
Input Invariants in Fuzz-testing
MARKO VASYLENKO, University of Twente, The Netherlands

Fuzz-testing is a technique in which test inputs are generated programmati-

cally to enhance software testing efficiency. This study investigates the suit-

ability of ISLa, a declarative specification language to improve fuzz-testing.

ISLa augments context-free grammars (CFG) with additional constraints to

express context-sensitive input invariants. In the present study, a testing

setup is developed, in which ISLa is used to specify invariants of valid test

inputs, as well as test-case-specific preconditions. The expressiveness of ISLa

as a specification language is evaluated, as well as the ISLa’s effectiveness in

generating test inputs which reveal implementation bugs. Ultimately, it is

concluded that while ISLa helps tackle some challenges in generating test

input, it has some fundamental and practical limitations that prevent it from

being widely applicable as an input generation tool.

Additional Key Words and Phrases: property-based testing, preconditions,

input fuzzing, context-free grammar

1 INTRODUCTION
Fuzz-testing is a technique used for efficient and extensive test-

ing of software systems by means of programmatically generating

test inputs. By those means, it aims to reduce the need for manual

specification and introduce unusual inputs that could have been

overlooked by a human tester [8]. However, test input generation

might be complicated by the system under test expecting a com-

plex, well-structured input, which is tackled in a variety of ways,

e.g. by grammar-based fuzzers restricting the input structure with

Context-Free Grammars (CFG) [8]. Moreover, it is common to aim

at generating input that improves code coverage and explores more

execution branches of the system under test [21].

Similarly to fuzz-testing, in property-based testing inputs are gen-

erated to satisfy some test-case-specific preconditions, to control

which parts and properties of the program are tested with each

test case. Notably, generating precondition-satisfying test inputs

with space precondition proves challenging [5, 11, 12] and has been

attempted in a variety of ways [6, 10–12]. Coverage-guided fuzzing

has also been successfully used to this end [11].

The present study combines ideas of fuzz-testing and property-

based testing and attempts to implement them using ISLa [15]. In

the landscape of fuzzing tools, ISLa is a declarative specification

language that enhances the CFG of the input language with addi-

tional constraints, which express potentially context-sensitive struc-

tural and semantic invariants of a valid test input. ISLa comes with

ISLearn, a tool capable of mining said constraints from samples

of conforming and non-conforming inputs and/or an observable

system which accepts the inputs [15]. On the one hand, it has been

shown to effectively fuzz inputs in languages such as XML, reST,

and scriptsize-C) [15]. On the other hand, it has been speculated that

ISLa could be used to express test-case specific preconditions and

TScIT 41, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and

Computer Science.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

generate conforming test inputs [5], while ISLearn could be used to

infer such preconditions from runtime observations of the system

under test [15]. This paper explores the application of ISLa and

ISLearn to fuzz-testing a program resembling a simple automated

build system with its own configuration format, aiming to both fuzz

structurally and semantically valid test inputs, and generate test

inputs which trigger specific behaviours of the program.

2 CHALLENGE

2.1 Input grammars and invariants
When performing fuzz-testing, valid input generation can be chal-

lenging in cases of the system under test imposing complex require-

ments on the input and the test cases with sparse preconditions.

In particular, grammar-based systems use inputs that conform to a

specific CFG for a range of purposes from modelling the problem

domain to data representation [13]. Oftentimes, the input language

of the system is subject to semantic and structural constraints that

are inherently context-sensitive, and therefore cannot be described

by a CFG, e.g. variable definition and use with block scoping in

C-like languages. To that end, ISLa has been developed [15].

Listing 1. Example ISLa constraint for C definition-use semantics

1 forall <expr > expr in start:

2 forall <id> use_id in expr:

3 exists <declaration > decl="int {<id> def_id

}[= <expr >];" in start:

4 (level("GE", "<block >", decl , expr) and (

before(decl , expr) and (= use_id

def_id)))

In Listing 1, nonterminals of the target grammar are written in

angle brackets. ISLa features quantifiers, like for <expr> expr in
start: on the first line, which means that the following predicate

must hold for all instances of nonterminal <expr> in the start
subtree (in this case, the root of the derivation tree, quantification

within any subtree bound to a variable name is possible). The quan-

tifier also binds the subtree with <expr> at its root to variable expr,
which can be later referenced in the predicate. While forall is

a universal quantifier, ISLa also features an existential exists, as
seen on the line 3 which quantifies the existence of at least one

such derivation of <declaration> that matches the derivation tree

pattern "int {<id> def_id}[= <expr>];". The pattern specifies

the matched derivation tree of the quantified nonterminal and al-

lows binding subtrees to variables with the {<id> def_id} syntax

and including optional parts of the pattern in square brackets, such

as [= <expr>]. Finally, nested under the three levels of quantifiers
is the predicate, expressed as a boolean combination of ISLa-specific

predicates like level("GE", "<block>", decl, expr) and SMT-

LIB expressions, such as (= use_id def_id). This predicate, which
should hold for all combinations produced by quantifiers above, ex-

presses that there must be a declaration at the same or a higher block

space level as the expression (expressed by the level predicate),

1

TScIT 41, July 8, 2022, Enschede, The Netherlands Vasylenko

with the declaration occurring before the expression, where the

variable name declared (def_id) matches the variable name used

(use_id). In this declarative manner, ISLa is capable of expressing

context-sensitive aspects of the input language structure [15].

2.2 Test preconditions
In addition to the challenge of generating valid inputs, the test cases

might require inputs satisfying sparse preconditions, i.e. semantic

invariants that do not follow directly from the data structure [11].

