.2018.2852491

[25] Giacomo Tanganelli, Carlo Vallati, and Enzo Mingozzi. 2018. Ensuring Quality of
Service in the Internet of Things. Springer International Publishing, Cham, 139–163.
https://doi.org/10.1007/978-3-319-58190-3_9

[26] Transforma Insights; Exploding Topics. 2023. Number of Internet of Things (IoT)
connected devices worldwide from 2019 to 2023, with forecasts from 2022 to 2030
(in billions) [Graph]. https://www.statista.com/statistics/1183457/iot-connected-
devices-worldwide/

[27] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. Proceedings of the AAAI Conference on Artificial
Intelligence 30, 1 (Mar. 2016). https://doi.org/10.1609/aaai.v30i1.10295

[28] Ying Wang, Xiangming Dai, Jason Min Wang, and Brahim Bensaou. 2019. A
Reinforcement Learning Approach to Energy Efficiency and QoS in 5G Wireless
Networks. IEEE Journal on Selected Areas in Communications 37, 6 (2019), 1413–
1423. https://doi.org/10.1109/JSAC.2019.2904365

[29] Witold Wydmański and Szymon Szott. 2021. Contention Window Optimization in
IEEE 802.11ax Networks with Deep Reinforcement Learning. In 2021 IEEEWireless
Communications and Networking Conference (WCNC). 1–6. https://doi.org/10.
1109/WCNC49053.2021.9417575

[30] XiPeng Xiao. 2008. Chapter 13 - QoS in Wireless Networks. In Technical, Com-
mercial and Regulatory Challenges of QoS, XiPeng Xiao (Ed.). Morgan Kaufmann,
Boston, 225–246. https://doi.org/10.1016/B978-0-12-373693-2.00013-6

[31] Kamran Zia, Alessandro Chiumento, and Paul J. M. Havinga. 2022. AI-Enabled
Reliable QoS in Multi-RAT Wireless IoT Networks: Prospects, Challenges, and
Future Directions. IEEE Open Journal of the Communications Society 3 (2022),
1906–1929. https://doi.org/10.1109/OJCOMS.2022.3215731

7

https://doi.org/10.1016/j.engappai.2021.104234
https://doi.org/10.1016/j.engappai.2021.104234
https://doi.org/10.1109/PerComWorkshops56833.2023.10150306
https://doi.org/10.1109/MSP.2017.2743240
https://arxiv.org/abs/1307.2661
http://arxiv.org/abs/1307.2661
https://doi.org/10.1002/dac.1218
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/dac.1218
https://doi.org/10.1109/iThings/CPSCom.2011.125
https://doi.org/10.1109/iThings/CPSCom.2011.125
https://wballiance.com/wi-fi-6-6e-for-industrial-iot-whitepaper/
https://wballiance.com/wi-fi-6-6e-for-industrial-iot-whitepaper/
http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/2019/gawlowicz19_mswim.pdf
http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/2019/gawlowicz19_mswim.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1016/j.jnca.2016.12.019
https://doi.org/10.1109/TVT.2006.873832
https://doi.org/10.1016/j.jnca.2015.04.016
https://doi.org/10.1016/j.jnca.2015.04.016
https://doi.org/10.1109/IWQoS.2018.8624175
https://doi.org/10.1016/j.jnca.2021.103084
https://doi.org/10.1109/TNSM.2020.3005594
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1109/IoT-SIU.2018.8519862
https://doi.org/10.1109/TII.2018.2852491
https://doi.org/10.1007/978-3-319-58190-3_9
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.1109/JSAC.2019.2904365
https://doi.org/10.1109/WCNC49053.2021.9417575
https://doi.org/10.1109/WCNC49053.2021.9417575
https://doi.org/10.1016/B978-0-12-373693-2.00013-6
https://doi.org/10.1109/OJCOMS.2022.3215731


TScIT 41, July 05, 2024, Enschede, NL Joris Kuiper

A DECLARATION OF AI AND AI-ASSISTED
TECHNOLOGIES IN THE WRITING PROCESS

During the preparation of this work, the author used OpenAI’s
ChatGPT in order to improve the author’s understanding of small
sections of the theory and format tables for LaTeX. After using this
tool/service, the author reviewed and edited the content as needed
and takes full responsibility for the content of the publication.

Furthermore, during the preparation of this work, the author used
Grammarly in order to improve the author’s grammar and spelling.
After using this tool/service, the author reviewed and edited the

content as needed and takes full responsibility for the content of
the publication.

B TOOLS USED
• Overleaf
• Visual Studio Code
• Grammarly
• Google Sheets
• ChatGPT
• LibreOffice Calc
• Ubuntu 22.04

8


	Abstract
	1 Introduction
	2 Related Work
	3 Network model
	4 Reinforcement Learning Model
	4.1 States
	4.2 Actions
	4.3 Reward
	4.4 DRL Model
	4.5 Neural Network Architecture

	5 Results
	5.1 Average Throughput
	5.2 Latency
	5.3 Packet-Loss
	5.4 Analysis

	6 Future work
	7 Conclusion
	8 Acknowledgements
	References
	A Declaration of AI and AI-assisted technologies in the writing process
	B Tools used