For example, if a procedure on a large graph has a bug that only

results in incorrect input in the graph containing a specific structure,

such as a cycle, a generator of arbitrary graph instances might not

enumerate enough examples in the input space to find the graph

with the critical structure. In this situation, the property-based test-

ing system is unlikely to find counterexamples, despite the presence

of a bug. To that end, the present study explores the use of ISLearn,

a tool developed on top of ISLa for extracting ISLa constraints given

a set of examples or simply a property that discriminates positive

and negative examples [15]. It is done by matching patterns from

ISLearn’s pattern catalogue over the provided or generated sample

inputs. In addition to learning context-sensitive constraints of XML,

reST, DOT, scriptsize-C and other languages, it has been speculated

by the authors that ISLearn can be used to extract test input gen-

eration strategies by learning constraints that correlate to certain

observable program behaviours [15]. Provided that the program

states of interest, e.g. reaching a certain execution branch, raising a

runtime exception, or completing successfully, within each test case

can be observed at runtime, these observations can be used as the

property function for ISLearn to learn the ISLa constraints which

correspond to the relevant test case preconditions.

2.3 ResearchQuestions
The present study is focused on evaluating the suitability of ISLa

and ISLearn for fuzz-testing, specifically, using ISLa to formalise the

input language specification, using ISLearn to extract test input gen-

eration strategies from an observable system under test, and using

ISLa to further generate, ideally, valid and precondition-satisfying

input.

RQ1 How well can testing preconditions be expressed in ISLa? Is

ISLa expressive enough to describe useful test preconditions?

What are the fundamental limitations to its expressiveness

as a specification language? Which practical limitations com-

plicate the usage?

RQ2 How effective is ISLa at generating test inputs? Do generated

inputs reveal bugs?

RQ3 What (kinds of) preconditions can be mined with ISLearn?
ISLearn might not be able to pick up on all the preconditions:

what separates the ones it learns from the ones it misses?

Which fundamental or practical limitations hinder precondi-

tion mining?

Ultimately, we aim to evaluate how suitable ISLa in its current

state is for use in fuzz-testing, and which problems or limitations

affect it and might have to be tackled to improve the usability in

this use case.

3 METHODOLOGY

3.1 Case study: an input language
ISLa and ISLearn will be evaluated based on a case study on an

XML-based configuration language (hereafter referred to as AIL,

short for An Input Language) which borrows its semantics from a

few different configuration languages.

Listing 2. Example of an input language sentence

1 <build>

2 <task id="main_task" main="true">

3 <dep id="sub_task"></dep>

4 <step cost="12">sudo rm -rf</step>

5 <step script="./step1.sh" cost="30"></step>

6 </task>

7

8 <task id="sub_task">

9 <step cost="1">echo hello</step>

10 </task>

11 </build>

AIL is used for a simple system which resembles a simplified

variation of GNU Make [4]. The language includes several con-

straints: the permissible tags are limited to <build> (only appears

once, at the root of the XML tree), <task>, <dep>, and <step>; each
<task>must have a unique id attribute; exactly one task must have

main="true" to designate it as the primary build target; <task> ap-
pears only at the top level; within a <task>, there can be <dep> and
<step> elements; <dep>must contain no inner text or sub-elements

and reference an existing task ID with its id attribute; and <step>
must have a cost attribute with an integer value and either a script
attribute or content representing a command.

These constraints borrowed from formats including HTML [20],

Docker Compose [2], and GNUMake [4] and are commonly featured

in other configuration formats and domain-specific languages. The

input language was designed to be simple yet to include several

context-free and context-sensitive conditions commonly occurring

in other input languages.

3.2 Conditions for tests
Taking XML (based on The Fuzzing Book [24]) as a basis, there are

several additional conditions for a valid AIL sentence, which can be

divided into context-free (those that can be formalised with a CFG)

and, conversely, context-sensitive.

The context-free conditions considered in this case study include:

(CF1) Only correct tags are used;

(CF2) Only correct attribute names are used;

(CF3) The root of the document is the only <build> tag;
(CF4) Only the <step> tag may contain text;

(CF5) <step> tags only appear inside <task> tags;

(CF6) <dep> tags only appear inside <task> tags;

Context-sensitive conditions include:

(CS1) Task IDs must be unique;

(CS2) Dependencies should only refer to existing tasks (IDs must

match);

(CS3) There must be one and only one main entry point;

2

Input Invariants in Fuzz-testing TScIT 41, July 8, 2022, Enschede, The Netherlands

(CS4) There should be no circular dependencies between tasks;

(CS5) All tasks should be in the dependency tree of the main entry

point.

3.3 Fuzzing AIL tests with ISLa
The first part of the case study entails attempting to generate precondition-

satisfying test inputs with ISLa, preconditions being the context-

free and context-sensitive conditions described in subsection 3.2,

as well as their negations. First, implementation of the separate

conditions as ISLa constraints are attempted, after which they can

be combined using conjunction, disjunction, and negation. While it

is expected that ISLa is sufficiently expressive for most conditions,

some might be impossible to translate, possibly revealing fundamen-

tal limitations of ISLa as a specification language. More subjective

observations are made concerning practicalities such as the ease (or

difficulty) of troubleshooting a specification.

Afterwards, fuzzing test inputs with ISLa using previously im-

plemented constraints is performed. To evaluate the effectiveness

of ISLa-generate precondition, several bugs are injected into the

AIL processor, one at a time, and resulting buggy implementations

are fuzz-tested with ISLa as a test input generator. When generat-

ing test inputs for each test case, ISLa constraints are introduced

incrementally, measuring the number of test cases and time elapsed

before producing a crash. This approach borrows ideas from mu-

tation testing, in which the tester aims to find a set of test inputs

which can be used to discriminate a correct program from programs

"close" to the correct one [1]. However, the present study is limited

to a small set of programs "close" to the correct one, i.e. one for

each injected bug, which is used to evaluate the effectiveness of test

input sets produced by ISLa to produce a crash, i.e. discriminate an

almost correct program from the correct one.

ISLearn is claimed to infer constraints using the input grammar

and an observable system [15]. Since each of the injected bugs leads

to a crash of the program, a programmer crash could be used as a

property mine condition that could produce input which triggers

the erroneous behaviour.

The specific implementation will aim to follow the intended de-

sign but might deviate from it to work around the fundamental

or practical limitations of ISLa and ISLearn. Just as the limitations

themselves, these workarounds constitute useful insight and are re-

ported in the present study to contribute to conclusions and inform

suggestions for further work.

4 IMPLEMENTATION
To incorporate ISLa into the testing process more conveniently, a

simple test framework in Python was developed (published under

MIT Licence) [17]. It provides simple runtime observability of the

system under test using stateful Condition objects, which are trig-

gered in the code of tested system. Conditions can be composed

and modified using boolean conjunction, disjunciton, and negation.

While simple conditions can be triggered directly and are then con-

sidered true, composite conditions are evaluated as the value of the

underlying boolean expression with values of constituent conditions

substituted. Using these conditions, a tester can programmatically

verify that a specific execution flow associated was triggered. The

framework then provides a convenient way to decorate test func-

tions, assigning them relevant conditions. In turn, the framework

will create property functions to test whether a given input triggers

a specific condition. Namely, the resulting property function accepts

a test input; the test condition is reset, so that it can be triggered

again by the system under test; then the test function is called on

the test input; the test function is expected to pass the given input

to the system under test, which in turn will trigger the conditions;

afterwards the test condition is evaluated and it value is returned.

There derived property functions are passed to ISLearn to mine

preconditions and used in the experiments with injected bugs, to

verify that specific buggy behaviours are triggered.

Throughout the case study, a few practical limitations or problems

of ISLa were encountered, some fixed, others worked around. For

instance, the ISLa solver would sometimes unpredictably get stuck

generating new input samples. By default, ISLa generates one input

each time the ISLaSolver.solve()method is invoked, with inputs

typically getting longer and more complex with each subsequent

one, and will raise a StopIteration exception if the solver claims

that no more satisfying solutions can be found [16]. This seems

to work well on the input languages evaluated in the study that

introduces ISLa [15], however, when generating AIL with the gram-

mar and constraints developed in this study, the solver would run

out of solutions often before having generated 200 samples, while

clearly more variations of inputs satisfying the constraints existed,

e.g. obtained by re-initialising the solver and generating new in-

puts. In the present study, it has been worked around by generating

inputs with ISLaSolver.solve() until StopIteration is raised,

and then consequently mutating previously generated input with

ISLaSolver.mutate(). When ISLaSolver.mutate(), eventually
gets stuck, the solver is reinitialised and the previous procedure

repeats. Note, that this is done on-demand, one input at a time,

implemented at Python generator.

On another note, while ISLa uses text angle brackets to denote the

input grammar’s nonterminals, it provides no mechanism to escape

them in case the input language in case the underlying language

also uses these characters. This led to errors while parsing ISLa

match expressions which contained these characters, which were

common since AIL (like XML) uses angle brackets to denote tags.

As a crude workaround, angle brackets in the AIL grammar were

replaced by parentheses and then replaced back with angle brackets

in the generated input sample. Similarly, double quotation marks

were replaced by single quotation marks, to avoid unnecessary

escaping.

Lastly, running some parts of ISLa resulted in unhandled run-

time exceptions or logical errors. For example, calls to the built-in

count() predicate consistently resulted in an AttributeError. In
the level() predicate, there was a potential logical error, for which
a solution was found and contributed back to ISLa [18].

5 RESULTS

5.1 Context-free conditions
All considered context-free constraints are, in principle, expressible

in ISLa. With constraints CF1-CF6 (corresponding ISLa code is listed

in Appendix A) implemented in ISLa, a benchmark was performed

3

TScIT 41, July 8, 2022, Enschede, The Netherlands Vasylenko

measuring mean time, across 10 runs, to generate fixed numbers

(1, 10, and 100) inputs. On the first iteration, ISLa is only provided

with the CFG for XML, as defined in The fuzzing Book [24]; on the

second iteration, a constraint for matching XML open and close tags

[15] is added; subsequently, constraints which model conditions

CF1-CF6 are added, one per iteration.

Table 1. Time to generate N inputs satisfying AIL’s context-free conditions

ISLa
Constraint

Time (s.) to N inputs
N=1 N=10 N=100

None 0.071 0.112 0.68

+balanced xml 0.125 1.745 6.771

+correct tags (CF1) 1.423 1.588 6.582

+correct attrs. (CF2) 1.522 1.523 6.408

+build tag (CF3) 1.868 2.693 21.839

+text only in step (CF4) 1.707 3.188 29.95

+step inside task (CF5) >1800* >1800* >1800*

+dep inside task (CF6) >1800* >1800* >1800*

* a benchmark is considered timed-out after 30 min. (1800 sec.)

Since test fuzzing entails generating a massive amount of test

inputs, the time it takes to generate an input sample should be lim-

ited. In the present study, a limit of 30 minutes
1
is set, after which

the attempt is considered to have timed out. This limit is quite far

above what would be practical for test input generation, where, typ-

ically, multiple inputs are produced per minute. However, including

data points up to 30 minutes in cases of inadequate performance

allows to reason about the extent to which the performance is not

adequate. As seen in Table 1, after adding the constraint for CF5,

input generation times out even when attempting to obtain a single

input.

5.2 Context-sensitive conditions

Listing 3. ISLa for CS1 - all IDs are unique

1 forall <task >="(task id='{<id> task_id}')<deps ><

steps >(/ task)":

2 (not (exists <task > other="(task id='{<id>

other_task_id }')<deps ><steps >(/ task)":

3 (task_id = other_task_id)))

Since the performance issues observed when expressing context-

free conditions in ISLa would complicate the effective evaluation of

the other, context-sensitive, conditions, the context-free conditions

were instead encoded into a CFG (listed in Appendix A). With that,

context-sensitive conditions CS1-CS3 could be directly described us-

ing only SMT expressions, boolean expressions and tree quantifiers

in ISLa [15].

Listing 4. ISLa for CS2 - only use existing task IDs in dependencies

1 forall <dep >="(dep id='{<id> dep_id }'/)":

2 exists <task >="(task id='{<id> task_id}')<deps

><steps >(/ task)":

3 (dep_id = task_id)

1
benhcmarks are measured on a 2,6 GHz 6-Core Intel Core i7 CPU with 16 GB 2667

MHz DDR4 Memory running macOS 13.6.1

Table 2. Time to generate N inputs satisfying AIL’s context-sensitive condi-
tions

ISLa
Constraint

Time (s.) to N inputs
N=1 N=10 N=100

None 0.407 0.928 2.158

+unique IDs (CS1) 0.759 0.612 13.451

+existing deps (CS2) 0.157 0.122 14.903

+one entry point (CS3) 1.176 1.105 33.908

+no self-deps (rel. CS4) 1.735 1.337 34.539

+no orphans tasks (rel. CF5) 1.288 1.251 37.091

For CS3, a potential simple implementation could be possible

using the count(tree, NEEDLE, NUM) predicate built into ISLa,

which constraints the number of occurrences of the NEEDLE nonter-

minal inside of the tree to NUM. However, since calling this predicate
with start, i.e. the root of the derivation tree, as tree resulted in an

unhandled runtime exception in ISLa, an alternative implementation

of the condition using quantifiers was chosen instead.

Listing 5. ISLa for CS3 - exactly one main entry point

1 forall <main -true > a in start:

2 forall <main -true > b in start:

3 (same_position(a, b)))

4 and (exists <mb-main > main in start:

5 (main = " main='true'")

Unlike CS1-CS-3, CS4 (no circular dependencies between tasks)

could not be directly expressed in ISLa. Since tasks form a direct

graph where edges represent dependencies, formally describing a

cycle, i.e. a path of tasks ⟨𝑡0; 𝑡1; . . . ; 𝑡𝑘 ⟩ where 𝑡0 = 𝑡𝑘 and the path

contains at least one edge, would require an expression binding an

arbitrary number of variables, one for each task in the cycle. Since

ISLa does not feature anything akin to cycles or recursion, each ex-

pression can only operate on nodes bound to variables either explic-

itly by match expressions or implicitly by using free-nonterminals.

Therefore a constraint over an arbitrary number of nodes, such

as the no-cycle constraint is not expressible in ISLa. However, a

constraint expressing the presence or absence of a cycle of a certain

fixed length is, in principle possible. For instance, the simplest cycle,

where a task depends on itself could be expressed by the constraint

in Listing 6.

Listing 6. ISLa for CS4 - no task depends on itself

1 forall <dep > d="(dep id='{<id > dep_id }'/)":

2 exists <task > t="(task id='{<id> task_id}')<

deps ><steps >(/ task)":

3 ((dep_id = task_id) and (not (inside(d, t)))

)

This means that, in principle, this constraint could be expressed

for all cycles in a certain range of lengths, but it must be noted that a

definition for each specific length will incur a separate performance

cost.

Another condition that cannot be directly expressed in ISLa is CS5,

which specifies that all tasks must be in the dependency tree of the

main entry point. Much like in CS4, this would require considering a

4

Input Invariants in Fuzz-testing TScIT 41, July 8, 2022, Enschede, The Netherlands

path in the task dependency graph consisting of an arbitrary length

of tasks, which is not possible in ISLa. However, it is not difficult to

specify that each task, except for the main entry point is depended

on by at least one task, as seen in Listing 7.

Listing 7. ISLa for CS5 - no orphaned tasks

1 forall <task >="(task id='{<id> task_id}')<deps ><

steps >(/ task)":

2 exists <dep > d="(dep id='{<id> dep_id }'/)":

3 (dep_id = task_id)

Note, that the code in Listing 7 does not specify that a task is

depended on by a different task, but rather simply that there is a

dependency with the matching ID. However, in combination with

the code in Listing 6, it guarantees the absence of orphaned tasks, i.e.

tasks on which no other task depends. This constraint still does not

guarantee that all tasks are in the dependency tree of the main entry

point, but it excludes one of the way in which this constraint is

violated and makes it more likely to hold, especially in small inputs

containing few tasks.

While the ISLa solver still generally slows down upon adding each

consecutive constraint, sample inputs for all implemented context-

sensitive constraints were successfully generated in time shown it

Table 2.

5.3 Evaluating effectiveness of test inputs
To evaluate the quality of test inputs, i.e. their effectiveness in finding

erroneous behaviours in the system under test, multiple bugs were

manually injected into different parts of the program that processes

AIL input. As seen in Table 3, when using relevant ISLa constraints

in combination with the AIL CFG, generated test inputs lead to

triggering the crashes caused by the injected bug sooner.

Table 3. Evaluating the quality of test inputs generated with ISLa using
relevant constraints

ISLa
Constraint

Inputs until crash
Bug #1 Bug #2 Bug #3

None 78.2/2.220s 353.6/9.73s timeout*
+CS1 1.2/0.146s 47.2/4.29s 576.3/63.842s

+CS2 1.0/1.506s 55.4/24.084s 41.0/8.94s

+CS3 1.0/1.419s 48.6/18.484s -**

+no self-dep. 1.0/1.887s 37.0/12.897s 1.4/3.008s***

+no orphaned tasks 1.0/1.846s 44.8/15.469s -**

* if no crash produced in 30m or 1000 inputs, the benchmark is

considered timed out

** skipped for the specific for performance reasons

*** inverted for the specific use case

5.4 Mining preconditions with ISLearn
A simple runtime observability system has been set up, using flags

which are set by the system under test in select places in its execution

flow, specifically, when the system encounters an error in the input

and exists early, or when an exception cause by one of the injected

bugs is raised. The value of a flag can be accessed after the program

terminates, either successfully or with an error, to check whether

the corresponding runtime behaviour was triggered. This allows

using a combination of the programme and a flag to be used as a

property function which checks whether a given test input trigger

the program behaviour corresponding to the flag. Such a property

function together with the input grammar technically satisfies the

minimum requirements for ISLearn to mine invariants of inputs

which satisfy the property, i.e. trigger the desired runtime behaviour

of the programme [15]. However, when used to mine conditions for

valid AIL input, ISLearn terminated with no results, failing to find

positive examples for learning, which means that among the inputs

generated based on the input grammar, none happened to trigger the

desired runtime behaviour. To work around this issue, inputs were

fuzzed with ISLa using additional constraints to increase the relative

frequency of positive examples. Despite providing both positive and

negative examples, no constraints were mined by ISLearn on AIL.

6 DISCUSSION
Overall, the effectiveness of ISLa in fuzz-testing AIL has varied

between different sub-problems. When it comes to describing in-

variants of valid test inputs, ISLa is generally expressive enough

to afford context-free constraints. However, even with the number

of constraints in a simple input format like AIL, it is impractical

to generate test inputs with ISLa due to its poor performance in

the presence of multiple constraints. Performance is significantly

improved by expressing the context-free invariants using CFG and

restricting the use of ISLa constraints to describe context-sensitive

invariants.

ISLa has been successfully used to express context-sensitive pre-

conditions for specific test cases. Preconditions expressed in ISLa

have been shown to increase the likelihood of reaching specific

behaviours of the system under test which are relevant to the test

case, therefore revealing the bugs in the system sooner compared

to generating inputs based on the CFG alone. Still, while using ISLa

constraints improved the quality of test inputs, not all precondi-

tions could be exactly expressed in ISLa. Preconditions, which use

an arbitrary number of nodes are impossible since all the nodes

must be bound to separate variables. In some cases, language-level

ISLa predicates such as count() and inside() can be used to de-

scribe constraints not possible or inconvenient otherwise. However,

ISLa currently does not include predicates necessary to describe

constraints over task dependencies in AIL, specifically the absence

of cyclic dependencies and all tasks being contained in the depen-

dency tree of the main entry point. Note, that it is possible, that in

some cases where it is not possible to directly describe the desired

constraint, an expressible equivalent might exist. However, in the

present study, such equivalents for the task dependency constraints

were not found, instead particular cases of invariants were imple-

mented, which did not guarantee conforming inputs but increased

the likelihood of generating one. Regardless, the ability to express

conditions involving an arbitrary number of nodes is dependent

on the existence of simpler equivalents or the presence of relevant

language-level predicates.

When it comes to quality of the generated test input, using rele-

vant ISLa constraints as test-case preconditions is shown to increase

the efficiency of revealing bugs. As seen in Table 3, it decreased

5

TScIT 41, July 8, 2022, Enschede, The Netherlands Vasylenko

the number of inputs and time needed to find Bug #1, which was

already found with no too much difficulty when no constraints were

used. Not only that, but it allowed to efficiently find Bug #3, which

otherwise was not discovered within the time limit at all. However,

in case of Bug #2 the improvements were less significant, and the

addition of the last precondition led to a worse performance than

with the combination of the previous four.

Note also, that for Bug #1, after adding the first two conditions,

the crash was always triggered on the first try, however, adding

each consequent constraint led to diminishing returns in terms of

time required to generate the test input. Together with benchmarks

listed in Table 1 and Table 2, this shows how the time to generate

inputs noticeably increases when adding more constraints.

6.1 Threats to validity
While this case study attempts to draw generalised conclusions

about the usability of ISLa for fuzz-testing, the scope of it is narrow.

Only one case study is considered, namely AIL, which is designed to

resemble real-world build systems like GNU Make and Maven but is

nevertheless a simplified example of such a system. The performance

of ISLa on a larger system, with potentially more complex input

constraints and a larger code base may differ.

Additionally, ISLa and more so ISLearn seem to be in a fairly

unstable phase of development, with some instances of crashing and

failing in unpredictable ways despite following the documentation.

As the result, several experimental setups were rejected simply due

to producing an unexpected crashes. Additionally, it could suggest

that some performance limitations faced might be a consequence of

a bug in the implementation.

7 RELATED WORK

7.1 Fuzz-testing
Test input fuzzing has seen a lot of contributions improving its

effectiveness in discovering software bugs and vulnerabilities. In

particular, coverage-guided approaches have proven effective [21,

23]. Some systems, like interpreters and compilers, define complex

requirements for valid inputs, to which end grammar-based fuzzing

techniques have been used to generate inputs which conform to

the target grammar [8, 9]. Grammar-aware and coverage-based

approaches have also been combined in grammar-aware grey-box

fuzzing to surpass the out-of-the-box performance of AFL [19].

Alternatively, evolutionary algorithms that select for test inputs

which trigger certain observable behaviours, e.g. runtime exceptions,

can also be used to fine tune fuzzers for better coverage and more

effective discovery of erroneous behaviours [3].

While all the aforementioned approaches aim to be generic, some

more complex input validity requirements are better handled with

specialised tools. For instance, CSmith, a tool for generating C code

for compiler testing, in addition to generating structurally and se-

mantically valid C code, also guarantees that the generated programs

do not contain undefined behaviour [22]. Polyglot tools that can

handle such complex semantics, e.g. XSmith, also exist, however,

they require a complex input specification [7].

7.2 Property-based testing
Similarly to grammar-based fuzzing, property-based testing (PBT)

aims to comprehensively test programs by generating large amounts

of random test input [5]. Unlike the former, it relies on a more

extensive program behaviour specification consisting of executable

properties, often in the form of preconditions, satisfied by input,

and postconditions, which should be satisfied by the output of the

programme. Such a specification is a significantly more complete

description of the intended program behaviour than just an input

grammar, which comes at a cost of more demanding implementation

and verification.

While PBT often avoids the problem of generating structurally

valid inputs by relying on data structures of the host language, effi-

ciently generating precondition-satisfying input is often challeng-

ing [5, 11, 12]. In the quest for an efficient and straightforward mech-

anism for generating precondition-satisfying test inputs a range of

approaches has been explored, including domain-specific languages

for defining input generators [10], search-based test generation

strategies to more efficiently explore the input space [12, 14], and

modelling generators as parsers of random streams of decisions [6].

Ideas from coverage-guided fuzzing have also been successfully in-

corporated into PBT, specifically, for identifying, retaining, and mu-

tating those test inputs which expand control-flow coverage, there-

fore, increasing the probability of finding precondition-satisfying

inputs [11]. It is claimed to perform significantly better than random

testing in cases that require satisfying space preconditions [11].

8 CONCLUSION
Relying on the observations and results of the AIL case study, we

draw the following answers to the research questions.

RQ1 How well can testing preconditions be expressed in
ISLa?

ISLa is decently effective in expressing test preconditions. As

shown in the case study on AIL, ISLa as a specification language is

suitable to express conditions relevant to test input. However, ISLa

generally does not afford expressing conditions, whose computa-

tional description requires an unbounded number of derivation tree

nodes. Note, that some specific cases of this limitation are addressed

by supporting language-level predicates which allow expressing

some conditions not expressible otherwise, which is only a partial

solution to the problem, as it leaves the user dependent on the avail-

ability of relevant predicates. On the practical side, the performance

of the ISLa solver when combining several conditions is inadequate

for use in fuzz-testing.

RQ2 How effective is ISLa at generating test inputs?

The technique of generating test inputs with ISLa using test-

relevant input preconditions has been shown to improve the ef-

ficiency of revealing bugs in the system under test compared to

generating test input based on the input CFG alone.

RQ3 What preconditions can be mined with ISLearn?

In response to RQ3, we conclude that ISLearn is, in its current

state, not a suitable tool to infer test-relevant preconditions by

observing the system under test.

6

Input Invariants in Fuzz-testing TScIT 41, July 8, 2022, Enschede, The Netherlands

In summary, ISLa has been shown to effectively tackle some

of the challenges in fuzz-testing programs which accept an input

structured by a CFG. However, this tool has significant limitations in

the types of test conditions which can be expressed and its runtime

performance when generating test inputs. For instance, it is unlikely

to be suited to fuzz compilers with complex static analysis, both due

to its limitations in expressiveness and risk of poor performance

as a result of a high number of constraints needed to describe the

semantics of the input programming language. In these instances,

it is ideal to use specialised tools, e.g. CSmith [22], or polyglot tools

such as XSmith [7]. Nevertheless, in cases of test input languages

with relatively simple semantic invariants, the proposed testing

setup based on ISLa is a viable, potentially less labour-intensive

alternative to grammar-based fuzzers such as Grammarinator [8],

allowing declarative specification of both the input language and

the test-case preconditions.

9 FUTURE WORK
Performance of ISLa, specifically measured as the time it takes for

the solver to generate a fixed large number of inputs, has been

unpredictable over the course of developing, debugging, and bench-

marking ISLa constraints presented in this study. For instance, when

constraints were added incrementally, the performance on the final

iteration, with all constraints in conjunction varied greatly depend-

ing on the order in which the constraints were introduced, despite

the equivalence of final combined constraints. More research could

be done on how reordering constraints impacts the performance, and

potentially how ISLa constraints can be automatically transformed

into equivalent constraints with better runtime performance.

ISLa’s model of input invariants based on quantifiers and boolean

expressions makes for simple semantics and a simple declarative

syntax. However, it has inherent limitations, such as the inability

to describe constraints over an arbitrary number of nodes (in Sec-

tion3.2, CS4 and CS5). In ISLa, this problem is already addressed

by including predicates such as count() and same_position().
This study shows that ISLa is currently incapable of expressing

constraints involving quantifying an arbitrary number of nodes

outside of what is allowed by built-in predicates. Further research

could attempt to formalise the limits of what invariants can be de-

scribed by ISLa and find ways to expand those limits, for instance,

by implementing additional predicates.

REFERENCES
[1] Budd, T. A., DeMillo, R. A., Lipton, R. J., and Sayward, F. G. Theoretical and

empirical studies on using program mutation to test the functional correctness of

programs. In Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (New York, NY, USA, 1980), POPL ’80, Association

for Computing Machinery, p. 220–233.

[2] Docker, Inc. Compose specification - services. https://docs.docker.com/compose/

compose-file/05-services/, 2024. Accessed: 2024-06-22.

[3] Eberlein, M., Noller, Y., Vogel, T., and Grunske, L. Evolutionary grammar-

based fuzzing. In Search-Based Software Engineering (Cham, 2020), A. Aleti and

A. Panichella, Eds., Springer International Publishing, pp. 105–120.

[4] Free Software Foundation, Inc. GNU Make: A Program for Directing Recompi-
lation, 2023. Accessed: 2024-06-22.

[5] Goldstein, H., Cutler, J.W., Dickstein, D., Pierce, B. C., andHead, A. Property-

based testing in practice. In Proceedings of the IEEE/ACM 46th International Con-
ference on Software Engineering (New York, NY, USA, 2024), ICSE ’24, Association

for Computing Machinery.

[6] Goldstein, H., and Pierce, B. C. Parsing randomness. Proc. ACM Program. Lang.
6, OOPSLA2 (oct 2022).

[7] Hatch, W., Darragh, P., Porncharoenwase, S., Watson, G., and Eide, E. Gener-

ating conforming programs with xsmith. In Proceedings of the 22nd ACM SIGPLAN
International Conference on Generative Programming: Concepts and Experiences
(New York, NY, USA, 2023), GPCE 2023, Association for Computing Machinery,

p. 86–99.

[8] Hodován, R., Kiss, A., and Gyimóthy, T. Grammarinator: a grammar-based open

source fuzzer. In Proceedings of the 9th ACM SIGSOFT International Workshop
on Automating TEST Case Design, Selection, and Evaluation (New York, NY, USA,

2018), A-TEST 2018, Association for Computing Machinery, p. 45–48.

[9] Holler, C., Herzig, K., and Zeller, A. Fuzzing with code fragments. In 21st
USENIX Security Symposium (USENIX Security 12) (Bellevue, WA, Aug. 2012),

USENIX Association, pp. 445–458.

[10] Lampropoulos, L., Gallois-Wong, D., Hriţcu, C., Hughes, J., Pierce, B. C., and

Xia, L.-y. Beginner’s luck: a language for property-based generators. SIGPLAN
Not. 52, 1 (jan 2017), 114–129.

[11] Lampropoulos, L., Hicks, M., and Pierce, B. C. Coverage guided, property based

testing. Proc. ACM Program. Lang. 3, OOPSLA (oct 2019).

[12] Löscher, A., and Sagonas, K. Targeted property-based testing. In Proceedings of
the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(New York, NY, USA, 2017), ISSTA 2017, Association for Computing Machinery,

p. 46–56.

[13] Mernik, M., Črepinvsek, M., Kosar, T., and Žumer, D. Grammar-based systems:

Definition and examples. Informatica 28 (11 2004), 245–255.
[14] Olsthoorn, M., van Deursen, A., and Panichella, A. Generating highly-

structured input data by combining search-based testing and grammar-based

fuzzing. In Proceedings of the 35th IEEE/ACM International Conference on Auto-
mated Software Engineering (New York, NY, USA, 2021), ASE ’20, Association for

Computing Machinery, p. 1224–1228.

[15] Steinhöfel, D., and Zeller, A. Input invariants. In Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (New York, NY, USA, 2022), ESEC/FSE 2022, Association

for Computing Machinery, p. 583–594.

[16] Steinhöfel, Dominic. Isla specification. https://isla.readthedocs.io/en/latest/

islaspec.html, 2023. Accessed: 2024-06-22.

[17] Vasylenko, M. Fuzz-testing with isla. https://github.com/vasylenson/string-

theory-py, 2023. GitHub repository.

[18] Vasylenko, M. Isla repository, github. pull request #94: Fix level predicate. https:

//github.com/rindPHI/isla/pull/94, June 2024. Pull request #94, Isla Repository,

GitHub.

[19] Wang, J., Chen, B., Wei, L., and Liu, Y. Superion: Grammar-aware greybox

fuzzing. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE) (2019), pp. 724–735.

[20] World Wide Web Consortium (W3C). HTML5: A vocabulary and associated

APIs for HTML and XHTML. https://www.w3.org/TR/html5/, October 2014.

[Online; accessed 22-June-2024].

[21] Yan, S.,Wu, C., Li, H., Shao,W., and Jia, C. Pathafl: Path-coverage assisted fuzzing.

In Proceedings of the 15th ACM Asia Conference on Computer and Communications
Security (New York, NY, USA, 2020), ASIA CCS ’20, Association for Computing

Machinery, p. 598–609.

[22] Yang, X., Chen, Y., Eide, E., and Regehr, J. Finding and understanding bugs in c

compilers. SIGPLAN Not. 46, 6 (jun 2011), 283–294.

[23] Zalewski, M. Americal fuzzy lop (fuzzer). https://lcamtuf.coredump.cx/afl/

technical_details.txt.

[24] Zeller, A., Gopinath, R., Böhme, M., Fraser, G., and Holler, C. Index. In The
Fuzzing Book. CISPA Helmholtz Center for Information Security, 2020. Retrieved

2020-09-27 19:14:05+02:00.

7

https://docs.docker.com/compose/compose-file/05-services/
https://docs.docker.com/compose/compose-file/05-services/
https://isla.readthedocs.io/en/latest/islaspec.html
https://isla.readthedocs.io/en/latest/islaspec.html
https://github.com/vasylenson/string-theory-py
https://github.com/vasylenson/string-theory-py
https://github.com/rindPHI/isla/pull/94
https://github.com/rindPHI/isla/pull/94
https://www.w3.org/TR/html5/
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

TScIT 41, July 8, 2022, Enschede, The Netherlands Vasylenko

APPENDIX A
ISLa formula expressing the context-free constraints of AIL.

1 # matching open and close XML tags

2 (forall <xml -tree > tree="<{<id> opid}[<xml -

attribute >]><inner -xml -tree ></{<id> clid}>"

in start:

3 (= opid clid))

4 and

5 # correct tag IDs

6 (<xml -open -tag >.<id> = "build" or <xml -open -tag

>.<id > = "task" or <xml -open -tag >.<id> = "

step") and (<xml -openclose -tag >.<id> = "dep"

)

7 and

8 # correct attribute IDs

9 <xml -attribute >.<id> = "id" or <xml -attribute >.<

id > = "main" or <xml -attribute >.<id> = "cost

" or <xml -attribute >.<id> = "script"

10 and

11 # the build tag at the top level

12 (exists <xml -tree > root="<{<id> id}>{<inner -xml -

tree > inside}<xml -close -tag >" in start: (id

= "build"))

13 and

14 (forall <xml -tree > root="<{<id> id}[<xml -

attribute >]><inner -xml -tree ><xml -close -tag >"

in start: (

15 (id = "build") implies direct_child(root ,

start)))

16 and

17 # only steps may contain text

18 (forall <xml -tree > command="<{<id> id}><text ><

xml -close -tag >" in start: (id = "step"))

19 and

20 # <step > is always inside <task >

21 (forall <xml -tree > step="<{<id> step_id }[<xml -

attribute >]><inner -xml -tree ><xml -close -tag >"

in start: (

22 (step_id = "step") implies

23 (exists <xml -tree > task="<{<id> task_id }[<

xml -attribute >]><inner -xml -tree ><xml -

close -tag >":

24 (task_id = "task" and inside(step , task)

))))

25 and

26 # <dep > is always inside <task >

27 (forall <xml -tree > dep="<{<id> dep_id }[<xml -

attribute >]/>" in start: (

28 (dep_id = "dep") implies

29 (exists <xml -tree > task="<{<id> task_id }[<

xml -attribute >]><inner -xml -tree ><xml -

close -tag >":

30 (task_id = "task" and inside(dep , task))

)))

APPENDIX B
Final Contex-Free Grammar for AIL (in EBNF notation).

1 <start > ::= <build >

2 <build > ::= "(build)" <tasks > "(/build)"

3 <tasks > ::= <task > | <task > <tasks >

4 <task > ::= "(task id='" <id> "'" <mb-main > ")" <

deps > <steps > "(/task)"

5 <mb-main > ::= "" | <main -true >

6 <main -true > ::= " main='true '"

7 <deps > ::= "" | <dep > <deps >

8 <dep > ::= "(dep id='" <id> " '/)"

9 <steps > ::= <step > | <step > <steps >

10 <step > ::= "(step " <cost > ")" <command > "(/step

)" | "(step " <cost > " " <script > ">" "(/

step)"

11 <cost > ::= "cost='" <int > "'"

12 <script > ::= "script='" <text > "'"

13 <id> ::= <text >

14 <command > ::= <text >

15 <text > ::= <char > | <char > <text >

16 <char > ::= <letter > | <digit > | <special >

17 <int > ::= <leaddigit > | <leaddigit ><digits >

18 <digits > ::= <digit > | <digit > <digits >

19 <digit > ::= "0" | "1" | "2" | "3" | "4" | "5" |

"6" | "7" | "8" | "9"

20 <leaddigit > ::= "1" | "2" | "3" | "4" | "5" | "6

" | "7" | "8" | "9"

21 <letter > ::= "a" | "b" | "c" | "d" | "e" | "f" |

"g" | "h" | "i" | "j" | "k" | "l" | "m" | "

n" | "o" | "p" | "q" | "r" | "s" | "t" | "u"

| "v" | "w" | "x" | "y" | "z" | "A" | "B" |

"C" | "D" | "E" | "F" | "G" | "H" | "I" | "

J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q"

| "R" | "S" | "T" | "U" | "V" | "W" | "X" |

"Y" | "Z"

22

23 <special > ::= "_" | "-" | "!" | "@" | "#" | "$"

| "%" | "^" | "*" | "+" | "=" | "|" | ":" |

" " | ";" | "," | "." | "?" | "/"

Due to apparent lack of escaping in ISLa, the grammar does not

describe a subset of XML. Angle brackets <> are substituted by

round brackets () and double quotes " are replaced by single quotes
’. Once a sentence was produced by ISLa it would be converted to

an XML compatible string using Python’s str.replace():

1 def br_to_xml(inp: str):

2 for old , new in [("'", '"'), ('(', '<'), (')

', '>')]:

3 inp = inp.replace(old , new)

4 return inp

5 return inp

8

	Abstract
	1 Introduction
	2 Challenge
	2.1 Input grammars and invariants
	2.2 Test preconditions
	2.3 Research Questions

	3 Methodology
	3.1 Case study: an input language
	3.2 Conditions for tests
	3.3 Fuzzing AIL tests with ISLa

	4 Implementation
	5 Results
	5.1 Context-free conditions
	5.2 Context-sensitive conditions
	5.3 Evaluating effectiveness of test inputs
	5.4 Mining preconditions with ISLearn

	6 Discussion
	6.1 Threats to validity

	7 Related Work
	7.1 Fuzz-testing
	7.2 Property-based testing

	8 Conclusion
	9 Future Work
	References

